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TUTORIAL

A Tutorial on Pharmacodynamic Scripting Facility

in Simeyp

K Abduljalil*, D Edwards, A Barnett, RH Rose, T Cain and M Jamei

INTRODUCTION

The Simcyp Simulator provides a framework for mechanistic
Physiologically-Based Pharmacokinetic/Pharmacodynamic
modeling of potentially interacting drugs. It also provides
a scripting facility, using the Lua language, for developing
customized pharmacodynamic and toxicity models driven
by drug concentrations at the site of action.

We present an overview of the scripting facility including
the scripting language, the editor, and how scripts are
embedded within the Simulator. Examples incorporating dif-
ferential equations and including inter-individual variability
on parameters are presented.

BACKGROUND

The Simcyp population-based Simulator is a widely used
platform for predictive simulation of pharmacokinetic/
pharmacodynamic (PKPD) parameters and profiles, and
drug-drug interaction (DDI) based largely on the extrapola-
tion of a limited set of physicochemical properties and in vitro
experimental data, such as the clearance and transport of a
drug by one or more metabolizing enzymes and
transporters.’?

In a clinical setting, several predictive variable factors, i.e.
covariates, may be measured in an individual patient or vol-
unteer and used to improve a PKPD model prediction and
describe the observed variability. To incorporate inter-
individual variability, the Simcyp Simulator generates virtual
populations of individuals from models incorporating struc-
tural correlation of multiple factors (including demographics,
genetic and disease status) generating an individual subject
with its own set of parameters." A more mechanistic simu-
lation approach can incorporate model components that
account for and predict individual covariates. The Simcyp
Simulator uses such mechanisms benefiting from both
“bottom-up” and “top-down” paradigms, called by some the
“middle out approach”."®

While prediction of PBPK involves a certain level of
modeling complexity, the extension of such predictions to
PD outcomes requires an even more complex layer. Linking
PD to the PBPK model allows the possibility of deriving the
response (pharmacological or toxicological) by the organ
concentration.

The Simulator provides common empirical and semi-
mechanistic “Built-In” pharmacometric building-blocks to

ease construction of quite complex models by picking and
mixing such building blocks, in a flexible environment, to
various input tissue/organ concentrations to drive the
response. These built-in PD models have been described
earlier,” but are defined further here to fully understand the
architecture of the environment that includes the scripting
features.

Briefly, the architecture of the Simcyp PD module
presents a number of different model-building blocks called
PD Response Units (Figure 1). Such units can be linked
together to develop more complex responses via certain
“transduction” options offered by the platform (for the
basics of transduction see?). There are two types of PD
Response unit; a PD Basic unit and a PD Link unit.! The
PD Basic unit offers the most commonly used simple
response models that include, linear, exponential and
sigmoidal/Hill,® providing an option to link them to an effect
compartment. These models can represent a kinetic recep-
tor binding model and be transduced to a stimulus
response model in a subsequent PD Basic unit. The PD
Link unit includes transform link models, which are simple
transforms to convert response to a probability or event
count rate, and parameterised link models which include
indirect response models® and survival models.” The PD
Link unit does not include the effect compartment or kinetic
receptor binding links as these models are available in the
PD Basic unit. PD Response units are subdivided into a
sequence of steps with associated model choices from unit
input to unit output. Each step calculates values according
to a chosen model for that step and passes its result to the
next step in the sequence. Applications of linkihng PBPK
and these PD models to predict the impact of genotypic
variability, formulation differences, differences in target bind-
ing capacity and target site drug concentrations on drug
responses and variability have been described previously.

Since a Simcyp PD model is linked onto the PBPK simu-
lation model for a specific compound via a chain of
response units and each unit comprises a number of built-
in steps in a data flow, this design gives an opportunity for
replacing a step within a unit by a custom model (Figure 2).
In the same way as for a built-in model, the custom model
connects to its input and passes on its output. By this
mechanism, the input of the custom model acts in the
same manner as the input into the processing step it repla-
ces, and the custom step output feeds back into the
sequence of PD processing step in the same way that the
output from the step it replaces would have done. Thus, the
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Figure 1 Simcyp PD response unit structure and interconnec-
tions enabling various combinations of PD units up to three
layers.

flow of the PD units is maintained in a sequential manner.
The step replacement is represented by a Step function
which substitutes a built-in function with a user-scripted
function in the Simulator's C++ code. If the PD Custom
step is on the first step occurrence in a chain of PD
response steps (for example on PD Basic 1), the input to
the PD Custom step can be a drug (total or free) concen-
tration or amount in plasma, blood, effect compartment, or
any other tissue in the PBPK model. It can be the total
dose of the drug, if no PK model is assumed. If the PD
Custom step is preceded by one or more PD steps, then

Xu1

Default
StEp “1”

Default Custom
step “2” step

quZ l Xu3 (= RXUZ}

Default
Step rr30

Custom step is not selected

the input to the PD Custom step is the output from the pre-
ceding step. The output response will be the response in
the last step in the PD chain returned by the user, however
when the codes contain ODEs, the output will also report
all state variable profiles. More than one built-in step can
be replaced by a custom step allowing more than 20 places
across the various compound types to be used, however
replacing only one step can be enough, depending on the
PBPKPD model settings.

ENVIRONMENT CONSIDERATIONS

The scripting language — Lua

Lua is a high-level freely available, very lightweight, and
flexible scripting language (www.lua.org). It can easily be
embedded in other programs with no need to run an exter-
nal compiler, and scripts are run seamlessly as part of a
“live simulation.” Lua is a relatively new language for PKPD
scientists and modellers but it has been used extensively,
particularly in computer games where very fast script exe-
cution is required. While advanced features in the Lua lan-
guage are very powerful, the basics of Lua are rather easy
to learn. There is extensive online documentation (www.lua.
org/docs.html). Details of this documentation are beyond
the scope of the current paper.

Mathematical functions available in Standard Lua library
are supported, for example logarithm, exponential, random
distribution . . . etc. (www.lua.org/manual/5.1/manual.html#5.6).
Only functions that are not required or potentially unsafe for the
purposes of a modeling script were disabled. In addition to the

Default
StEp rriJl

RNW" (= Rxy,)

Default Custom
step “2” step

qu, custom

xu3 (= qu, custom)

Default
Step rl31’

Custom step is selected

Figure 2 General scheme shows the Custom PD Step within the PD Units Chain. The figure shows how the Custom Step replaces a
default PD Step. Each figure block can be equivalent to a single script containing one or more functions. The output function, Rxy,
from an upstream step “1” is considered as an input function to the PD Custom Step, Xy custom, While the output from the custom step,
RXuy,custom, iS considered as an input function, X3, to a subsequent step “3”.
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Figure 3 A screenshot of the Simcyp Lua Editor shows the Functions dropdown menu. The expanded menu shows how to access

various get functions templates to get individual covariates.

requirement of valid Lua Syntax in a script, there are additional
rules imposed for valid script execution in the Simcyp environ-
ment. Most of these are enforceable through a validation tool
linked to the script editor; others through limited access provid-
ed by Simcyp Lua Library functions; a few by the user interface
itself. The scripting editor is based on generic text editing com-
ponents from the Scintilla project (www.scintilla.org) but is
adapted for Simcyp PD scripting.

Simcyp call-back functions

When a simulation is executed, different branches of the
simulator (trial design, population library, and compound
library) are initiated in order and connected to generate
individual values for the compound and population type
under study. The engine then starts to run PKPD calcula-
tions and reports the results. A summary scheme of these
processes have been provided in the supplementary mate-
rial (Appendix A).

Within a script, there are named script functions (e.g.
“Step” and “setup” functions) which are called by the Simu-
lator platform at specific points in the simulation. Such func-
tions are generically known to programmers as “call-back”
functions. Simcyp maintains the signatures of these call-back
functions and uses them to give controlled access to inputs
and parameters through function arguments and the values
to be passed onto as the function’s return value. The particu-
lar function names are reserved and a particular signature is
required for the function to be valid. Coding of Lua scripts is
supported by a “Functions” dropdown menu, which provides
templates for calls to Simcyp Library functions (calls to

Simcyp C+ + code available as Lua script functions) as well
as function definition templates for user-coded Lua Setup
and step functions (Figure 3; see also Supplementary
Materials for additional functions in the dropdown menu).

Generally, setup functions map onto execution of simu-
lation contexts and called once a certain simulation context
is reached, where Simcyp Library set and get functions
can be used to manipulate data stores (see Figure 4). In
order to control the information passage, the Simcyp data
store provides four types of storage space to support PD
custom scripting, namely: stores for values scoped at the
simulation-population, compound, individual, and individual-
compound data levels with one Setup function correspond-
ing to each scoping level (Figure 4).

The step functions are used to code the model in alge-
braic or ODE equations. All step functions operate at the
individual-compound specific level. They are called for each
individual per active compound and could be for each time
point if the model contains ODE. Most step functions have
read access to an array of parameters (P) which are indi-
vidualised model parameters specific to that step for a par-
ticular compound type (see the warfarin example below).
Details of these functions are available in Simcyp help
documentation.

While PBPKPD applications using the Simcyp PD mod-
ule with customized features have been published,® ! the
aim of this tutorial is to provide a description of the underly-
ing structure and feature of the scripting environment and
to demonstrate a case example of coding a PD model step
by step.
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Datastore Simulation-Population

Parameters (default) 5
RO opSimSetu,
-distribution type o Pl) .
-mean sc:setParameter(index, value) sc:getParameter(index)
-dispersion sc:setXtra(index, value) sc:getXtra(index)
-value sc:setXtraName(index,value) sc:sampleRandomDistribution(
ParameterNames sc:setNUserOdes{value) distrName, mean, dispersion)
Xtras sc:setllVDistribution(
XtraNames parameterindex, distribution,
mean, dispersion)

Datastore Individual
Parameters (default) T sc:getParameter{index)
-value mf!fwdualSetup ” sc:getindivXtra(index)
IndiviXtras sc:setParameter(index, value) sc:samplellVDistribution(

sc:setindivXtra(index, value) parameterindex, distribution,

mean, dispersion)
sc:sampleRandomDistribution(
distrName, mean, dispersion)

IndivXtraNames

Datastore Compound(-Step)
Parameters (default) compoundSetup()
-distribution type i ; i
-mean sc:setParameter(index, value) sc:getParameter(index)
-dispersion sc:setXtra(index, value) sc:getXtra(index)
-value sc:setllVDistribution( sc.:sompleRandomD;'strr'burrr'on{
ParameterNames parameterindex, distribution, distrName, mean, dispersion)

ParameterNames mean, dispersion)

Datastore Individual Compound(-Step)

Parameters individualCompoundSetup() value=Pindex]

el directAlgebraicStep(xin, P,...)  sc.getParameter(index)
indirectAlgebraicStep(t, xin, P,...) sc:getindivXtra(index)
odelnitStep(xin ,su, P) sc:getXtrafindex)
odeRateStep(t, xin, su, gu, P,...) sc:samplellVDistribution(
Pfindex] = value parameterindex, distribution,
sc:setParameter(index, value) mean, dispersion)
sc:setindivXtra(index, value) sc:sampleRandomDistribution(

distrName, mean, dispersion)

Figure 4 Simcyp datastores for persistence of script variables at the different scoping levels, together with the Setup, Step, and Sim-
cyp library (sc:) functions and Lua code that can access or modify them. Higher level stores can provide default parameters for lower
level access when a requested value is not available at the same level as the get call. The set functions typically set store values at
the same level as the function call. sc:sampleIIVDistribution generates individual values from the parameter distribution stored
at the next higher level.

Case Examples dNPT; Imax - CP(S);
Example — Warfarin PD model. The case example pre- dt =Kin- " miCsx + Cp(S);
if

sented here is based on the PD response model to warfa-
fin in a Chinese population'? as this model has different
coding features. The PK model is not of interest in this
tutorial, since the plasma concentration is instead taken
from the PBPK model and used as an input to the PD As the equations show, the time course of normal prothrom-
model. The PD model we are interested in here is bin (NPT) concentration in response to an increase in the S-
depicted next: warfarin plasma concentration (Cp(S)) after warfarin

) ~Kout - NPT;

NPT\ ™
INRj=INRgase + INRyay - (1 - —”)

NPT,

CPT: Pharmacometrics & Systems Pharmacology



administration was described by an indirect model to express
the time delay between Cp(S) and NPT, in which NPT syn-
thesis was assumed to be inhibited by the En,ax model. NPT
represents the NPT in the th individual at the th observa-
tion, Kin is expressed as Kout multiplied by NPT, (baseline
NPT before warfarin administration), ly.x is the maximum
decrease in NPT concentration assumed to be 1.0 (complete
inhibition of NPT synthesis), Cp(S); is the Cp(S) in the ith
individual at the jth time point, and IC50 is the Cp(S) that
inhibits NPT synthesis at 50% of lyjax-

The time course of international normalized ratio (INR) in
response to a decrease in the plasma concentration of
NPT after warfarin administration was described based on
the percentage inhibition of NPT,. INR; represents the INR
in the ith individual at the fth observation, and INRg,se and
NPT, represent the baseline INR and NPT before warfarin
administration, respectively. INRyax is the maximum INR
increase from the baseline, which was set at 5 (the maxi-
mum INR; was fixed at 6) because the observed maximum
INR; in 97.3% of the study patients was less than 6. The
exponent Gamma (y) accounts for the nonlinear relationship
between NPT inhibition and the increase in INR by warfarin
and modified by inter-individual variability in an exponential
manner (m,) after centring on the median value of NPT,
(119 pg/ml).

The model parameter values are:

Cp(S); is the S-warfarin plasma concentration

NPT, (ug/ml) = 118.2 + 22.1 (mean *+ SD)

INRy = 1.05 = 0.10 (mean = SD)

Kout (1/hr) = 0.0138 (CV=44%)

Kin = Kout - NPT,

Imax = 1 (fixed)

m_ICso= ICs0*(2.07 = VKORC1), where ICso (ng/ml)

=0.072 (equivalent to 0.233 uM) (CV =37%) and

VKORCH1 code was 0 for VKORC1 *2/*2 and 1 otherwise.

INRmax = 6 (Fixed)

m_Gamma (m,) = Gamma *
where Gamma = 3.48 (CV=23%).

The Simcyp Lua code of this model is provided in Figure 5.
To code this model, one needs functions that define and
handle the structural model, define parameters and their
distribution and covariate, generate individual values and sam-
pling function. The first function is the popSimSetup
function

(0.005886 x (NPTO — 119)
t

function popSimSetup(...)
sc:setNUserOdes (1) — define how many differential equations
sc:setUserStateName (1, “Prothrombin
conc (pg/ml)”)
end

The popSimSetup function has the widest context. We
have defined here the number of ODE in the whole work-
space. In our case we have only one ODE for the parent
compound. It is recommended to assign values that are
kept constant for all compounds and individuals so this
function does not need to be called repeatedly at lower lev-
el of storage. The second line in our code is to label the
state variable, but other parameters, including covariates,

Pharmacodynamic Scripting Facility in Simcyp
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can be labelled here as well. The popSimSetup function
operates at the population and simulation level and is called
only once per simulation. Iteration through all active scripts
for a call to popSimSetup will occur in order of compound
(i.e., substrate then inhibitors then metabolites) and step
sequence within compound.

Next, we need to start coding on either an individual or
compound level. We will start with coding individual level
and then compound level information. However, the reverse
is also permitted. The function that writes on individual level
is called individualSetup function as below:

function individualSetup(...)
local VKORC1
VKORCl=math.random (0, 1)
sc:setParameter (1, VKORC1)
end

We have coded here a covariate that was found to affect
IC50. The code for this covariate is either 1 or 0 for each
individual (VKORC1*2 rs9923231 (—1639 G>A). Carriers
of this allele will have a code of 0 (see the original model)).
Therefore we have to declare this variable as local and use
a Lua standard function math.random (lower, upper) to
generate an individual value for this categorical covariate.
For sake of code simplicity, here we have assumed 50% of
the population have the code 1 and 50% have the code O,
but other frequency can be coded. The individualSetup
function is called once for each individual subject to assign
individual parameter values. We have used this function to
set up a covariate (other examples of using Simcyp covari-
ates are given in the Survival example in Appendix B). In
the last line of the step function we used a set function to
store and index this parameter. This is the first parameter
in our model.

Now, we need to code compound parameters with their
distribution types on the compound level. The function that
writes to that level is called compoundSetup function. This
function is called once for each active compound per
response step combination in the following order; substrate,
then inhibitors, then metabolites.

function compoundSetup(...)
sc:setIIVDistribution (2,
22.1) = NPTO (pg/mL)
sc:setIIVDistribution (3,
0.10) - INRO
sc:setIIVDistribution (4,
0.0138, 44) — kout (1/hr)
sc:setIIVDistribution (5,
0.233, 37.1) — IC50 (uM/L)
sc:setIIVDistribution (6,
0) — INR max
Sc:setIIVDistribution(7,SC.LOGNORMAL7CV,]4 0)
— Imax
sc:setIIVDistribution (8,
3.48, 23.4) - Gamma

end

sc.NORMAL sD, 118.2,
sc.NORMAL sD, 1.05,
sc.LOGNORMAL CV,

sc.LOGNORMAL CV,

sc.LOGNORMAL CV, 6,

sc.LOGNORMAL CV,

We have an arithmetic mean and SD for INPT, and
INRy as baseline before administration of warfarin. We
will code them as parameters that have normal distribution
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File Edit Options Tools Functions

2

3

4

5

(-]

7 -end

8 Hfunction L,

9 local VKORC1l

10 VKORCl=math.random(0,1) - to generate a code for VKOR varian i 2/2 ar herwis
11 : (1,VKORC1)

12 Lend

13 HBHfunction r (sl

14 :setIIVDist (2, - NORM? . 118.2, 22.1)

15 z D1 but (3, - ? 1.05; 0.10) -
16 | 3 IVI t (4, f» 0.0138, 44)
17 ( 5 0.23 37.1) --
18 ’ r 6, 0 --=
19 (1: : 10}

20 (8, , 3.48, 23.4) ——
21 end

22 =

23 Efun:::on |

24 [ f i =2,8 do

25 local Pindiv = = IIV but (i)

26 1 set (i, Pindiv)

27 - end

28 Lend

29 BHfunction {xin, su, P, ...)

30 | t=1}

31 |t.NPT = 1

32 | surt.NPT] = P[1]

33 return sul[t.NPT]

34 Lend

35 Hfunction (e, xin, sa, gu, P, ...)

36 local INRO, kout, IC50, NPTO, INR max, Imax, Gamma, Kin, VKORC1l, mIC50, mGamma
37 VKORC1 = P[1]

38 | NPTO = P[2]

39 | INRO = P[3]

40 | kout = P[4]

41 | ICS0 = P[S5]

42 INR max= P[6]

43 Imax = P[7]

44 Gamma = P[B]

45

46 mIC50 = IC50 * (2.07~VKORC1)

47 mGamma = Gamma* math.exp(0.005886 * (NPTO - 119))

48 | Kin = NPTO * kout

49 I e=0) -

50 | fjt.NpT = 1

51 | NPT = su[t.NPT]

52

53 gu[t.NPT]= Kin * (1 - ( Imax * xin /(mIC50 + xin) ) ) - kout * NPT -- ODE for NPT
54 INR = INRO + INR max * (1 - NPT/NPT0) “mGamma -— INR

55 return INR

56 ~end

Figure 5 Simcyp Lua code for INR model after warfarin administration (based on Ref. 12).

with the reported mean and SD. For the rest of the parame-
ter a lognormal distribution with CV was assumed. More
details on the distribution are given later in this tutorial. The
input to the PD model is the total plasma concentration of S-
warfarin. The simulator takes PD input as total or free con-
centration or total amount in molar units. Since the input
concentration is in pM, the IC50 is changed from pg/ml to
pM. We have started indexing these parameters from 2,
because we have already the first index for VKORC1. Please
note that INR_max and Imax were fixed, therefore they will
not have any CV.

After defining the compound parameters and their distri-
bution types, we need in the next step to sample from
these distribution types and assign parameter values to
each individual. To do this we need to use a function called
individualCompoundSetup function. This function oper-
ates at the individual-compound level and is called once for
each individual per active compound and response step

CPT: Pharmacometrics & Systems Pharmacology

combination. Values which depend on both compound type
and individual, for example an individual clearance value of
a drug, can be manipulated here.

function individualCompoundSetup(...)
for i=2,8 do
local Pindiv=sc:samplelIIVDistribution (i)
sc:setParameter (i, Pindiv)
end
end

In our model we have sampled for the seven parameters,
indexed previously under CompoundSetup function, using
the distribution associated to each of them and we pass
individual values down to the lowest level “step” function to
be used for the calculation. We have one differential equa-
tion with initial condition and one algebraic function. We will
start coding the initial condition for the NPT parameter



using a function called odeInitStep function. This func-
tion can be ignored if the initial condition is zero, otherwise
it is required. Here we simply can write it as:

function odeInitStep (xin, su, P, ...)
sull] = P[2]
return su[l]
end

The table type in Lua implements associative arrays that
can be indexed not only with numbers, but also with strings
or any other value of the language, except nil. Therefore to
make the code clearer we can use names instead of num-
bers by constructing a table and assigning it to a variable
“t” as below:

function odeInitStep (xin, su, P, ...)
t={}
t.NPT=1
su[t .NPT] = P[1]
return sult.NPT]
end

The su is a reference to arrays or associative arrays rep-
resenting a reserved block of user state variables reserved
by Simcyp.

After coding the initial condition, we can now code the
block of differential equations using a function called
odeRateStep (t, xin, su, gu, P, ...) function. This is
similar to using the ODE block in other software such as
$DES in NONMEM or $DIFF in WinNonlin. The argument
xin and the returned value, represent respectively the
input (e.g. drug concentration or amount from the PBPK
model, such as unbound concentration in the liver or kid-
ney). In our example xin represents total plasma concen-
tration of S-warfarin. The argument P is a reference to a
generic input parameter array. The su and gu are referen-
ces to arrays or associative arrays representing a reserved
block of user state and user gradient variables reserved by
Simcyp by subscripting, so gu[1] and gu2] will correspond
to su[l] and sul2]. Alternatively, names can be used
instead of numbers as shown earlier.

The variables used within the scope of this function will
be declared as local. In our example, the IC50 is assumed
to be dependent on individual VKORC1 variant and Gamma
is influenced by individual NPT values, according to the
original code. The math.exp expression is the Lua stan-
dard library function for exponent.

function odeRateStep (t, xin, su, gu, P, ...)
local INRO, kout, IC50, NPTO, INR max, Imax,
Gamma, Kin, VKORCL

NPTO = P[1]
INRO = P[2]
kout = P[3]
IC50 = P[4]
INR max = P[5]
Imax = P[6]

Gamma = P[7]

VKORC1 = P[8]

mIC50=1IC50* (2.07 VKORC1)

mGamma = Gamma* math.exp (0.005886
* (NPTO - 119))

Pharmacodynamic Scripting Facility in Simcyp
Abduljalil et al.

Kin=NPTO * kout
t={}
t.NPT=1
NPT = su[t .NPT]
gul t.NPT] = Kin* (1-(Imax * xin/ (mIC50 + xin))) -
kout* NPT
INR = INRO + INR max * (1 - NPT/NPTO ) mGamma
return INR
end

Currently, up to 25 ODEs can be coded in all activated
custom models. The user needs to make sure that the cor-
rect indices or names are used by each script. Another
code example for this function is given in the viral model
code example (Appendix C). The total number of user
ODEs should be set up at the start of a simulation via a
sc:setNUserOdes (number) call within the popSim-
Setup function. The odeRateStep may also contain sim-
ple algebraic formulae assigned to other local variables.

It is also possible to directly access the ODE state varia-
bles like substrate or inhibitor concentration. Therefore it is
possible to connect/combine the impact of different com-
pounds, for instance, metabolite and the parent compounds
(substrate or inhibitor) simultaneously.

If the scripted model does not contain ODEs, such as
simple linear or E,ox models, then one can select a differ-
ent Step function from the Function dropdown menu called
directAlgebraicStep(xin, P, ...) function (see
example below). Indirect PD models® or survival models” in
their algebraic forms can be coded using a different func-
tion called indirectAlgebraicStep(t, xin, P, ...)
function to use the simulation time (t) as the independent
variable. A code example of this function is given for a sur-
vival model in Appendix B in the supplementary
document.

So far we have clarified the concept of the Setup and
Step functions of the Simcyp Lua script and we have seen
many Simcyp Library Functions such as set functions and
some for distribution functions without providing details of
their roles. These will be discussed below before we go to
the next examples.

Simcyp library script functions. The Simcyp Library
consists of a number of Lua function calls (prefixed by
sc:) implemented within the Simcyp C++ code, as well
as some pre-supplied named values (prefixed by sc.) for
use as function arguments. These facilities allow and
control the passing of information between the Simcyp
simulator and Lua scripts, and are one of three main

types.

1. Simcyp set functions (to
sc:setParameter)

2. Simcyp get functions (to get/read stored values e.g.,
sc:getIndivAge)

3. Simcyp sampling functions (to sample from a random
distribution, e.g., sc:sampleRandomDistribution)

set/write values e.g.,

The sc:set functions: Most custom Step functions have
read-only access to an array of individual parameters p
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specific to the step model for a given compound. Lua code
in setup functions may define model parameter values
and store a value in P with the sc:setParameter
(index, value) function as we did for the VKORC1 vari-
able. Then the stored value can be retrieved with sc:get-
Parameter (index) function. For additional examples see
the survival model code (Appendix B). Such sc:set func-
tions store values at the same scoping level as the function
within which they occur (Figure 4). The sc:get functions
try the same level and if the parameter information is not
found, go to the next higher scoping level to find the
information.

Some sc:set functions need a value only as argument
such as the one we used at the top of the code for setting
the total number of ODEs in the simulation. At the same
place we used a function to label the state variable and other
parameters, if we wish to do so. For example:

function popSimSetup(...)

sc:setNUserOdes(1) — define how many differential
equations

sc:setUserStateName(1, “Prothrombin conc(ug/ml)”)
sc:setParameterName(1, “WVKORC1”)
sc:setParameterName(2, “NPTO”)

end

Additional code examples are given in the supplementary
material (Appendices B & C). Parameter labels are stored
and used for the output of inter-individual variability distribu-
tions and individual values.

The sc:get functions: This function can be used to
retrieve any values stored temporarily for the current script
or can be used to call any covariates within the Simcyp Pop-
ulation Library. The Simcyp Library provides read only
access to different covariates generated as part of its virtual
population to obtain an individual value by calling one of
many sc:get functions, such as sc:getIndivAge (),
sc:getIndivEnzCovar (), sc:getIndivWeight (),
sc:getIndivSexCode () from a setup or step function. A
code example for using these functions is given in the next
example as well as in the supplementary document (Appen-
dix B). The range of covariates includes demographic and
physiological details amongst enzyme/transporter/receptor
phenotypes, abundances, and turnover. The drop-down
menus shown in Figure 3 give an idea of the range of cova-
riates available. The advantage of accessing covariates
assigned as part of the PBPK model is that a covariate that
is also used by the PD model will be given the same value
for the same individual as is used in the PBPK model.

The set function can be used to allocate extra
storage. Extra storage is provided at the simulation-
population level (Xtra) and at the individual (IndivXtra)
levels through the sc:setXtra(index, value) and
sc:setIndivXtra (index, value) function, respective-
ly. The extra storage allows additional values or variables to
be set and stored for later use independent of the step
function. Information for different compounds may be stored
at different indices. Both individualSetup, individu-
alCompoundSetup functions write to indivXtra storage,
while compoundSetup and popSimSetup functions write
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to xtra storage (Figure 4). Read access is possible for
Xtra at all levels with sc:getXtra (index), but indivX-
tra is readable only for the same individual through
sc:getIndivXtra (index) in individualSetup,
individualCompoundSetup and Step functions as differ-
ent individuals may be simulated on different execution
threads. More examples are in the Survival code
(Appendix B).

In our warfarin example, different parameters for an inter-
individual statistical distribution that is used to generate
individual P values were set up with sc:setIIVDistr (-
parameterIndex, distrName, mean, dispersion).
This will be discussed below under the Random Distribu-
tions and Parameter Dispersion section.

Random distributions and parameter dispersion. Cur-
rently, there are five types of predefined random distribu-
tions available for PD Custom scripting which are
selectable from the editor menu, namely lognormal (mean,
CV %), converted lognormal (meanin, sdin), normal (mean,
SD), zero truncated normal (mean, CV), and uniform (min,
max). A distribution for inter-individual variability of model
parameters can be specified through the function sc:se-
tIIVDistr (parameterIndex, distrName, mean,
dispersion) in the compound setup function. We have
previously defined in the warfarin model two types of distri-
bution, normal and lognormal. Then in individualSetup
function, there was a call via sc:sampleIIVDistr (para-
meterIndex) to sample from that distribution. The individ-
ual value is passed as argument Plindex] to a step
function.

Alternatively, a user can sample from any of the afore-
mentioned distribution types via the library function
sc:sampleRandomDistribution (distrName, mean,
dispersion) without reference to a step-model parame-
ter. Such calls will use the same pseudorandom number
generator coded within Simcyp as the sampleIIVDistri-
bution function but the value can be assigned and used
however the user intends, not necessarily for inter-
individual variability.

A Simcyp simulation runs with a particular pseudoran-
dom number generator type. Currently, a user may select
from a linear congruential generator'® or a Mersenne Twist-
er generator'® with a master seed fixed by a user or
system-set from a clock time. This initial sequence will how-
ever be used to seed several other generators so that par-
allel individual simulations can proceed independently. PD
simulation of an individual is also set up with a generator
seeded with very large offset from the original PK genera-
tor. This approach maintains repeatability of various ran-
dom elements of a simulation from a fixed seed even when
some elements in a model have changed. Calls to Simcyp
Library distribution functions will insert calls in the pseudo-
random number generators specific to the PD context in
which the script is placed, but will not change the random
number sequences of purely PK — based sampling.

A user also has the option of generating random distribu-
tions using facilities in the Lua standard library for access-
ing the American National Standards Institute (ANSI)
standard C library (uniform) random number generator,



notably the math.random, math.randomseed functions.
Since such calls are independently seeded, there is no
direct reference to any built-in Simcyp pseudorandom
sequence. Thus, the user will have to consider carefully the
effect of calls from multiple scripts.

Example - E,,.x model. This example shows a simple
pharmacodynamic model commonly known as the E..x
model, subtracted from a baseline response, and inserted
into a typical nonlinear mixed effects population model. Let
us code a subtractive Eax model from a baseline that is
age-dependent in Simcyp using Lua script that is structural-
ly equivalent to a NONMEM code in NMTRAN (shown
below).

$PROB PD_Epmax MODEL WITH AGE AS A COVARIATE
ON BASELINE

$INPUT ID TIME CONC RESP=DV AGE WT

$DATA Epax_PD.ixt IGNORE=#

$PRED

TVEO = THETA(1) - THETA(4)*(AGE-45)
E0 = TVEO + ETA(1)
EC50=THETA(2)*EXP(ETA(2))
Emax=THETA(3)*(1+ETA(3))

RESPONSE = EO - (Eyax * CONC/(EC50 + CONC))
Y = RESPONSE + EPS(1)

$THETA 50, 7, 15, 0.1
$OMEGA 5, 0.1, 1
$SIGMA 1

$SIMULATION

The concentration used as the PD input is not defined
here, however it can come from the PK model section or as
part of the data set file.

Pharmacometricians familiar with NONMEM NM-TRAN
terminology will recognize this code as defining a nonline-
ar effects model through a set of structural parameters
(the THETA’s) modulated by certain independent normal
random variables (the ETA’s) representing inter-individual
variability; with structural parameter values given in a
$THETA block and (diagonal) elements of the random var-
iable’s covariance matrix given in a $SOMEGA block. Add-
ing ETA(1) to THETA(1) thus makes the EO parameter
normally distributed, and multiplication of THETA(2) by
EXP(ETA(2)) makes the EC50 parameter lognormally dis-
tributed. The prediction includes an added residual ran-
dom error represented by an (EPS-ilon) and another
standard normal variable with a fixed variance defined in
the $SIGMA block.

An equivalent PD model can be scripted in Lua, whereby
the PD model parameter (labelled EO, EC50, E,.x - param-
eters specific to a compound) and their associated inter-
individual random distribution are defined in a compound-
Setup function. Similar to the previous example, the Sim-
cyp Simulator can be told to sample individual values from
each such distribution in an individualCompoundSetup
function and save the individual values appropriately in the
underlying Simcyp datastore. The individual values will then
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be available to a parameterised step function as elements
of parameter array P.

function compoundSetup(...)
sc:setIIVDistribution(l, sc.NORMAL SD, 100, 5)
- EO

sc:setIIVDistribution(2, sc.LOGNORMAL CV, 7, 4) —ECS50
sc:setIIVDistribution(3, sc.NORMAL SD, 45, 0) -
Emax

sc:setIIVDistribution(4, sc.NORMAL SD, 0.1, 0)
— effect of age

sc:setIIVDistribution(5, sc.NORMAL sSD, 0, 1) -
used as ETA

end

function individualCompoundSetup(...)
for i=1,5 do
localP indi = sc:sampleIIVDistribution (i)
sc:setParameter (i, P_indi)
end
end

function directAlgebraicStep(xin, P, ...)
local EO, EC50, Eyay, CONC, AGEF, EO AGE, EPS_1

EO0 = P[1]

EC50 = P[2]

Emax = P[3] * (1+ P[5])

AGEF = P[4] * (sc:getIndivAge () — 45) — effect of
age on baseline response

CONC =xin - PD input (conc in the X (tissue)
compartment)

EPS 1= sc:sampleRandomDistribution (sc.NOR-
MAL SD, 0, 1) — to add residual error

EOiAGE =EQ - AGEF

RESPONSE =E0 AGE - (CONC * Euayx/ (CONC + EC50)) -
- response model
Y =RESPONSE + EPS 1 - - overall response

return Y.

end

A residual variability (as in NM-TRAN for EPS/SIGMA) can
alternatively be added through a Simcyp Trial Design built-
in facility. The Trial Design input screens include a feature
called “Analytical error” where this additive (or other) error
term can be entered as the standard deviation rather than
variance.

Another example of Simcyp PD Custom scripting has
already been published in this journal as part of an investi-
gation of factors affecting response to the drug rosuvasta-
tin.° That study involved investigation of the role of
OATP1B1 transporter phenotypes on the change in choles-
terol synthesis rate using a scripted indirect PKPD
response model incorporating a circadian rhythm. Details of
the code are included in that publication’s Supplementary
Material.

Many additional examples of scripts are pre-supplied and
available upon installation of the Simcyp Simulator. These
examples allow users to become familiar with the scripting
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language, Syntax and provide a basis for users to modify
the script.

Additional examples that show different elements of the
code such as antiviral and survival models where a user
can add individual covariates or enzyme phenotypes, or
use the extra storage options, are provided in the supple-
mentary document.

The model parameter distributions are not correlated
by default; however the user can code the correlation.
An example of Simcyp Lua script for bivariate normal distri-
bution is provided in the supplementary document (Appen-
dix D).

REMARKS AND FUTURE GOALS

The first implementation of this scripting facility has focused
on supporting the simulation of custom PD models using
the scripting language Lua. Several well-known PKPD soft-
ware applications have their own coding language using
named blocks of code which are selected and executed as
determined by the software, for examples DIFF or $DES
respectively for differential equations in PKPD software
WinNonlin (http://www.certara.com) or NONMEM (http:/
www.iconplc.com). In some cases, the application provides
flags for user code to test for a particular context and so
conditionally executes a user code section. For example, a
user may wish to perform specific tasks once in the whole
simulation or assign specific parameters to each individual.
The NONMEM population modeling program, when used
with its PREDPP Population Pharmacokinetic library, calls
user code represented say by a $PK block in the associat-
ed NMTRAN control file to define algebraic equations for a
PK model prediction, and supplies a value to the NEWIND
flag that differentiates a first overall call from a first subse-
quent call for a new individual. Simcyp also recognises
these two different contexts, and defines specific Lua setup
functions for each, namely: popSimSetup for once-per-
overall-simulation execution and individualSetup exe-
cuted once-per-each-individual. Lua variables are places
that store values and are by default global in a script. They
may however be declared local to a particular function with
the local keyword. It is good practise to declare variable
local to scope them within their relevant block. Unlike global
variables, local variables have their scope limited and a
short lifetime to the block where they are declared. As
shown in the examples, the Simcyp Library includes a num-
ber of sc:set functions to store variables within the C++
application across different script calls and sc:get func-
tions to access them.

Parameter estimation facilities have not as yet been
extended to include custom-scripted parameters. Neverthe-
less parameter estimation can still be used for built-in
PKPD model parameters when a user script is part of the
model. Furthermore, a freely available R library package
has recently been developed to enable a user to run Sim-
cyp directly from the R environment, commonly used for
statistical scripting (a similar interfacing facility has been
developed for the Matlab environment).'® This will allow fur-
ther manipulation of Simcyp parameters from these
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computing platforms and so could potentially be used for fit-
ting Lua-coded models as well.

The current Simcyp architecture of PD response chains
allows the replacement of built-in models seamlessly and is
in principle expandable to more complex networks of
response units. Feedback of drug response on some physi-
ological and biological parameters like gastric pH have
been enabled.

Recently, the Simcyp Lua scripting features have been
extended to allow the user to modify individual age-height-
weight covariance relationships in the demographics sec-
tion as part of the population library that generates virtual
individuals. This is potentially useful if the user wants to
define these covariates differently for a special population
of interest, such as for a new disease or a particular obesi-
ty profile.

Lua custom scripts may also help in the sharing of model
components with external model repositories as part of an
enhanced interoperability capability. For example Innovative
Medicines Initiative’s DDMoRe project (www.ddmore.eu)
has been developing a repository of annotated PD-related
disease models, elements of which might be translated into
Lua scripts. A command line console has been added
which supports the DDMoRe Project Interoperability Frame-
work. This new functionality allows DDMoRe partners with
a Simcyp Simulator license to run simulations in scripted
workflows with other software such as NONMEM and PSN,
Monolix, PFIM, and PopED using PharmML.'® Further, the
console allows use of the Simulator’s databases of popula-
tions, compounds, and PBPK models through other plat-
forms such as Matlab and R.

CONCLUSIONS

A scripting facility for customising PD response models
within the Simcyp Simulator has been developed, whereby
a user can replace the built-in model for a given PD step
with a script using a dedicated editor. The editor supplies a
library of Simcyp functions for storing variables in the Simu-
lator and for accessing or manipulating elements of the PK
and PD simulation. In addition it facilitates the implementa-
tion of complex PD models defined using ODEs with limited
computational overheads. Further, the Simcyp platform
handles the compilation of the Lua code allowing less expe-
rienced users to access advanced modeling capabilities.
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ADME Absorption  Distribution Metabolism and
Excretion

ANSI American National Standards Institute

DDl Drug-Drug Interaction

gu Time-gradient of a user-state variable in the

Custom differential equation model

GUI Graphical User Interface

NONMEM  Nonlinear Mixed Effects Modeling software
NMTRAN  NONMEM Translator

ODE Ordinary Differential Equation

P

Array of parameter for a Response Model

PREDPP  NONMEM PRED Population Pharmacoki-

Netics subroutine library

PBPKPD Physiologically Based Pharmacokinetic/

Dynamic [model]

PD Pharmacodynamic

PK pharmacokinetic

PKPD Pharmacokinetic-Pharmacodynamic

Rx Response as input: terminology to identify a
PD response in a chain of transduction/link
processing as an input in the current context

Ry Response as output: terminology to identify
a PD response in a chain of transduction/
link processing as an input in the current
context

su A (user-) state variable in the custom PD
ordinary differential equation model

X General input

Xin Incoming functions into a PD step. (Xin, custom
in case of custom PD model input)

Xout = leaving functions into a PD step (Xout, custom

in case of custom PD model input).
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