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Abstract
This review focuses on the recent development and various strategies in the preparation,
microstructure, and magnetic properties of bare and surface functionalized iron oxide
nanoparticles (IONPs); their corresponding biological application was also discussed. In order to
implement the practical in vivo or in vitro applications, the [ONPs must have combined
properties of high magnetic saturation, stability, biocompatibility, and interactive functions at the
surface. Moreover, the surface of IONPs could be modified by organic materials or inorganic
materials, such as polymers, biomolecules, silica, metals, etc. The new functionalized strategies,
problems and major challenges, along with the current directions for the synthesis, surface
functionalization and bioapplication of IONPs, are considered. Finally, some future trends and

the prospects in these research areas are also discussed.

Keywords: magnetic iron oxide nanoparticles, surface functional strategy, biomedical

application

1. Introduction

Iron oxides are common compounds, which are widespread in
nature and can be readily synthesized in the laboratory.
Magnetic iron oxides have served humans for centuries, for
example, the application of small iron oxide nanoparticles
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(IONPs) as a contrast agent for in vitro diagnostics has been
practiced for nearly half a century [1-3]. In the past decade,
the synthesis of magnetic IONPs has been intensively
developed not only for its fundamental scientific interest but
also for its many technological applications, such as targeted
drug delivery, magnetic resonance imaging (MRI), magnetic
hyperthermia and thermoablation, bioseparation, and biosen-
sing [4-7]. Particularly, bioapplications based on magnetic
nanoparticles (NPs) have received considerable attention
because NPs offer unique advantages over other materials.
For example, magnetic IONPs are inexpensive to produce,
physically and chemically stable, biocompatible, and envir-
onmentally safe [8].
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Figure 1. Crystal structure and crystallographic data of the hematite, magnetite and maghemite (the black ball is Fe®*, the green ball is Fe®*

and the red ball is O*").

1.1. Iron oxides

Eight iron oxides are known [9], among these iron oxides,
hematite (a-Fe,03), magnetite (Fe3;O,) and maghemite (y-
Fe,03) are very promising and popular candidates due to their
polymorphism involving temperature-induced phase transi-
tion. Each of these three iron oxides has unique biochemical,
magnetic, catalytic, and other properties which provide suit-
ability for specific technical and biomedical applications.

1.1.1. Hematite (a-Fe;03). As the most stable iron oxide and
n-type semiconductor under ambient conditions, hematite (a-
Fe,03) is widely used in catalysts, pigments and gas sensors
due to its low cost and high resistance to corrosion. It can also
be used as a starting material for the synthesis of magnetite
(Fe3s04) and maghemite (y-Fe,O3), which have been
intensively pursued for both fundamental scientific interests
and technological applications in the last few decades [10].
Hematite is an n-type semiconductor with a band gap of
2.3eV, where the conduction band (CB) is composed of
empty d-orbitals of Fe®* and the valence band (VB) consists
of occupied 3d crystal field orbitals of Fe’™ with some
admixture from the O 2p non-bonding orbitals [11]. As
shown in figure 1(a), Fe’* ions occupy two-thirds of the
octahedral sites that are confined by the nearly ideal
hexagonal close-packed O lattice.

1.1.2. Magnetite (Fe3O,). As shown in figure 1(b), Fe;04
has the face centered cubic spinel structure, based on 32 0>
ions and close-packed along the [111] direction. Fe;O, differs
from most other iron oxides in that it contains both divalent
and trivalent iron. Fe;04 has a cubic inverse spinel structure
that consists of a cubic close packed array of oxide ions,
where all of the Fe?* ions occupy half of the octahedral sites
and the Fe** are split evenly across the remaining octahedral
sites and the tetrahedral sites. In stoichiometric magnetite
Fe'/Fe"=1/2, and the divalent irons may be partly or fully
replaced by other divalent ions (Co, Mn, Zn, etc). Thus,
Fe;0, can be both an n- and p-type semiconductor. However,
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Figure 2. The XRD peak lines from standard powder diffraction files
of a-Fe,03 (33-0664), Fe;04 (19-0629) and y-Fe,03 (39-1346).

Fe;0, has the lowest resistivity among iron oxides due to its
small bandgap (0.1eV) [12].

1.1.3. Maghemite (y-Fe-Os). As shown in figure 1(c), the
structure of y-Fe,Os is cubic; each unit of maghemite contains
32 O* ions, 21 Fe®* ions and 2¥5 vacancies. Oxygen anions
give rise to a cubic close-packed array while ferric ions are
distributed over tetrahedral sites (eight Fe ions per unit cell)
and octahedral sites (the remaining Fe ions and vacancies).
Therefore, the maghemite can be considered as fully oxidized
magnetite, and it is an n-type semiconductor with a bandgap
of 2.0eV.

Figure 2 shows the x-ray diffraction (XRD) peak lines
from the standard powder diffraction files of a-Fe,0;
(33-0664), Fe;04 (19-0629) and y-Fe,O5 (39-1346), and it
can be found that y-Fe,O3 has a crystal structure similar to
that of Fe;O4. The diffractogram of the cubic form of y-Fe,O;
is identical to that of Fes;O4 with some line shift towards
higher angles. It is noteworthy that the annealing treatment is
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a key step in most synthesis of different crystalline phase iron
oxides. Any type of iron oxide can be obtained from the other
types by oxidizing or reducing the annealing treatment. Thus,
the XRD patterns are a basic characterization technique for
determining the crystal structure and types of magnetic
IONPs.

1.2. Size, shape and magnetic properties

Understanding the correlation between the magnetic proper-
ties and the size and shape of IONPs is a prerequisite for
widespread applications of magnetism in data storage and
bio-separation areas [13]. Generally, a-Fe,O3 has weak fer-
romagnetism at room temperature, while the saturation mag-
netization is often smaller than 1 emu g_l. However, y-Fe,03
and Fe;0, exhibit ferrimagnetism at room temperature, with
the saturation magnetization reaching to 92 emu g~' [14]. It is
noteworthy that many properties of IONPs depend on their
size and shape. For example, Levy et al studied the magnetic
properties of IONPs from 6 to 18 nm, the results revealed that
magnetic disorder was particularly evident for 13-18 nm
IONPs due to a drastic loss of their hyperthermia performance
[15]. Guardia et al reported that pseudospherical and faceted
IONPs with a narrow size distribution (4-20 nm) and a high
saturation magnetization (M= 80-85emu g_] at 5K) were
obtained by thermal decomposition using oleic acid as a
surfactant. In contrast, decanoic acid yields much larger
pseudocubic IONPs (45 nm) with a broader size distribution
and a larger saturation magnetization (M;=92emug™' at
5 K), which is close to the expected value for bulk magnetite
[16]. One-dimensional iron oxide nanostructures are very
appealing, owing to their many unique physicochemical
properties based on high intrinsic anisotropy and surface
activity. Recently, we showed a comparative study of the
magnetic behavior of single and tubular clustered Fe;O4 NPs.
The results revealed that the competition of the demagneti-
zation energy of shape and the magnetocrystalline anisotropy
energy of small IONPs would increase the coercivity, and the
magnetic properties are strongly influenced by the morphol-
ogy of the Fe;O4 NPs [17]. In general, IONPs become
superparamagnetic at room temperature when the size of
IONPs is below about 15nm, meaning that the thermal
energy can overcome the anisotropy energy barrier of a
single nanoparticle. However, aggregation among super-
paramagnetic IONPs is a common phenomenon. Hence, for
protecting bare IONPs against aggregation, the magnetic
properties can be tailored by the coating materials, such as
Au, Ag and Co30,.

There are a number of magnetic properties for char-
acterization of IONPs. The most decisive properties are the
response type to the magnetic field (including ferromagnetic,
paramagnetic, antiferromagnetic and ferrimagnetic) and
magnetization, which can be measured from the hysteresis
loops (M—H) and zero-field cooled/field cooled (ZFC/FC,
M-T) curves. As shown in figure 3(a), the saturation mag-
netization (M), remanence magnetization (M,) and coercivity
(Hc) can be obtained from the hysteresis loops. When the
IONPs are superparamagnetic, the M—H curve should show

no hysteresis, and the forward and backward magnetization
curves overlap completely and are almost negligible [17, 18].
As shown in figure 3(b), in ZFC measurements, the samples
were cooled from 300 to 10 K without applying an external
field. After reaching 10 K, an external field was applied, and
the magnetic moments were recorded as the increased tem-
perature. Conversely, for FC measurements, the samples were
cooled from 300 K under an applied external field, and then
the magnetic moments were recorded as the increased tem-
perature. When the IONPs are cooled to the zero magnetic
field temperature, the total magnetization of the IONPs will
be zero since the magnetization of the individual IONPs is
randomly oriented. An external magnetic field energetically
favors the reorientation of the moments of the individual
particle along the applied field at low temperatures. Thus,
upon increasing the temperature, all ZFC magnetic moments
increase and reach a maximum, where the temperature is
referred to as the blocking temperature (7). Ty is defined as
the temperature at which NPs’ moments do not relax
(known as blocked) during the time scale of the measure-
ment [19, 20]. The high field can lower the energy barriers
between the two easy axis orientations, therefore, lowering
the blocking temperature. Moreover, if the applied field
reaches a critical value, the blocking temperature will dis-
appear [13].

2. Synthesis methods of magnetic IONPs

To date, a variety of synthetic methods such as co-pre-
cipitation, thermal decomposition, hydrothermal and sol-
vothermal syntheses, sol-gel synthesis, microemulsion,
ultrasound irradiation and biological synthesis have been
applied to produce magnetic IONPs. These methods can be
divided into aqueous and non-aqueous routes. Aqueous
approaches are attractive in terms of their low cost and sus-
tainability; there is, however, a generic challenge in directly
obtaining water-soluble monodisperse magnetic IONPs
without size selection. Non-aqueous routes generally obtained
IONPs which only dissolved in nonpolar solvents. Various
magnetic nanostructures with different morphologies have
been synthesized, including particles, wires, and rods.

2.1. Co-precipitation

As the most conventional method, the co-precipitation
method consists of mixing ferric and ferrous ions in a 1:2
molar ratio in very basic solutions at room temperature or at
elevated temperature. The reaction mechanism can be sim-
plified as: Fe®*+2Fe* +80H™ & Fe(OH), + 2Fe(OH); —
Fe;0,4| +4H,0. Usually, the reaction undergoes gas pro-
tection. The nucleation of the Fe;O, nucleus is easier when
the solution pH is lower than 11, while the growth of the
Fe;0,4 nucleus is easier when the solution pH is higher
than 11.

After the pioneering work prepared by Massart [21], co-
precipitation was widely studied in preparing Fe;04 NPs for
its extraordinary advantages, such as gram-scale production
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Figure 3. Schematic presentation of the typical hysteresis loops of IONPs (a); the ZFC/FC curves of y-Fe,Oj at the different applied field (b).

NaOH Fe*'/Fe™ NH,OH
AA D%
PEGDA 95 %
Initiator 5%
E— —_— —_— E—
Objective
AA 50 % T
PEGDA 45 % e 60°C
Initiator 5 % N coo’ N
N
COCH o
coo
uv , COOH
| Repeat

Figure 4. Schematic showing the in situ co-precipitation synthesis process of IONPs in polymer. (Reprinted with permission from S K Suh
et al 2012 J. Am. Chem. Soc. 134 7337. Copyright 2012 American Chemical Society.)

and facility. We have reported the large-scale co-precipitation
synthesis of Fe;O, NPs, where their corresponding mor-
phology, structure, and magnetic properties at different
reaction temperatures were investigated [22]. Recently, sev-
eral modified co-precipitation methods have been developed;
for example, as reported by Wu et al, magnetic Fe;O,4
nanopowders with an average diameter of 15 nm were syn-
thesized by ultrasonic-assisted chemical co-precipitation uti-
lizing high purity iron separated from iron ore tailings by an
acidic leaching method [23]. The present synthesis method of
Fe;04 NPs easily yields SPIONPs without a protecting gas.
Recently, superparamagnetic Fe;O, NPs with sizes of
4.9-6.3 nm were synthesized by a one-step aqueous co-pre-
cipitation route based on the use of alkanolamines as the base,
the reported methodology provides a simple, versatile, and
cost-effective route for the high-yield synthesis of IONPs
featuring improved magnetic properties and small particle
sizes [24]. Typically, small size leads to low magnetic prop-
erties; the above results showed improved magnetic proper-
ties while keeping their small size.

Currently, the problems of aggregation and biocompat-
ibility of IONPs perhaps hinder the applications in biomedical
fields. Therefore, many surfactants and biomolecules have
been introduced directly in the co-precipitation process. For
instance, Salavati-Niasari et al have reported Fe;0, NPs with
a size range of 25 nm that were prepared by a facile chemical
co-precipitation method; the surfactant octanoic acid was
present in the reaction system to improve the dispersity [25].
Liu et al have prepared magnetic chitosan coated Fe;O, NPs
by the co-precipitation method under 0.45 T static magnetic
fields, which assisted the glutaraldehyde cross-linking reac-
tion; the water was replaced by 2% chitosan in an acetic acid
solution during the reaction process. The resulting NPs were
used to immobilize lipase [26]. Recently, Suh et al have
reported an in situ synthesis of nonspherical magnetic IONPs
in a carboxyl functionalized polymer matrix, in which the iron
ions diffused into the polymer particles and they were allowed
to chelate with the deprotonated carboxyl groups, nucleated
and finally grew to the IONPs in the polymer particles
(figure 4) [27]. This method can be used to add multiple
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functionalities, such as the addition of biomolecules after
subsequent reactions.

However, control over particle size, morphology and
composition in the co-precipitation route is limited as particle
kinetically controlled growth. The size, shape and composi-
tion of the IONPs depend on the experimental parameters,
such as the types of iron salts (chlorides, perchlorates, sul-
fates, nitrates, etc), Fe(Il)/Fe(Ill) ratio, pH value and ionic
strength of the medium. For example, Blanco-Andujar et al
have synthesized uncoated IONPs by using sodium carbonate
as a co-precipitating agent; the reaction proceeded sufficiently
slowly to enable a detailed study of both the reaction pathway
and products [28]. Pereira et al have synthesized super-
paramagnetic ferrite NPs (MFe,0,4, where M = Fe, Co, Mn)
through a novel one-step aqueous co-precipitation method on
the basis of using a new type of alkaline agent, including
alkanolamines isopropanolamine and diisopropanolamine.
Remarkably, the resulting NPs exhibited smaller particle sizes
(up to 6 times) and enhanced saturation magnetization (up to
1.3 times) relative to those prepared with NaOH [24]. We also
investigated the effect of the drying method on the change of
the morphology and magnetic properties of IONPs, and the
results revealed that NPs obtained by vacuum drying tend to
be agglomerated more easily when the average diameter of
the grain decreased in pace with the evaporation of the surface
adsorptive water and inner containing water, though the
structure and morphology are maintained better by ambient
air drying. Among all the drying treatments, the highest
saturation magnetization was obtained after drying in a
vacuum at 70 °C. This finding is instructive to elucidate in
depth some relationship between structure and magnetic
property [22].

Although the co-precipitation method is one of the suc-
cessful and classical techniques for synthesizing IONPs with
high saturation magnetization, more attention should be paid
to overcoming the shortcomings of this method, such as the
broad particle size distribution of products, and the utilization
of a strong base in the reaction process.

2.2. High-temperature thermal decomposition

The above co-precipitation method involves fast particle
formation rates and therefore, particle size and size distribu-
tion are hardly controlled. To avoid the limitations of this
method, different alternative strategies have been developed,
such as nonaqueous thermal decomposition strategies. In
principle, the thermal decomposition strategies can be sub-
divided into hot-injection approaches, where the precursors
are injected into a hot reaction mixture, and conventional
reaction strategies where a reaction mixture is prepared at
room temperature and then heated in a closed or open reaction
vessel.

Due to the fact that most of the reactions are carried out
at room temperature in co-precipitation, the obtained IONPs
often exhibit low crystallinity. In contrast, higher mono-
disperse, narrow size distribution and highly crystalline
magnetic IONPs are obtained from high-temperature thermal
decomposition of organometallic or coordinated iron

Metal-oleate
complex

(a)

+ NaCl

+ Na-oleate —»

Metal-oleate
complex

Thermal decomposition
in high boiling solvent

Figure 5. Metal-oleate precursors were prepared from the reaction of
metal chlorides and sodium oleate. The thermal decomposition of the
metal-oleate precursors in the high boiling solvent produced
monodisperse nanocrystals (a). (Reprinted with permission from

J Park et al 2004 Nat. Mater. 3 891. Copyright 2004 Nature
Publishing Group.) Transmission electron microscopy (TEM)
images of 6, 7, 8, 9, 10, 11, 12, and 13 nm-sized air-oxidized IONPs
showing the one nanometer level increments in diameter (b).
(Reprinted with permission from J Park et al 2005 Angew. Chem.
Int. Edn 44 2872. Copyright 2005 John Wiley and Sons.)

precursors in organic solvents, which display superior prop-
erties to those obtained by co-precipitation, since nucleation
can be separated from growth and complex hydrolysis reac-
tions can be avoided [29, 30]. The as-used ferric salts include
Fe(CO)s [31], Fe(acac); (acac = acetylacetonate) [32], iron
oleate [33], Fe(Cup); (Cup = N-nitrosophenylhydroxylamine)
[34, 35], Prussian blue (Fes[Fe(CN)e-14H,O] [36, 37], Fe-
urea complex ([Fe(CON,H4)s](NO3);) [38], ferrocene (Fe
(CsHs),) [39], and Fe3(CO);, [40]. To obtain monodisperse
IONPs, various organic molecules including oleic acid, 1-
octadecene, 1-tetradecene, and oleylamine, are often added in
the reaction process as stabilizers. The stabilizer can slow
down the nucleation process and it affects the adsorption of
additives on the nuclei and the growing nanocrystals, which
may inhibit the growth of the IONPs, and favor the formation
of small IONPs. The as-obtained products are usually sphe-
rical NPs with sizes of below 30 nm and their size-distribution
can only be controlled to a small extent.

As shown in figure 5, Hyeon ef al have reported a syn-
thetic method of obtaining monodisperse IONPs by using
inexpensive and nontoxic iron chloride rather than toxic and
expensive iron pentacarbonyl. An organic solvent dispersion
containing the iron—oleate complex and a surfactant was
slowly heated to the boiling point of the solvent to produce
monodisperse IONPs. In a single reaction, as much as 40 g of
monodisperse IONPs was generated without any size-selec-
tion process [41]. The size of the IONPs was controlled by
changing the aging temperature and other parameters. This
concept of continuous growth without additional nucleation
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Figure 6. Monodisperse IONPs with spherical and cubic morphologies are prepared by the thermal decomposition of FeOOH, and exhibit
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could be applicable to other materials, and the synthetic
procedure is highly reproducible.

Moreover, the thermal decomposition method is often
used to prepare iron oxide with different shapes, such as
nanocubes and nanospheres. For example, Amara et al syn-
thesized Fe;O, nanocubes and nanospheres by solventless
thermal decomposition of various mixtures of ferrocene and
polyvinylpyrrolidone (PVP). The described method offered a
new simple, single-step process for the preparation of mag-
netite nanocubes/spheres [42]. As shown in figure 6, Chala-
sani and Vasudevan have reported monodisperse iron oxide
nanocrystals with spherical and cubic morphologies that were
prepared by the thermal decomposition of FeOOH. The
higher Ty values in particles of cubic morphology are shown
to be a consequence of exchange bias fields. The results
reveal that the exchange bias fields originate from the pre-
sence of trace amounts of wustite, FeO [43]. In fact, the
magnetic properties of IONPs are also associated with the
shape and size of the NPs [16, 44, 45].

Additionally, the shape and size of IONPs can also be
tailored by the use of different precursors, additives and
solvents during the thermal decomposition process. Shavel
and Liz-Marzan have reported a detailed overview on the
effect of various synthesis parameters during the synthesis
process of IONPs with different shapes, through high-tem-
perature decomposition of a preformed iron oleate complex.
While this procedure has been previously shown to produce
monodisperse magnetite spheres, the use of specific additives
is demonstrated to allow for the preparation of strongly
faceted iron oxide nanocrystals, with either cubic or octahe-
dral shapes. Additionally, using squalene or octadecene as the
solvent was found to induce the reduction of the iron pre-
cursors and thereby lead to the formation of NPs with
core—shell (in the case of nanocubes) or island-like structures
(in the case of octahedrons) of Fe/iron oxide [46]. Demor-
tiere et al reported a fine control of [ONP diameters from 2.5
to 14nm by using different types of solvents, including
eicosene (14 nm), di-n-octyl ether (11 nm), dibenzyl ether

(9 nm), di-n-octyl ether (5 nm), hexadecene (3.5 nm), and di-
n-hexyl ether (2.5 nm) [47].

Hyeon’s method is commonly used for the synthesis of
monodisperse and reproducible IONPs with a tailored size
[41, 48]. However, the nucleation of IONPs in thermal
decomposition involves boiling the solvents, so the accurate
shape of the IONPs is not fully reproducible. Recently, Lynch
et al conducted a mechanistic study on the synthesis of col-
loidal IONPs by thermal decomposition; gas bubbles were
generated by boiling solvents or artificial Ar bubbling, and the
results illustrated that gas bubbles had a stronger effect on the
nucleation of IONPs than on their growth [49]. It is note-
worthy that the IONPs resulting from the thermal decom-
position method are usually dissolved in nonpolar solvents.

2.3. Hydrothermal and solvothermal synthesis

The aqueous solution route is used for the fabrication of a-
Fe,O; and Fe;0,4 NPs; the solution synthesis for y-Fe,O;
usually involved the controlled oxidation of Fe;O,4 and the
direct mineralization of Fe®* ions. Subsequently, other non-
aqueous solution methods have also been developed to syn-
thesize highly crystalline, monodisperse, and shape-controlled
y-Fe;O3; NPs, in which organometallic compounds were
always used as precursors. However, hydrothermal or sol-
vothermal synthesis includes various wet-chemical techniques
of crystallizing the substance in a sealed container from the
high temperature aqueous or non-aqueous solution (generally
in the range 130-250 °C) under high vapor pressure (gen-
erally in the range 0.3—4 MPa) [1]. This method has also been
used to grow dislocation-free single crystal particles, and
grains formed in this process could have a better crystallinity
than those from other processes, and hence hydrothermal and
solvothermal synthesis are prone to obtaining highly crys-
talline IONPs, including a-Fe,O3, y-Fe;03, and Fe;04 NPs.

Possible advantages of the hydrothermal method over
other types of crystal growth include the ability to create
crystalline phases which are not stable at the melting point. In
addition, materials which have a high vapor pressure near
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their melting points can also be grown by the hydrothermal
method [50]. The method is also particularly suitable for the
growth of good-quality iron oxide nanocrystals while main-
taining good control over their composition. It has to be
pointed out that the concepts embodied in the hydrothermal
process have already been extrapolated to non-aqueous sys-
tems, and the so-called ‘solvothermal process’ has emerged,
in which an organic solvent is used as the reaction medium
instead of water. See [51] for an overview of the current state-
of-the-art of hydrothermal synthesis routes for the synthesis of
a rich family of IONPs with different shapes or assembled
complex nanostructures.

Moreover, the hydrothermal and solvothermal route is a
facile and conventional method for obtaining hollow IONPs.
In a typical procedure, using Fe®* as the iron resource, acet-
ate, urea, and sodium citrate are mixed in ethylene glycol
under stirring, then the resultant homogeneous dispersion is
transferred to a Teflon-lined stainless steel autoclave and
sealed to heat at about 200 °C for 8-24 h [52-55]. Further-
more, the hydrothermal and solvothermal synthesis route has
been developed to prepare IONPs with controllable size and
shape [56-59]. For example, Ma et al developed a facile
template-free synthetic route for the controlled fabrication of
various a-Fe,O5 nanostructures, such as small NPs, nanopo-
Iyhedra, and NP-aggregated microcubes, by simply control-
ling the synthesis parameters such as reaction time and
solvent [60]. Recently, Tian et al reported a facile sol-
vothermal approach to synthesize ultrasmall monodisperse
Fe;O4 NPs with a precise size control of 1 nm, in which Fe
(acac); acted as an iron source, n-octylamine as a reductant,
and n-octanol as a solvent [61].

In addition, the hydrothermal and solvothermal route is
beneficial to obtaining shape-controlled IONPs. We present a
facile approach for the production of magnetic iron oxide
short nanotubes (SNTs) and other shapes (NPs, nanorings)
employing an anion-assisted hydrothermal route by using
phosphate and sulfate ions. As shown in figure 7, the size,
morphology, shape, and surface architecture control of the
iron oxide SNTs are achieved by simple adjustments of ferric

ion concentration without any surfactant assistance. Investi-
gation of the formation mechanism reveals that the ferric
ion concentrations, the amount of anion additive, and the
reaction time contribute significantly to SNT growth. The
shape of the SNTs is mainly regulated by the adsorption of
phosphate ions on faces parallel to the long dimension of
elongated a-Fe,O5; NPs (axis) during nanocrystal growth, and
the hollow structure is given by the preferential dissolution
along the c-axis due to the strong coordination of the sulfate
ions. Moreover, the as-synthesized hematite (a-Fe,O3) SNTs
can be converted to magnetite (Fe;O4) and maghemite (y-
Fe,03) ferromagnetic SNTs by a reducing atmosphere
annealing process while preserving the same morphol-
ogy [10].

2.4. Sol-gel reactions and polyol method

The sol-gel process is a classical wet-chemical technique
widely used in the fields of materials science and ceramic
engineering. Such a method is used primarily for the fabri-
cation of materials (typically metal oxides). Generally, it
involves starting from a colloidal solution that acts as the
precursor for an integrated network of either discrete particles
or network polymers. In this system, a sol is a stable dis-
persion of colloidal particles or polymers in a solvent. A gel
consists of a three dimensional continuous network, which
encloses a liquid phase. In a colloidal gel, the network is built
from the agglomeration of colloidal particles. In a polymer
gel, the particles have a polymeric sub-structure made by
aggregation of sub-colloidal particles. Generally, sol particles
may interact by Van der Waals forces or hydrogen bonds, and
a gel may also form from linking polymer chains. In most gel
systems used for materials synthesis, the interactions are of a
covalent nature and the gel process is irreversible. The gela-
tion process may be reversible if other interactions are
involved. Typical precursors for the synthesis of IONPs are
iron alkoxides and iron salts (such as chlorides, nitrates and
acetates), which undergo various forms of hydrolysis and
polycondensation reactions [62]. These reactions are per-
formed at room temperature, and further heat treatments are
needed to acquire the final crystalline state. By this method,
the IONPs will form through at least a two-step phase
transformation: Fe(OH); — f-FeOOH — y-Fe,O5 [63]. The
final properties of IONPs are highly dependent upon the
structure created during the sol stage of the sol-gel process.
For example, Lemine et al reported Fe;O, NPs with an
average particle size of 8§ nm were successfully prepared by
the sol-gel method. The saturated magnetization could be up
to 47 emu g~ at room temperature, and it was expected that
these NPs were promising materials for biomedical applica-
tions [64]. Recently, Qi et al reported Fe;O4 NPs in the
interval of 9 ~ 12 nm that were synthesized by a non-alkoxide
sol-gel method. Through this technique, sol-gel materials
were prepared from ethanolic solutions of metal chlorides
without the need for alkoxides, polymeric gel agents, or
elaborate reaction schemes [65].

The different organic precursors are the crucial roles in
controlling the shape and crystal structure of IONPs. For
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example, Woo et al have described a sol-gel mediated
synthesis of Fe,O; nanorods with controlled phase
depending on the conditions. The diameter and length of the
nanorods could be controlled by the H,O/oleic-acid ratio in
the gelation process, and the phase of the nanorods could be
controlled by the temperature, atmosphere, and hydrous
state of the gels during crystallization [66]. In our previous
report, water-soluble hollow spherical Fe;O, nanocages
(about 100nm) with high saturation magnetization were
prepared by applying glutamic acid as an additive in a one-pot
sol-gel process and subsequent annealing to synthesize
y-Fe,O3; nanocages with similar nanostructures. The results
indicated that glutamic acid played an important role in the
formation of the cage-like nanostructures [18, 67].

The polyol method is also understood as an inversed sol—
gel method (the sol-gel method uses an oxidation reaction but
polyol synthesis uses a reduction reaction), which is well
suited for the preparation of IONPs with various shapes and
sizes [68]. In the polyol synthesis process, the polyols not
only serve as solvents but also reducing agents, which apply
as stabilizers to control particle growth and prevent inter-
particle aggregation. In the typical reaction process, an iron
precursor compound is suspended in a liquid polyol. The
suspension is stirred and heated to a given temperature that
can reach the boiling point of the polyol. Compared to the
hydrothermal method, this reaction does not require high
pressure, thus, it is unnecessary to operate in the Teflon-lined
stainless steel autoclave. For example, Cai and Wan fabri-
cated monodisperse Fe;O4, NPs by utilizing four types of
polyols to reduce Fe(acac); in a similar reaction procedure,
including ethylene glycol (EG), diethylene glycol (DEG),
triethylene glycol (TREG) and tetraethylene glycol (TEG).
Only the TREG can yield non-agglomerated Fe;O04 NPs with
uniform shape and narrow size distribution. The result illus-
trates that the polyol solvent plays a crucial role in deter-
mining the morphology and colloidal stability of the resulting
particles [69]. Indeed, the polyol solvent also plays an
important role in determining the size and magnetic properties
of IONPs: different polyols will generate IONPs with dif-
ferent sizes [70, 71].

In comparison with the co-precipitation method, the sol—
gel and polyol methods for IONPs have several advantages.
For example, the IONPs can be easily dispersed in aqueous
media and other polar solvents because the surface of IONPs
contain many hydrophilic ligands. Also the relatively high
reaction temperature of these two methods favors IONPs with
higher crystallinity and saturation magnetization. Never-
theless, the disadvantages of the sol-gel process are the
relatively high cost of the metal alkoxides and the release of
large amounts of alcohol during the calcination step, requiring
safety considerations during the sol-gel process.

2.5. Microemulsion

Microemulsions are clear, stable, and isotropic liquid mix-
tures of oil, water and surfactant, frequently in combination
with a co-surfactant. The surfactant molecules may form a
monolayer at the interface between the oil and water, with the

hydrophobic tails of the surfactant molecules dissolved in the
oil phase and the hydrophilic head groups in the aqueous
phase, and vice versa. In this system, the aqueous phase may
contain metal salts and/or other ingredients, and the ‘oil’ may
actually be a complex mixture of different hydrocarbons and
olefins. The two basic types of microemulsions are direct (oil
dispersed in water, o/w) and reversed (water dispersed in oil,
w/0), which have all been used to synthesize IONPs with
tailored shape and size. Common surfactants including bis(2-
ethylhexyl) sulfosuccinate (AOT), sodium dodecyl sulfate
(SDS), cetyltrimethylammonium bromide (CTAB), and PVP
have been widely used in the fabrication of magnetic IONPs
[72-74]. Generally, the size control and the dynamics of
IONP formation can be achieved by varying, for instance, the
droplet size, the initial concentration of reactants and the
nature of surfactants.

Recently, Darbandi et al reported that uniformly sized
and crystalline IONPs with a spinel structure and mean dia-
meters of about 3, 6 and 9 nm were synthesized in high yield
using the microemulsion route at room temperature. During
this process, the capping agent (polyoxyethylene (5) non-
ylphenylether as surfactant) was capable of preventing the
agglomeration effect, which can occur in case of direct par-
ticle contact [75]. Okoli et al synthesized magnetic IONPs
for protein binding and separation using w/o and o/w
microemulsions, respectively. The potential of both approa-
ches for the production of nanocrystalline magnetic IONPs
with high surface area for protein binding/protein purification
are investigated and compared. The average specific surface
areas of the IONPs are 147 m* g~' for w/o and 304 m* g~' for
o/w microemulsions. A higher specific surface area seen in
o/w microemulsions is attributed to the small size of the
nanoparticle. The protein bound IONPs exhibited a significant
reduction of the removal rate of clay particles in suspension as
compared to bare IONPs, evidencing a significant interaction
between the magnetic IONPs and the protein [76, 77].

However, despite the presence of surfactants, the aggre-
gation of the produced magnetic IONPs usually requires
several washing processes and further stabilization treatments
for them to be used in biomedical applications.

2.6. Sonolysis or sonochemical method

The sonolysis (sonochemical or ultrasound irradiation)
method uses the chemical effects of ultrasound arising from
acoustic cavitation. High intensity ultrasound is used for the
production of novel structures and provides an unusual route
to known materials without bulk high temperatures, high
pressures, or long reaction times [78]. Under ultrasound
irradiation, the alternating expansive and compressive
acoustic waves create bubbles (i.e., cavities) and make the
bubbles oscillate. The oscillating bubbles can accumulate
ultrasonic energy effectively while growing to a certain size
(typically tens of mm). Under the right conditions, a bubble
can overgrow and subsequently collapse, releasing the con-
centrated energy stored in the bubble within a very short time
(with a heating and cooling rate of >10'° K s™"). This cavi-
tational implosion is really localized and transient with a
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Figure 8. Schematic diagram of the procedure for the encapsulation of Fe;0, NPs and monomer droplet to latex particle conversion by the
sonochemically driven miniemulsion polymerization pathway. (Reprinted with permission from B M Teo et al 2009 Langmuir 25 2593.

Copyright 2009 American Chemical Society.)

temperature of 5000 K and a pressure of 1000 bar [1, 79, 80].
Therefore, the sonolysis method is employed to prepare var-
ious forms of bare and functionalized IONPs by the sonica-
tion of an aqueous ferro or ferrous salt solution, and the
experimental process is often carried out under ambient
conditions (usually in the presence of air) [81-85].

The sonolysis method can be used to synthesize bio-
compatible IONPs. For instance, Theerdhala et al reported on
the binding of a semi-essential amino acid, L-arginine, onto
the surface of Fe;O4 NPs, creating a stable aqueous suspen-
sion by a one-step method through sonochemical synthesis.
These surface-functionalized IONPs could become a pro-
mising vehicle for drug delivery [86]. Recently, Zhu et al
synthesized Fe;O04 NPs of 30-40nm by a sonochemical
method, and these NPs were uniformly dispersed on reduced
graphene oxide sheets (Fe;04/RGO). The composite Fe;0,4/
RGO was immobilized with hemoglobin to fabricate a bio-
sensor for detecting H,O,. The biosensor demonstrated a fast
response to H,O, (within 10s) and displayed an excellent
linear relationship at 4 x 107 to 1 x 107> M with the detection
limit of 2x 10°M (S/N=3) [87].

In addition, the ultrasound-initiated procedure, as a
technology, represents an effective and innocuous means of
producing a range of nanocomposites, consisting of multiple
combinations of different polymers and encapsulated mate-
rials. Teo et al have developed a simple and efficient method
for preparing 100 nm latex beads loaded with a high content
of Fe304 NPs; the formation procedure of Fe;O4 NPs under
the ultrasound-initiated effect is well illustrated in figure 8.
The NPs exhibited excellent colloidal stability (remained
suspended stably in an aqueous solution for more than 12
months with no noticeable degradation) and strong magnetic
properties (superparamagnetic with a saturated magnetization
of 24 emu g™"), and were of the desired size to be technolo-
gically relevant [88]. The sonochemical method has some
advantages, including uniformity of mixing and reduction of
crystal growth, which can also lead to an acceleration effect in
chemical dynamics and rates of the reactions. However, the
sonolysis method is not beneficial to realize the fabrication of
IONPs with controllable shapes and dispersity.

2.7. Microwave-assisted synthesis

It has long been known that molecules undergo excitation
with electromagnetic radiation. This effect is utilized in
household microwave ovens to heat food. However, micro-
wave-assisted synthesis has only been used as a reaction
methodology by chemists for a few years. Excitation with
microwave radiation results in the molecules aligning their
dipoles within the external field. Strong agitation, provided by
the reorientation of molecules, in phase with the electrical
field excitation, causes an intense internal heating. Therefore,
microwave-assisted synthesis can significantly reduce the
processing time and energy cost, due to its almost instanta-
neous ‘in core’ heating of materials in a homogeneous and
selective manner, different from the classical ones.

The microwave-assisted synthesis method has been
widely used to prepare magnetic IONPs with controllable size
and shapes recently [89-92]. For example, Sreeja and Joy
reported the fabrication of superparamagnetic y-Fe,O; NPs
with an average diameter of 10 nm using the microwave-
assisted method at 150 °C, in a short time-duration of 25 min.
Their work showed that lower temperature and less reaction
time were required to obtain comparable results by micro-
wave heating [93]. Jiang et al have reported cubic IONPs that
were prepared via the microwave-assisted method followed
by Ostwald ripening procedures. The results illustrated the
phase and magnetic properties of IONPs would change by
varying the experimental conditions [94]. Indeed, the phase of
IONPs by the microwave-assisted synthesis could be slightly
different depending on the experimental conditions. For
instance, Hu ef al synthesized three major iron oxide phases:
magnetite, maghemite and hematite, under microwave treat-
ment in an autoclave, from alcohol/water solutions of chloride
salts in the presence of NaOH. The results revealed that the
pure hematite phase can be obtained in the presence of single
precursor FeCl;. When FeCl, was used as the single pre-
cursor, magnetite or maghemite NPs were produced
depending on the drying process used [95]. Additionally, the
microwave-assisted synthesis method is often employed to
prepare biocompatible magnetic IONPs. Recently, Osborne
reported a rapid and straightforward microwave-assisted
synthesis of superparamagnetic dextran-coated IONPs. The
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Figure 9. Typical SEM images of the polyacrylic acid-Fe;O,4 hybrid nanostructure synthesized using different initial iron amounts of

0.7 mmol (A), 1.5 mmol (B), 3.0 mmol (C), and 5.0 mmol (D). All of the scale bars are 2 um. Magnetization curves of the hybrid
nanostructure with different sizes at a temperature of 300 K and 1.8 K. Insets show the data around zero field with an expanded scale ranging
from —1000 to 1000 Oe (E), (F). Photographs of a solution of the hybrid nanostructure with the diameter of 400 nm in the absence and
presence of a magnet (G). (Reprinted with permission from S Liu et al 2011 CrystEngComm 13 2425. Copyright 2011 Royal Society of

Chemistry.)

NPs were produced in two hydrodynamic sizes with differing
core morphologies by varying the synthetic process. The
IONPs are found to be superparamagnetic and exhibit prop-
erties consistently in MRI. In addition, the dextran coating
imparts the water solubility and biocompatibility necessary
for in vivo utilization [96]. As shown in figure 9, Zhu et al
reported polyacid-conjugated Fe;O4 superparamagnetic
hybrid nanostructures that were conveniently fabricated by
the introduction of a microwave-assisted method. The hybrid
nanostructure was composed of superparamagnetic magnetite
nanograins and presented a cluster-like structure; and its size
range can be tuned from about 100400 nm by varying the
amount of FeCl; in the system. The hybrid nanostructure
exhibits excellent magnetic responsibility and good bio-
compatibility, which offers advantageous functionality due to
the preferential exposure of uncoordinated carboxylate groups
on its surface [97]. Compared to the thermal decomposition
method, the stabilization of the IONPs prepared by the
microwave-assisted synthesis route in organic solvents can be
easily dispersed in water without laborious ligand exchange
or purification steps. Such characteristics can be considered as
attractive for fabrication of large-scale IONPs [98].

2.8. Biosynthesis

Biosynthesis of IONPs is a kind of bottom-up approach where
the main reaction occurring is reduction/oxidation. The
microbial enzymes or the plant phytochemicals with anti-
oxidant or reducing properties are usually responsible for the
reduction of salts into their respective NPs [99]. Generally,
the biosynthesis method is a green chemical and eco-friendly
route, and the obtained products exhibit a good biocompat-
ibility. In the traditional biosynthesis for magnetic IONPs,
magnetotactic bacteria and iron reducing bacteria are used,
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such as Geobacter metallireducens, M. gryphiswaldense, etc
[100-102].

Recently, new types of bacteria have been employed to
synthesize magnetic IONPs. For example, Bharde et al have
reported that the bacterium Actinobacter sp. was capable of
synthesizing maghemite NPs under aerobic conditions when
reacted with a ferric chloride precursor. Moreover, maghemite
NPs showed superparamagnetic characteristics as expected.
Compared to the earlier reports of synthesis of magnetite
NPs by magnetotactic bacteria and iron reducing bacteria,
which took place strictly under anaerobic conditions, the pre-
sent procedure offered a significant advance since the reaction
occurred under aerobic conditions [103]. Recently, Sundaram
et al reported the ability of Bacillus subtilis strains isolated
from rhizosphere soil to produce IONPs. This successful
synthesis of stabilized Fe;O4 NPs, which was capped by
organic molecules, indicates the applicability of the isolated
Bacillus subtilis strain for the bulk synthesis of IONPs [104].

Currently, how to control the size and shape of magnetic
IONPs during biosynthesis processes, and the elucidation of
the exact mechanism of IONPs production using living
organisms, require much more experimentation.

2.9. Other methods

Except for the above-mentioned methods, numerous chemical
or physical methods can also be used to synthesize magnetic
IONPs, such as electrochemical methods [105-107], flow
injection synthesis [108], and aerosol/vapor methods
[109-111].

The electrochemical methods for IONPs present some
advantages over other methods, the crucial one being the high
purity of the product, and the control of particle size is
achieved by adjusting the current or the potential applied to
the system. Cabrera er al prepared Fe;O, NPs with sizes
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Figure 10. Detail of the reaction area where the laser interacts with
the gas reactants and the influence of the collection system to obtain
larger aggregates (solid filter) or well-dispersed ultrasmall IONPs
(solution, the size is below 5 nm) under similar experimental
conditions.

between 20 and 30 nm by Fe electro-oxidation in the presence
of an amine surfactant, which acted as a supporting electrolyte
and coating agent for particle size and aggregation control
during the synthesis process. The distance between electrodes
is critical for the successful synthesis of IONPs [112].
Recently, Rodriguez-Lépez et al reported magnetic IONPs
with controlled size distribution were electrochemically syn-
thesized by applying a dissymmetric pattern of potential
pulses to iron-based electrodes in aqueous media. It was
found that Fe;04 NP formation was favored, while avoiding
the formation of metallic Fe particles with more anodic
potentials and the longest time [113].

In fact, flow injection synthesis is a modified co-pre-
cipitation method. In the reaction process, different precursors
can be added by pumping with a controllable flow rate.
Therefore, this method showed some advantages, such as
high reproducibility, high mixing homogeneity, and an
opportunity for a precise external control of the process [108].

Spray and laser pyrolysis are the main aerosol technol-
ogies for fabricating magnetic IONPs. In spray pyrolysis, fine
IONPs are produced by the evaporation of ferric salts, drying,
and pyrolysis reaction of liquid drops (a reducing agent in
organic solvent) inside a high temperature atmosphere,
especially the flame-spray. Particle size and size distribution
depend on the size and size distribution of liquid drops, and
the evaporation process of a solvent and the property of the
starting material. Recently, Abid et al reported IONPs with
variable oxidation states by flame-spray pyrolysis, revealing
that the different flame configurations are an important factor
of the morphology and size control of the final IONPs [114].
For reducing the reaction volume, laser became the energy
resource and heated a gaseous mixture of iron precursor and a
flowing mixture of gas producing small, narrow size, and
non-aggregated NPs in the pyrolysis process (as shown in
figure 10). Importantly, laser pyrolysis can produce well-
dispersed fine IONPs. For example, Costo et al have syn-
thesized very high crystallinity, and ultrasmall NPs (<5 nm)
with a rather spheroid morphology and exceptionally narrow
particle size distributions through an optimized acid treat-
ment. The dissolution of the disordered layer from the particle
surface and further recrystallization of an iron polymer acti-
vated the surface and prepared the particles for further func-
tionalization with bioactive ligands [115]. However, the final
IONPs made by this process had a very broad size distribution
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due to the difficulty of obtaining a uniform size of initial
droplets or gaseous mixture.

The characterization of the above mentioned synthetic
methods are briefly summarized in table 1. In terms of sim-
plicity of synthesis, classical co-precipitation is the preferred
route. In terms of size and morphology control of IONPs,
thermal decomposition seems the best method to develop
IONPs smaller than 20nm, and the hydrothermal or sol-
vothermal method seems to be the most suitable for producing
IONPs larger than 20 nm. As an alternative, the other methods
can also be used to synthesize magnetic IONPs with a narrow
size distribution and controllable morphology. However, the
major difficulties in the synthesis of IONPs are still to control
the size, shape, composition and size distribution on the
nanoscale due to the fact that the aggregation and/or con-
tinuous growth of IONPs to minimize the overall surface free
energy and magnetic interactions. The current methods often
involve a number of different steps with multiple micro-
structural problems that may have a pernicious influence on
the magnetic performance. Therefore, searching for a facile
and flexible fabricated method to produce IONPs with the
desired morphologies without aggregation is of extreme
importance to realize the full potential of these materials in
biomedical applications. Thus, looking for new routes of
large-scale synthesis and improvement of the known ones
should be continued.

3. Surface functionalization of magnetic IONPs

An unavoidable problem associated with magnetic IONPs in
the size range is their intrinsic instability over longer periods,
which manifests in two main ways: (1) loss of dispersibility,
where small NPs tend to aggregate and form large particles
to reduce the surface energy; and (2) loss of magnetism,
where bare IONPs are easily oxidized in air due to their high
chemical activity, especially Fe;O, and y-Fe,O; NPs.
Therefore, it is crucial to develop a proper protection
strategy to chemically stabilize bare IONPs against damage
during or after the subsequent application. For biomedical
applications, it is necessary to obtain water dispersible NPs,
because most biological media are nearly neutral aqueous
solutions.

In view of the many strategies and their subsequent
application, efforts have been devoted to fabricating four
types of IONP-based materials, including the core—shell
structure, matrix dispersed structure, Janus-type hetero-
structures and shell-core—shell structure (figure 11).

3.1. Core-shell structure

In this structure, the iron oxide core was encapsulated in an
inorganic or an organic coating that renders the whole
particle stable and biocompatible, and may serve as a support
for biomolecules. Generally, IONPs are not located at the
center of the functional coating material; this structure is also
known as a yolk structure. Indeed, the magnetic composite
nanomaterials not only provide the material with an improved
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Table 1. Summary comparison of the synthetic methods for producing magnetic IONPs.

Method Reaction and conditions Reaction temp. [°C]  Reaction period Size distribution Shape control  Yield
Co-precipitation Very simple, ambient 20-150 Minutes Relatively narrow  Not good High/scalable
Thermal decomposition Complicated, insert atmosphere ~ 100-350 Hours-days Very narrow Very good High/scalable
Hydro- or solvothermal synthesis Simple, high pressure 150-220 Hours-days Very narrow Very good High/scalable
Sol-gel and polyol method Complicated, ambient 25-200 Hours Narrow Good Medium
Microemulsion Complicated, ambient 20-80 Hours Narrow Good Low
Sonolysis or sonochemical method  Very simple, ambient 20-50 Minutes Narrow Bad Medium
Microwave-assisted synthesis Very simple, ambient 100-200 Minutes Medium Good Medium
Biosynthesis Complicated, ambient Room temp. Hours-days Broad Bad Low
Electrochemical methods Complicated, ambient Room temp. Hours-days Medium Medium Medium
Aerosol/vapor methods Complicated, insert atmosphere  >100 Minutes-hours Relatively narrow  Medium High/scalable
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Figure 11. Typical morphologies of magnetic composite nanoma-
terials. Blue spheres represent magnetic IONPs, and the non-
magnetic entities and matrix materials are displayed in other colors.
The nonmagnetic entity may provide the composite material with
further functionalities and properties, providing multifunctional
hybrid systems.

stability of the nanoparticulate building blocks, but also fur-
ther introduce new physical and biological properties, and
multifunctional behaviors. Thus, in the inverse core—shell
structure, the magnetic IONPs will coat the surface of non-
magnetic functional materials. Moreover, magnetic IONPs
can combine one or more functional materials and further coat
with another functional material on the functionalized surface.
The above structures are collectively called core—shell
structures.

However, some literature has reported ‘shell-core’
structures in magnetic nanomaterials; in this structure, the
iron oxide will coat the surface of core materials [116-118].
For example, Zhan and Zhang have reported the synthesis
of CdSe@Fe,03 core—shell NPs by a one-step seeded-
growth approach. These NPs not only retain their individual
semiconducting and magnetic functionalities, but also
exhibit some new properties that are affected by the coating
components. These bi-functional CdSe@Fe,0O; NPs might
find potential applications in biosensing and biomedical
research [119].

3.2. Matrix-dispersed structure

Magnetic IONPs are dispersed in a matrix to prevent the
superparamagnetic NPs from aggregating into large ferro-
magnetic species. Matrix-dispersed NPs can be created in a
variety of different states, e.g. dispersed in a continuous
amorphous matrix, grafted on larger, mesoscale particles, or
well defined, three-dimensional superstructures of NPs [120].

3.3. Janus structure

In Janus structure, one side is magnetic IONPs, and the other
side is functional materials. Anisotropic surface chemical
compositions are interesting for applications even if one is not
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concerned with self-assembly. For example, Sun et al
developed dumbbell-like Au-Fe;O, and Pt- Fe;O4 NPs,
where the sizes of the particles are tuned from 2 to 8 nm for
Au and Pt, and 4 nm to 20 nm for Fe;O, [121, 122]. This
Janus particle can be used in target-specific platin delivery
[123]. Zhao and Gao have prepared magnetic y-Fe,03lSi0,
Janus particles by flame synthesis. The highly uniform y-
Fe,05lSi0, presents excellent aqueous dispersibility, conse-
quently providing different choices for further manipulation
of Janus particles to form interesting assembled struc-
tures [124].

3.4. Shell-core—shell structure

In this structure, the location of magnetic IONPs is between
the two functional materials. Most applications require mag-
netic IONPs to be embedded in the nonmagnetic layers to
avoid aggregation and sedimentation of magnetic IONPs as
well as to endow them with particular surface properties for
specific applications. For example, luminescent layers, mag-
netic [ONPs and biocompatible polymer layers are combined
into bimodal nanocomposite materials, allowing manipulation
by an external magnetic field and real time optical visuali-
zation at the same time.

A prerequisite for every possible applied structure is the
proper surface protection or functionalization of such mag-
netic composite NPs, which determines their interaction with
the environment. These interactions ultimately affect the
colloidal stability of the composite particles, and may yield a
controlled assembly or the delivery of NPs to a target, espe-
cially by appropriate functional organic materials or inorganic
materials on the IONP surface [125].

3.5. Organic materials

IONPs with any organic material coating are used mainly
for magnetic recording, electromagnetic shielding, MRI,
and especially in the biological field for specific drug tar-
geting, magnetic cell separation, etc. The stability of magnetic
NPs under an external high applied magnetic field is very
important for in vivo biological application as well as in other
fields. Several approaches have been developed to functio-
nalize IONPs, including in situ coatings and post-synthesis
coating, which are the common routes for organic material
coating on the IONP surface [126—128]. Furthermore, to
stabilize the particles against aggregation and with good
biocompatibility, the IONPs are coated with different organic
materials, such as dextran, starch, poly(ethylene glycol)
(PEG), poly (D, L-lactide) (PLA), polyethylenimine (PEI),
especially for hydrophilic organic materials.

3.5.1. Small molecules and surfactants. With proper surface
modification, magnetic IONPs can be functionalized by
special groups (e.g. -OH, -COOH, -NH,, —SH), which are
suitable for further modifications by the attachment of
different bioactive molecules for various applications.

As a small molecule, silane is often used to modify and
endow the functionalized end groups to the surface of bare
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IONPs directly for post-connecting with metal ions, poly-
mers, biomolecules or other biological entities. Significantly,
silane modified magnetic IONPs still maintain the saturation
magnetization values of the bare IONPs, where the decreased
value is often less than 5 emu g_l; this character illustrates
that the magnetic separation is not affected after silane
modification. 3-aminopropyltriethyloxysilane (APTES), p-
aminophenyltrimethoxysilane (APTS) and mercaptopropyl-
triethoxysilane (MPTES) agents are the most common silanes
for anchoring the -NH, and —SH, respectively. For instance,
Shen et al reported a facile approach to synthesize APTES-
coated magnetic IONPs (Fe;0,@APTES) with tunable
surface functional groups for potential biomedical applica-
tions. The cytotoxicity and hemolytic assay results demon-
strated that acetylation of the amine groups on the surfaces of
IONPs would significantly improve the particles’ cytocom-
patibility and hemocompatibility [129]. Furthermore, as seen
in our previous study, APTES was beneficial to maintaining
the morphology of the Fe;O; NPs, whereas MPTES
modification caused a slight decrease in the saturation
magnetization [130]. Additionally, the silane ligand-exchange
reaction can make the hydrophobic IONPs change into water-
dispersible NPs.

However, fabrication of oil-soluble type IONPs is very
important for obtaining monodisperse IONPs. The most
common organic compounds are oleic acid and oleyamine,
which have a C18 tail with a cis-double-bond in the middle,
forming a kink. Such kinks have been postulated as being
necessary for effective stabilization, which can be a reason-
able explanation for why stearic acid cannot stabilize IONPs
(with no double-bond in its C18 tail) [1]. Moreover, oleic acid
is widely used in IONP synthesis because it can form a dense
protective monolayer, thereby producing highly uniform
IONPs. Generally, the oleic acid and oleyamine are often
used in the high-temperature thermal decomposition reaction
process. For instance, Fe;O, was synthesized via facile
thermal decomposition of Fe(acac); in the presence of oleic
acid or/and oleyamine. In a typical procedure, Fe(acac); is
added to oleic acid and/or other organic compound (such as
phenyl ether, 1, 2-hexadecane diol, etc) at room temperature.
The reaction mixture was heated to >100 °C under a nitrogen
atmosphere with vigorous stirring, and then kept at that
temperature for a certain time. The above well-mixed solution
was then heated to >300 °C, and the solution color gradually
became black, indicating that the magnetic NPs were being
formed in the presence of oleic acid and another organic
compound [41, 131-133]. Salas er al have shown that the
high temperature decomposition of an iron oleate complex
can be used to obtain superparamagnetic nanocrystals with
sizes over 10 nm, where the as-obtained IONPs exhibited
high saturation magnetization. The results concerning the size
of the IONPs as a function of the oleic acid added to the
reaction medium showed a complex behavior that can be
qualitatively explained in terms of the nucleation and growth
rates. Broader size distributions lead to worse magnetic
properties either in large (15 or 18 nm) or in small IONPs
(9nm) [134]. Moreover, oleic acid coating Fe;O4 NPs
resulted in no appreciable changes in the overall magnetic
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behavior of the samples. These Fe;0, NP systems with high
values of Mg, corresponding to 80% of the bulk value, are
suitable for technological applications [135]. The final shape
of the IONPs could be readily tuned from sphere to cube by
adjusting the experimental parameters, such as reaction time,
temperature, and surfactants [44].

Indeed, the magnetic IONPs resulting from high-
temperature decomposition of an organic iron precursor are
capped with nonpolar endgroups on their surface and are
usually stable in nonpolar solvents (such as hexane). The
capping molecules (also called ligands) are typically long-
chain alkanes with polar groups binding to the IONPs’
surface. Hence, to take advantage of their high-quality
properties in biological applications, it is necessary to transfer
IONPs from organic phase to aqueous phase, and the
hydrophobic surfactant coating needs to be replaced by a
hydrophilic, biocompatible, and functional coating that allows
controlled interaction with biological species.

To synthesize water-soluble magnetic IONPs directly,
one way is to use small molecules (such as amino acid, citric
acid, vitamin, cyclodextrin, etc) in the reaction process [136—
138]. For example, Gao et al synthesized highly charged
hydrophilic superparamagnetic Fe;O, colloidal nanocrystal
clusters with an average diameter of 195nm by using a
modified one-step solvothermal method. Anionic polyelec-
trolyte poly (4-styrenesulfonic acid-co-maleic acid) sodium
salt (PSSMA) containing both sulfonate and carboxylate
groups was used as the stabilizer. The PSSMA-stabilized
IONP clusters could be well dispersed in water, phosphate
buffered saline (PBS), and ethanol. Moreover, silica shells
could be directly coated onto these clusters by the Stober
method. The colloidal nanocrystal clusters remained nega-
tively charged in the experimental pH ranges from 2 to 11,
and also showed high colloidal stability in PBS and ethanol
[139]. Recently, Majeed et al reported a one-step protocol for
the preparation of fairly monodisperse and highly water-
soluble magnetic IONPs through a co-precipitation method
using a novel multifunctional, biocompatible and water-
soluble polymer ligand dodecanethiol-polymethacrylic acid
(DDT-PMAA). The as-prepared IONPs were conjugated with
the anti-cancer drug doxorubicin (DOX) and its efficacy, as a
model drug delivery system, was determined using HepG2
cells. The efficiency of the drug-NP conjugates i.e.,
covalently bound DOX-IONPs and electrostatically loaded
DOX/IONPs, was found to be significantly higher than that of
the free drug (DOX). Indeed, owing to the several intrinsic
properties of DDT-PMAA, it not only efficiently controls the
size of the IONPs but also gives them excellent water
solubility, long time stability against aggregation and
oxidation, biocompatibility, and a multifunctional surface
rich in thioether and carboxylic acid groups [140]. Obviously,
these highly colloidal stable IONPs have potential applica-
tions in biotechnology.

Another way is to use a ligand exchange procedure to
change the polarity of the hydrophobic layer to being
hydrophilic [141-143]. It involves adding an excess of ligand
to the nanoparticle solution, resulting in the displacement of
the original ligand on the surface of NPs. For instance, Dong
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Figure 12. A facile ligand-exchange approach, which enables sequential surface functionalization and phase transfer of colloidal NCs while
preserving the NC size and shape. (Reprinted with permission from A Dong ez al 2010 J. Am. Chem. Soc. 133 998. Copyright 2010 American

Chemical Society.)

et al reported a facile ligand-exchange approach, which is
enabled for sequential surface functionalization and phase
transfer of colloidal IONPs while preserving the NPs’ size
and shape. Nitrosonium tetrafluoroborate (NOBF,) is used to
replace the original organic ligands attached to the NPs’
surface, stabilizing the NPs in various polar and hydrophilic
media for years, without aggregation or precipitation (shown
in figure 12). Significantly, as illustrated in figure 12, the
hydrophilic NPs obtained by NOBF, treatment can readily
undergo secondary surface modification due to the weak
binding affinity of BF; anions to the surface of NPs, allowing
fully reversible phase transfer of NPs between hydrophobic
and hydrophilic media [144]. Ninjbadgar and Brougham have
reported a novel and efficient method to produce water
dispersible superparamagnetic Fe;O, NPs by ring opening
coupling reactions. Fe;O, NPs prepared by non-hydrolytic
organic phase methods were subsequently functionalized with
(3-glycidyloxypropyl) trimethoxysilane, the linker between
the Fe;04 NPs and organic molecule prevent aggregation, and
it also is available for subsequent coupling reactions with a
wide range of polymers and biomolecules. Ring opening
coupling reactions were used to coat the epoxy-functionalized
Fe;04 NPs with aminated polymers (polyetheramines) or
small molecules (arginine). The obtained NPs, with hydro-
dynamic size of 13nm, are found to be very stable over
extended periods in water or PBS due to the presence of a
dense stabilizer layer covalently anchored onto the surface.
Exceptionally high spin-lattice relaxivity, low r,/r; ratios
were exhibited in the clinical MRI frequency range,
irrespective of the molecule selected for nanoparticle
stabilization. As a result, the dispersions are excellent
candidates for incorporation into multifunctional assemblies
or for use as a positive contrast agent for MRI [145].

3.5.2. Polymers. Compared with small molecules and
surfactants, polymer functionalization not only provides
multifunctional groups and more colloid stability, but also
plays a significant role regarding its biological fate (i.e.,
pharmacokinetics and biodistribution) [146]. Furthermore, a
large number of natural and synthetic biodegradable
polymers, such as polyaspartate [147], polysaccharides
[148-150], gelatin [151-153], starch [154—156], alginate
[157-159], poly(acrylic acid) [160-162], PEG [163, 164],
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poly(D,L-lactide) (PLA) [165-167], chitosan [168, 169], and
polymethylmethacrylate (PMMA) [170-172], are currently
under evaluation for the functionalized materials of IONPs.

Several approaches have been developed to functionalize
IONPs with polymers, where the common approaches include
in situ and post-synthesis coating. In the in situ approach, the
conventional routes are mini/micro-emulsion polymerization
and the sol-gel process for polymer functionalizing IONPs
(polymer@IONPs) during the synthesis process [173, 174].
The organic molecules capped the IONPs and formed a
capping layer during the emulsion polymerization process;
the conventional structure is a core—shell structure or matrix
dispersed structure [75, 175]. Unfortunately, these direct
surface modification strategies are often unsuccessful in
maintaining colloidal stability and the thickness of the shell is
not easy to control.

Consequently, the prevalent routes for polymer@IONPs
is post-synthesis functionalization, which is based on the pre-
prepared IONPs for further polymer functionalization via a
one-pot route, self-assembly, or heterogeneous polymeriza-
tion (such as inverse mini/emulsion polymerization and
dispersion polymerization) [171]. Particularly, the one-pot
method is a facile route for obtaining polymer@IONP
composite nanomaterials [176]. The physical adsorption
and functional groups anchoring on the surface of IONPs
are the common mechanism in this strategy, the resulting
structure of complex NPs is prone to form a core—shell
structure. Furthermore, the covalent bonding is a wide and
commonly used functional technique and the cross-linking is
made by using the alkyl chain or carboxylic acid functiona-
lized thiol and hydrogen bonding [177]. In addition, various
heterogeneous polymerizations with water-soluble monomers
have been explored to prepare well-defined core—shell or
matrix dispersed structure polymer@IONPs for biomedicine
applications [178, 179]. For instance, an all-in-one NP
platform with a size-range of 30 nm—100 nm was developed
based on an oil-in-water emulsion method. The hydrophobic
layer coated IONPs were included in the soybean oil core of
the emulsions. Subsequently, these oil droplets are stabilized
by a PEGylated lipid mixture to favor the formation of small
particles, which increased the longevity of the complex
particles in circulation, so the complex NPs are enabled for
MRI detection. The emulsions allowed loading high quan-
tities of iron oxide nanocrystals, and the resulting complex
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Figure 13. Schematic of the preparation of IONP@conjugated polymer (BtPFN) and internalization by cancer cells; confocal laser scanning
microscopy (CLSM) images of Bel-7402 cells incubated with MP/BtPFN (green color) for 4 h at 37 °C, whereas cell nuclei are stained by
Hoechst 33342 dye (blue color). (a) Bright-field image. (b)—(d) Fluorescence images of the green (b) and blue (c) channels, and a merged
image (d). (Reprinted with permission from B Sun ez al 2010 Macromolecules 43 10348. Copyright 2010 American Chemical Society.)

particles caused a remarkably high transverse relaxivity
(r2) [180].

The stability of IONPs can be enhanced and the
application field extended by introducing polymers with
multiple functional groups. For example, conjugated poly-
mers, which are characterized by a delocalized electronic
structure, exhibited efficient coupling between optoelectronic
segments, thereby the conjugated polymer functionalized
IONPs can be applied in imaging, diagnosis, and therapy
[181, 182]. Wang er al used the fluorescent conjugated
polyelectrolyte (BtPFN) to coat the surface of magnetic
IONPs and form IONP/BtPFN composite NPs with a
positively charged fluorescent shell by electrostatic adsorption
(as shown in figure 13). The organic/inorganic hybrid NPs
display a simultaneous response toward light excitation and
external magnetic fields. Furthermore, these nanocomposites
can be used as robust fluorescent probes in cell imaging, and
if optimized, as multicolor probes to detect interactions of
tremendous NPs with living cells. The long-term effects of
IONP/BtPFN NPs in cell indicated most MP/BtPFN NPs
were clearly in the cytoplasm, whereas a few of them
migrated to the region very close to the outer nuclear
membranes of the cells [183].

Presently, the fashionable trend for polymer functiona-
lized IONPs in biomedicine is functionalizing with smart
polymers, which endow special properties to IONPs for a
stimulus response environment, such as pH, temperature,
light, etc [184, 185]. Generally, pH-sensitive polymers are
polyelectrolytes that bear in their structure weak acidic or
basic groups that either accept or release protons in response
to changes in environmental pH. Thermo-sensitive polymers
can be classified into different groups depending on the
mechanism and chemistry of the groups. The functional
groups of polymers have a crucial role in stimulus response
properties and comprehensive application in biomedicine
such as drug delivery, MRI, and biosensors; some typical
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polymers and functional groups are listed in table 2
[186-188].

Additionally, considerable interest has been attracted to
functionalizing IONPs with amphiphilic block copolymers,
which incorporate more functional groups into the polymers
for multifunctional applications [189]. The self-assembly
method is the common route to design and prepare stable
complex IONPs with amphiphilic block copolymers in the
liquid phase. Furthermore, this technique is used to prepare
film platforms, drug carriers and MRI [190]. For instance,
novel multifunctional nanocomposites were successfully
prepared through a simple self-assembly process for the
controlled release of anticancer drug and MRI. The SPIONPs
were ‘fixed” between the hydrophobic segment of the pH-
sensitive amphiphilic polymer (HAMAFA-b-DBAM) and the
surface of hollow mesoporous silica NPs (HMS), which were
modified by the long-chain hydrocarbon octadecyltrimethox-
ysilane. The amphiphilic polymer was further conjugated with
a folic acid (FA) group; the nanocomposites could target the
FA receptor of over-expressed tumor cells efficiently. The
loaded drug can be released from the HMS core triggered by
the mildly acidic pH environment in the cancer cells due to
the hydrolysis of the pH-sensitive polymer shell. The
targeting process of the nanocomposites could be easily
tracked by MRI due to the magnetism of the SPIONPs [191].

However, it is worth noting that, in some cases, the
presence of polymer or copolymer layers may negatively
influence the magnetic properties of the IONPs. Thus, great
caution has to be exercised during the selection of polymeric
materials for the stabilization of magnetic colloids.

3.5.3. Biomolecules. Recently, biomolecule functionalized
magnetic IONPs have become a common and effective

strategy in the biological separation, detection, sensor
and other bio-applications due to their higher
biocompatibility. The various biomolecules, including
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Table 2. Examples of smart polymer functionalized IONPs.
Type of Clinical products and
stimulus Polymers Functional groups examples Refs.
pH Polypropylacrylic acid (PPAA), polyethacrylic acid [192, 193]
(PEAA); Poly(methyl methacrylate) (PMMA) Poly O
(acrylic acid) (PAA) —t—o—
Chitosan -NH, -OH [194]
Poly(L-lysine), Poly(ethyleneimine) (PEI), [195, 196]
N
\/ \/
-NH- -NH,
Poly(4-vinylpyridine), poly(2-vinylpyridine) (PVP) [197, 198]
and poly(vinylamine) (PVAm) 74 \
N
(6]
O
Temperature Poly(N-isopropylacrylamide) PNIPAAm Pluronics® F127 Polox- [199, 200]
9 amers® 407, Tetronics®
-NH—C—
Poly(N,N’-diethyl acrylamide), Poly(dimethylamino PEG/PLGA, Regel ® [201]
ethyl methacrylate) (0]
~ I
“N-C-
Q
—C—0—
N
/ N
Polyethylene glycol (PEG) -0-, -OH T; MR Contrast Agent [202]
Light Polyethylene glycol (PEG) -0- [203]
Poly (lactic acid) [204]
(’?
—C—0—

enzymes, antibodies, proteins, biotin, bovine/human serum
albumin, avidin and polypeptides have been bound onto the
surface of IONPs [7, 205-209].

For instance, Magro et al reported on the surface
characterization, functionalization, and application of stable
water suspensions of novel surface active maghemite NPs by
avidin. Bound avidin was determined by measuring the
disappearance of free avidin absorbance at 280nm, as a
function of increasing nanoparticle concentration, showing
the presence of 10+3 avidin molecules per nanoparticle.
Fe,0;@avidin was applied for the large scale purification of
recombinant biotinylated human sarco/endoplasmic reticulum
Ca**-ATPase (hSERCA-2a), expressed by Saccharomyces
cerevisiae. The protein was magnetically purified, and about
500 ug of a 70% pure hSERCA-2a were recovered from 4 L
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of yeast culture, with a purification yield of 64% [210]. As
shown in figure 14, Bhattacharya et al demonstrated a rapid,
sensitive, specific and efficient method for the detection of
Staphylococcus aureus (S. aureus) as the model analyte at
ultra-low concentrations using antibody labeled multifunc-
tional Au-Fe3;0O4 nanocomposites. Fluorescence/confocal as
well as optical microscopy could detect a total count of S.
aureus within concentrations of 10’10’ CFU mL™" in 30 min
and the detection limit is 10> CFU mL™". These antibody
targeted NPs are a potent probe for a broad application in
detecting specific bacteria, S. aureus, in various biodetection
systems [211]. The biological molecule functionalized IONPs
will greatly improve the particles’ biocompatibility. Such
magnetic IONPs can be very useful to assist an effective
separation of proteins, DNA, cells, biochemical products, etc.
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Figure 14. Schematic demonstration of pathogen detection by
antibody-modified-fluorescent-MPA—-Au—Fe;0, nanocomposites.
(Reprinted with permission from D Bhattacharya et al 2011 J.
Mater. Chem. 21 17273. Copyright 2011 Royal Society of
Chemistry.)

3.6. Inorganic materials

Inorganic materials can possess a number of different prop-
erties such as high electron density and strong optical
absorption (e.g. noble metal particles, in particular Au and
Ag), photoluminescence in the form of fluorescence (semi-
conductor quantum dots, e.g. CdSe or CdTe) or phosphor-
escence (doped oxide materials, e.g. Y,03), or magnetic
moment (e.g. manganese or cobalt oxide NPs) [212-215].
These coatings not only provide stability to the NPs in
solution but are also widely used for the improvement of
semiconductor efficiency, information storage, optoelec-
tronics, catalysis, quantum dots, optical bioimaging, biologi-
cal labeling, and so on. Especially, some inorganic materials
help in binding various biological ligands to the IONP sur-
face, such as silica, Au, metal oxides, etc [216-218].

3.6.1. Silica. Silica-coated IONPs (IONP@silica) is a
classical and important composite material for both
fundamental study and bio-applications. Silica coating can
enhance the dispersion in solution because the silica layer
could screen the magnetic dipolar attraction between
magnetic IONPs. Additionally, the silica coating would
increase the stability of IONPs and protect them in an
acidic environment. Finally, owing to the existence of
abundant silanol groups on the silica layer, IONP@silica
could be easily activated to provide the surface of NPs with
various functional groups. For practical applications, it is
required that each IONP should be coated with a
homogeneous silica layer without core-free silica particles,
regardless of the size of the NPs. For instance, as a heating
source and magnetic guidance, IONPs play an important role
in hyperthermia and targeted drug delivery, and the existence
of core-free silica particles will lead to a loss in the effective
dose of IONPs. The major reason causing uneven heating in
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hyperthermia and tissue distribution of the targeted drugs can
be attributed to the unequal core number and silica shell
thickness.

Three different approaches have been explored to
generate IONP@silica nanomaterials. The first method relied
on the well-known Stober process [219], in which silica was
formed in situ through the hydrolysis and condensation of a
sol-gel precursor, this is a prevailing choice for preparing
IONP@SiO,. Generally, the IONPs were homogeneously
dispersed in the alcohol, then the silane was added, and finally
the water or ammonia aqueous solution was dropped into the
mixed solution and IONP@SiO, formed. Tetraethoxysilane
(TEOS), vinyltriethoxysilane (VTEOS), octadecyltrimethoxy
silane are the most common used silanes, which easily
bind on the surface of IONPs through OH groups [220-222].
For example, Xuan et al synthesized monodispersed y-
Fe,O3;@meso-SiO, by this method, and the size of the
magnetic core and the thickness of the porous shell were
controlled by tuning the experimental parameters. The
magnetic property of the y-Fe,O; porous core enabled the
microspheres to be used as a contrast agent in magnetic
resonance imaging with a high r, (76.5s™" mM™' Fe)
relaxivity. The biocompatible composites possess a large
BET surface area (222.3m”g™'); the composite NPs have
been used as a bi-functional agent for both MRI and drug
carriers [223]. In our previous report, the ultrafine hollow
Fe;0,/silica NPs (the diameter of about 32 nm) with a high
surface area were synthesized by using CTAB and AOT as
co-templates and subsequent annealing treatment. The
composite NPs can be magnetic separated by the external
magnetic field [224]. The iron oxide@SiO, NPs are often
used in MRI; it is noteworthy that the increase of the silica
coating thickness will cause a significant decrease of the r,
and r, relaxivities of their aqueous suspensions [225]. In this
method, the amount of silane used is a key factor for tuning
the silica shell thickness, and the adequate silica shell
thickness can therefore be tuned to allow for both a
sufficiently high response as a contrast agent, and adequate
grafting of targeted biomolecules [226].

The second method was based on microemulsion
synthesis, in which micelles or inverse micelles were used
to confine and control the coating of silica on core NPs [227].
It is noteworthy that this method requires much effort to
separate the core—shell NPs from the large amount of
surfactants associated with the microemulsion system.
Recently, Ding et al reported the coating regulations of
Fe;04 NPs by the reverse microemulsion method to obtain
Fe;0,@Si0, core—shell NPs. As shown in figure 15, the
regulation produces core—shell NPs with a single core and
with different shell thickness and especially it can be applied
to different sizes of Fe;O4 NPs and avoid the formation of
core-free silica particles. The small aqueous domain was
suitable to coat ultrathin silica shell, while the large aqueous
domain was indispensable for coating thicker shells. To avoid
the formation of core-free silica particles, the thicker silica
shells were achieved by increasing the content of either TEOS
through the equivalently fractionated drops or ammonia with
a decreased one-off TEOS [228]. The advantage of this
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Figure 15. (a) La Mer-like diagram: hydrolyzed TEOS (monomers) concentration against time on homogeneous nucleation and
heterogeneous nucleation, (b) the existence of Fe;0,@SiO, core/shell NPs and SiO, NPs in the reaction production when C > Cyop at some
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permission from H L Ding et al 2012 Chem. Mater. 24 4572. Copyright 2012 American Chemical Society.)
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Figure 16. Schematic illustration of the fabrication of IONP@C
composites.

method is that uniform silica shells with controlled thickness
on the nanometer scale can be realized.

The third method is aerosol pyrolysis, in which
IONP@SiO, were prepared by aerosol pyrolysis of a
precursor mixture composed of silicon alkoxides and metal
compound in a flame environment [229]. For instance, Basak
et al have reported the controlled synthesis of a core—shell
type y-Fe,03/Si0, nanocomposite, which is demonstrated in
a single step in a furnace aerosol reactor using premixed
precursors. The result reveals that the synthesis of a silica-
coated y-Fe,O3; nanocomposite depends on the choice of
proper precursors as proposed in the generalized mechan-
ism [230].

3.6.2. Carbon. Carbon protected IONPs have recently
triggered enormous research activities due to their good
chemical and thermal stability, and intrinsic high electrical
conductivity. The carbon coating provides an -effective
oxidation barrier and prevents corrosion in magnetic core
materials. Hydrophilic carbon coating on iron oxide
nanoparticle cores endows better dispersibility and stability
than those shown by bare IONPs [231].

Various approaches have been developed for synthesiz-
ing IONP@C core-shell nanostructures. As shown in
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figure 16, the common approach is a three-step process:
firstly, magnetic IONPs are prepared as seeds by various
methods, and then the polymer is coated through the
polymerization process, finally forming IONP@C composite
materials by annealing treatment. For example, Lei et al
demonstrated that through a controlled coating of a thin layer
of polydopamine on the surface of a-Fe;Oj3 in the dopamine
aqueous solution, followed by subsequent carbonization, N-
doped carbon-encapsulated magnetite has been synthesized
and displayed excellent electrochemical performance as an
anode material for lithium-ion batteries [232]. Li et al
reported for the first time for the selected-control, large-scale
synthesis of monodispersed Fe;04@C core—shell spheres,
chains, and rings with tunable magnetic properties based on
structural evolution from eccentric Fe,O3;@poly(acrylic acid)
core—shell NPs [233].

Recently, much attention has been paid to the synthesis
of Fe;O4/graphene as a new kind of hybrid material, owing to
its wide-ranging applications in lithium-ion batteries, ion
removal, sensors, catalysts, etc [234-237]. The unique
properties of Fe;O,/graphene hybrids, combining effects
from graphene, which has high conductivity and a large
surface-to volume ratio, and Fe;O0, NPs, with their high
magnetism, low price, and environmentally benign nature,
have opened a new window for fabricating highly stable
multifunctional nanomaterials [238]. Many approaches can be
used to synthesize the Fe;O,/graphene hybrid materials. For
example, Liu er al reported a superparamagnetic reduced
graphene oxide-Fe;0,4 hybrid composite (rGO-Fe;0,4), which
was prepared by the solvothermal reaction of Fe(acac); and
graphene oxide (GO) in ethylenediamine (EDA) and water
[239]. Zhang et al have described a facile approach to control
the assembly of monodisperse Fe;04 NPs on chemically rGO.
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Figure 17. Schematic diagram showing preparation of Fe;0,~GO composites and using for cellular MRI. (Reprinted with permission from
W H Chen et al 2011 ACS Appl. Mater. Interfaces 3 4085. Copyright 2011 American Chemical Society.)

First, reduction and functionalization of GO by PEI were
achieved simultaneously by simply heating the PEI and GO
mixture at 60 °C for 12 h. Meso-2,3-dimercaptosuccinnic acid
(DMSA)-modified Fe;O, NPs were then conjugated to the
PEI moiety which was located on the periphery of the GO
sheets via the formation of amide bonds between COOH
groups of DMSA molecules bound on the surface of the
Fe;0,4 NPs and amine groups of PEI [240].

Moreover, Fe;O,/graphene hybrid materials have been
used in biological fields, such as targeted drug delivery and
MRI [241-243]. For example, Chen et al have reported that
the fabricated composites of aminodextran-coated Fe;O4 NPs
and GO were efficient for cellular MRI. As shown in
figure 17, the in vivo study showed that the internalization of
Fe;04—GO composites has no effect on the cellular viability
and proliferation. Compared to the bare Fe;O, NPs, the
Fe;0,~GO composites exhibit a significantly improved 7T,
weighted MRI contrast, which is explained by the fact that the
Fe;0,4 NPs formed aggregates on the GO sheets, resulting in a
considerable enhanced 75 relaxivity [244].

3.6.3. Metal. Metallic NPs (e.g., Au, Ag, Cu, Pd, Co, Pt, etc)
possess a range of fascinating properties (localized surface
plasmon resonance (LSPR) and surface-enhanced Raman
scatting (SERS)) [245] and many anisotropic metallic NPs
have been applied in catalysis [246], contrast imaging [247],
medicine [248], and sensing [249]. The combination of
metallic NPs and magnetic IONPs has also attracted
increasing interest to materials scientists due to their
combined physicochemical properties and potential
properties in catalysts [250], biotechnology [251], and
biomedicine [252, 253]. Generally, monodispersed iron
oxide/metal nanostructures, such as core—shell,
core—satellites, and dumbbell structures, exhibit binary/
polynary properties. Moreover, these structures can be
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modified with different charges, functional groups or
moieties on the surface of IONPs to improve stability and
compatibility [254-256]. One of the most efficient and facile
functionalization methods is the sequential growth of metallic
components (e.g., Ag or Au) onto the surface of the IONP
core in a one-pot reaction. The core—shell, core—satellites and
dumbbell structures can be formed by microemulsion and
thermal decomposition methods [257, 258]. However, it was
found that the direct coating of IONPs with metal (or coating
metal with IONPs) is very difficult in thermal decomposition,
due to the dissimilar nature of the two surfaces and lattice
[259]. Gold and silver seem to be ideal coatings owing to their
low reactivity with IONPs. Furthermore, the introduction of
surfactants and additives to the synthesis can alter the stability
and surface property of IONPs or metallic NPs. Oleylamine
(OA) is the common agent acting as capping agent, stabilizer
and reductant [260]. For instance, OA and oleic acid
capped 10nm Fe;O, NPs were synthesized via thermal
decomposition of iron (III) oleate and were used for
the synthesis of Fe;O4—Au NPs. Subsequently, core—shell
Fe;O4—Au and Fe;O4—Au-Ag NPs are prepared by
depositing Au and Ag on the surface of Fe;O, NPs.
Furthermore, the tunable plasmonic property of the
core—shell structure was adjusted by shell thickness to be
either red-shifted (to 560 nm) or blue-shifted (to 501 nm),
which has great potential for nanoparticle-based diagnostic
and therapeutic applications [261].

Another common route to synthesize IONP/metal
composites involves multi-step methods including the seed-
mediated method and emulsion method, resulting in core—
shell, aggregated, and multilayers or hybrid IONP/metal
structures. The most commonly reported structure in the
literature is the core—shell Fe;O0,@ Au structure. For instance,
monolayer-capped core—shell Fe;0,@Au was prepared by
using the prepared Fe;O, NPs as the seed and subsequently


http://dx.doi.org/10.1021/am2009647

Sci. Technol. Adv. Mater. 16 (2015) 023501

W Wu et al

reducing Au ions. The Fe;O, NP seeds displayed high
efficiency of gold coating on the Fe;O, NP seeds for
formatted Fe;O,@Au core—shell NPs with controllable
surface properties [262]. Layer-by-layer self-assembly is
another feasible multi-step method for preparing multilayers
or hybrid IONP/metal structures [258, 263]. The self-
assembly approach renders NPs or other discrete components
to spontaneously organize into ordered structures by mole-
cular interactions [264], and the chemistry conjugation,
organic surfactants with aliphatic/hydrophobic tail groups,
and/or hydrocarbon solvents are the primary interactions for
the formation of hybrid IONP/metal structures [258, 265].
For example, FeOOH-Au hybrid nanorods were
synthesized by a layer-by-layer technique and subsequently
those hybrid nanorods can be transformed into Fe,O;—Au and
Fe;0,—Au hybrid nanorods via the controllable annealing
process. The homogenous deposition of Au NPs onto the
surface of FeOOH nanorods is attributed to the strong
electrostatic attraction between metal ions and polyelectro-
Iyte-modified FeEOOH nanorods [266]. Recently, Truby et al
prepared hybrid plasmonic—superparamagnetic NPs (gold
nanorods—superparamagnetic IONPs, Au NR—SPIONs) with
unique optical and magnetic properties by a facile aqueous-
based, self-assembly approach. In this process, although only
Au NRs were functionalized by carboxyl-bearing surface
ligands, the hybrid Au NR-SPION nanostructures were
produced upon simple mixing of the components owing to
the chemisorption between the carboxyl groups and SPION
surface. This hybrid SPION-Au NP structure maintained
similar plasmonic properties to COOH—Au NPs according to
the extinction spectra [190].

In all the above mechanisms, the formation of IONP/
metal structures was via molecular or charged links between
IONPs and metal, whereas the dumbbell IONP/metal
structures interfacial interaction originate from electron
transfer across the nanometer contact at the interface of
IONPs and metal NPs, inducing new properties that are not
present in the individual component [267]. Sun et al
developed a series of dumbbell IONP/metal structures
through controlling the nucleation and growth of only one
Fe;04 on each Au (or Pt, or Pd) seeding NPs under the
current synthetic conditions, which was attributed to the
possible electron transfer between Au and Fe, and applied for
enhanced catalysis, target-specific imaging and delivery
[121, 123, 268, 269]. Furthermore, they based this on the
understanding of the formation mechanism and took insight
from the mechanical property of dumbbell-like Au-Fe;0,
NPs by overgrowing Au, on Au;—Fe;04 NPs. The ‘tug-of-
war’ mechanism between Au, and Fe;O4 was attributed to the
formation of a Au,—Au;-Fe;O,4 ternary nanostructure after
Au, growing on the preformed Au;—Fe;O4 NPs. The strain
energy between Au; and Fe;O, played an important role,
which not only decided their structure stability, but might also
affect their functional performance. The reduced compressive
stress in Au; NP will result in possibly unbalanced stress
across the interface. As a result, Au, extracted Au, out from
the Au;—Fe;0,4 conjugation, generating a new dumbbell-like
Au,—Au; and a dented Fe;O, NP [270, 271]. As shown in
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figure 18, Buck et al have developed a total-synthesis
framework for the construction of hybrid nanoparticle
architectures that include M-Pt-Fe;O, (M Au, Ag,
Ni, Pd) heterotrimers, M,S—-Au-Pt-Fe;O, (M = Pb, Cu)
heterotetramers and higher-order oligomers based on the
heterotrimeric Au—Pt-Fe;O, building block. This synthetic
framework conceptually mimics the total-synthesis approach
used by chemists to construct complex organic molecules.
The reaction toolkit applies solid-state nanoparticle
analogues of chemoselective reactions, regiospecificity,
coupling reactions and molecular substituent effects to the
construction of exceptionally complex hybrid nanoparticle
oligomers [272].

However, taking into account what the application
requires and the relatively limited chemical stability of the
metal-coated IONP core—shell, aggregated, and dumbbell,
most studies have focused on the development of multi-layer
IONP/metal components. Affinity via amine/thiol terminal
groups, surfactants and biocompatibility multi-layers are
applied to further enhance protecting the core from oxidation
and corrosion, and to exhibit good biocompatibility [273—
275]. Generally, co-polymers and branched polymers with
biocompatibility are selected as effective stabilizers for
metal—iron oxide composites. For instance, Lim et al utilized
three different macromolecules, Pluronic F127, cationic
polyelectrolyte  poly(diallyldimethylamonium  chloride)
(PDDA), and PEG, to coat the preformed core—shell iron
oxide/Au particles and promote colloidal stability in elevated
ionic strength media. The results demonstrated that the co-
polymer Pluronic F127 or PDDA coatings yielded longer
stable dispersions (up to 20h) than single polymer PEG
[276]. Encapsulation is another effective route for the
promotion of safety and stability of IONP/metal components
and the formation of a new structure (such as the rattle
structure) [277], and inorganic material SiO, is a universal
material. The Fe;04—Au hybrid nanocrystal encapsulated in a
silica nanosphere was synthesized via reducing AuCly and the
preferential nucleation of Au at the Fe;O, surface. Then
Fe;0,4 was selectively dissolved through a reductive process.
As a result, a nanorattle structure consisting of a hollow or
porous silica nanoshell and Au nanocrystals can be
generated [278].

3.6.4. Metal oxides and sulfides. More and more metal
oxides or sulfides have been used to protect or functionalize
IONPs, mainly because of the fantastic magnetic properties of
IONPs and other unique physical or chemical properties of
metal oxides and sulfides.

Oxide and sulfide semiconductors are the most common
compounds that are used to functionalize magnetic IONPs,
such as TiO, [279-281], ZnO [282], SnO, [283, 284], WO;
[285], Cu,O [286], CdS [287-289], ZnS [290, 291], PbS
[292], Bi,S; [293], etc. For example, the spindle-like
IONP@Sn0O,, IONP@TiO, and IONP@ZnO composite
NPs were synthesized successively by different wet-chemical
routes; their composite NPs exhibited enhanced photocataly-
tic abilities for organic dyes, mainly owing to the synergistic
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Figure 18. Stepwise construction of M—Pt-Fe;0, heterotrimers (M = Ag, Au, Ni, Pd). a, Schematic showing the multistep synthesis of M—
Pt—Fe3;0, heterotrimers, along with the most significant possible products and their observed frequencies (expressed as the percentage of
observed heterotrimers, not total yield). Representative TEM images show Pt nanoparticle seeds (b), Pt—Fe;O, heterodimers (c) and Au-Pt—
Fe;0,4 (d), Ag—Pt-Fe;04 (e), Ni-Pt-Fe;0, (f) and Pd—Pt-Fe;0, (g) heterotrimers. All scale bars are 25 nm. (h) Photographs of a vial that
contains Au—Pt—Fe;0, heterotrimers in hexane (left), which responds to an external Nd—Fe-B magnet, the same vial with Au-Pt-Fe;0,
heterotrimers in a larger volume of hexanes (middle) and the same vial after precipitation of the heterotrimers with ethanol (right). The
precipitated heterotrimers collect next to the external magnet. (Reprinted with permission from M R Buck ez al 2011 Nat. Chem. 4 37.

Copyright 2011 Nature Publishing Group.)

effect between the narrow and wide bandgap semiconductors
and effective electron-hole separation at the interfaces of iron
oxides/semiconductors [281-284]. As shown in figure 19,
Lee et al developed a sol-gel reaction of tantalum (V)
ethoxide in a microemulsion containing Fe;O, NPs that was
used to synthesize multifunctional Fe;04/TaO, core—shell
NPs recently, which were biocompatible and exhibited a
prolonged circulation time. When the NPs were intravenously
injected, the tumor-associated vessel was observed by using
computed tomography (CT), and MRI revealed the high and
low vascular regions of the tumor [294]. Wu ef al have
presented a very simple strategy for the synthesis of
superparamagnetic and fluorescent Fe;0,—ZnS hollow nano-
spheres by a combining of corrosion and the Ostwald ripening
process. These hollow nanospheres with diameters smaller
than 100 nm are not only nontoxic with a highly porous shell
but also exhibit very good magnetic resonance and fluores-
cence [295]. Indeed, semiconductors are common used as a
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functionalized layer to coat IONPs for obtaining bi-functional
composite NPs, such as fluorescence and magnetic [212],
photocatalyst and magnetic, etc.

Magnetic materials coated on magnetic IONPs usually
have a dramatic influence on the final magnetic properties,
including the iron oxide itself [296], Co3;04 [297, 298], NiO
[299], Mn,O, [300, 301], CoFe,O4, MnFe,0,, etc. The
combination of two different magnetic phases will generate
new magnetic composites with many possible applications.
For example, Manna et al have reported the magnetic
proximity effect in a ferrimagnetic Fe;O,4 core—ferrimagnetic
7-Mn,Oj3 shell nanoparticle system. As shown in figure 20,
the magnetization of core—shell NPs is clearly greater than
that of the bare core NPs [302]. Liu ef al have developed the
manufacture of a series of multifunctional magnetic core—
shell hetero-nano-architectures (designated as Fe;O04@NiO
and Fe;0,@Co0304) by an in sifu solvothermal-coating/
decomposition approach. The resulting core—shell NPs
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Figure 19. Schematic illustration of synthesis and modification of Fe;O4—TaO, core—shell NPs, and application for simultaneous MRI and
CT. (Reprinted with permission from N Lee et al 2012 J. Am. Chem. Soc. 134 10309. Copyright 2012 American Chemical Society.)
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Figure 20. Magnetization versus field plots of bare core Fe;O, and
core—shell Fe;04—y-Mn,O5; NPs at 300 K. (Reprinted with permis-
sion from P Manna et al 2011 J. Phys. Condens. Matter 23 506004.
Copyright 2011 Institute of Physics.)

presented a number of important characteristics, such as
controllable shell thickness, excellent magnetism, stable
recyclability as well as a large surface-exposure area. By
taking advantage of the high affinity of the metal ion on the
shell surface toward biomolecules and rapid response toward
an assistant magnet, the Fe;O,@NiO can be applied to
magnetically separate His-tagged proteins from a cell lysate
and efficiently enrich peptides with different molecular
weights from complex sample systems for mass spectrometry
analysis [303].

23

4. Biomedical applications

The biocompatibility and toxicity of IONPs are important
criteria to take into account for their biomedical applications.
Parameters determining biocompatibility and toxicity are the
nature of the magnetically responsive component, and the
final size of the composite particles including their core and
the coatings (shell). Ideally, composite IONPs must also
have a high magnetization so that their movement in
the blood can be controlled with an external magnetic field
until it is immobilized close to the targeted pathologic tis-
sue [153]. Magnetic IONPs with a long blood retention
time, biodegradability and low toxicity have emerged as one
of the primary nanomaterials for biomedical applications
in vitro and in vivo. Some biomedical applications require
surface functionalized, especially core—shell type, magnetic
IONPs.

4.1. In vivo applications

IONPs have a large surface area and can be engineered to
provide a large number of functional groups for cross-linking
to tumor-targeting ligands such as monoclonal antibodies,
peptides, or small molecules for diagnostic imaging or the
delivery of therapeutic agents [304]. Especially, the magnetic
properties of IONPs can be used in numerous in vivo appli-
cations, which can be divided into three main groups: (i)
magnetic vectors that can be directed by means of a magnetic
field gradient towards a certain location, such as in the case of
targeted drug delivery; (ii) magnetic contrast agents in MRI,;
and (iii) hyperthermia or thermoablation agents, where the
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Figure 21. Schematic representation of magnetic nanoparticle-based
drug delivery system: these magnetic carriers concentrate at the
targeted site using an external high-gradient magnetic field. After
accumulation of the magnetic carrier at the target tumor site in vivo,
drugs are released from the magnetic carrier and effectively taken up
by the tumor cells.

magnetic particles are heated selectively by application of a
high-frequency magnetic field [305].

4.1.1. Targeted drug delivery. In traditional drug delivery
systems, such as oral ingestion or intravascular injection, the
medication is distributed throughout the body through
systemic blood circulation. For most therapeutic agents,
however, only a small portion of the medication reaches the
affected organ and there is reduced drug diffusion through
biological barriers causing a high incidence of adverse effects.
Targeted drug delivery (TDD) seeks to concentrate the
medication in the tissues of interest while reducing the
relative concentration of the medication in the remaining
tissues and crossing the biological barriers by active
accumulation or an active targeting strategy [306].
Furthermore, magnetic =~ IONP-based drug targeting
(figure 21) is a promising cancer treatment method for
avoiding the side effects of conventional chemotherapy by
reducing the systemic distribution of drugs and lowering the
doses of cytotoxic compounds [307]. Functionalized IONPs
as a carrier can deliver a wide range of drugs to all areas in the
body. Hence the efficient intracellular delivery of NPs is one
of the main factors in enhancing the efficacy of the
encapsulation therapeutic agent. Generally, magnetic IONPs
are used as the core and biocompatible components act as a
functionalized shell to form the core—shell structure for TDD
carriers, and the drugs are bound or encapsulated into the
polymer matrix. In a drug carrier system, the sizes, surface
properties, and stability are the crucial features. Partially, the
IONPs should be small enough to penetrate through the
capillary bed. However, if the diameter of the IONPs is
smaller than 10 nm, they will be rapidly removed through
extravasations and renal clearance. Therefore, IONPs with a
diameter ranging from 10 to 100nm are optimal for
intravenous injection and have the most prolonged blood
circulation times [68]. Additionally, IONPs with a positive
charge are better internalized by human breast cancer cells
than those IONPs with negative charge. However, intake of
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these IONPs also depends upon cell type. IONPs with a
hydrophobic surface are easily adsorbed at the protein surface
and show a low circulation time [308]. Hence, many
biocompatibility materials have been used to functionalize
IONPs for TDD, such as biocompatible organic polymers
(PEG, chitosan, dextran, etc), liposomes, silica, and
bioceramics [182].

Nanostructure-mediated TDD, a key technology for the
realization of nanocarriers, has the potential to enhance drug
bioavailability, improve the timed release of drug molecules,
easily functionalize with targeting ligands, and enable
precision drug targeting (sensitivity to an external magnetic
field). In particular, magnetic composite IONPs are currently
recognized as one of the most promising modalities of such
drug carriers [309-311]. Furthermore, nanostructure targeted
IONPs carriers can not only serve as a vehicle for drug
delivery, but also for gene delivery [312]. For instance, Qiu
et al have developed an MRI visible gene delivery system
Stearic-LWPEI-SPIO for the delivery of minicircle DNA
(mcDNA). These Stearic-LWPEI-SPIOs possess a high
mcDNA binding capability for the protection of mcDNA
from enzymatic degradation and the controlled release of
mcDNA in the presence of polyanionic heparin. Furthermore,
Stearic-LWPEI-SPIO NPs loaded with mcDNA can enhance
expression of luciferase in MCF-7 cells without evidently
exhibiting cellular toxicity [313].

A high drug loading efficiency and drug-release rate are
essential parameters for therapy, while mesoporous functional
layers (such as SiO, and C) and IONPs with hollow or
mesoporous structure are enabling the promotion of drug
loading [314, 315]. For example, Zhang et al reported the
development of a magnetic drug carrier composed of
doxorubicin-conjugated Fe;O,4 nanoparticle cores and a
PEG-functionalized porous silica shell (Fe;O4—DOX/pSiO,—
PEG). The DOX loading capacity of the porous drug carrier
system is 16.3 ug mg™". Fe30,~DOX/pSi0,—PEG NPs can be
internalized by cells through an endocytosis process, and can
also be easily functionalized with a targeting ligand via a
silicone coupling agent for increased and specific uptake of
the drug carrier in tumor cells over-expressing the folate
receptor, such as MCF-7 and HeLa cells [316]. Recently,
Kayal and Ramanujan have reported the DOX loading and
release profiles of PVA coated IONPs, which showed that
they can release 45% of the adsorbed drug in 80 h; the results
illustrated that composite NPs are promising magnetic drug
carriers to be used in magnetically targeted drug deliv-
ery [317].

Moreover, carriers comprising coated magnetic IONPs
loaded with an anti-cancer drug are injected into the patient’s
body via the human circulatory system. An external magnetic
field is used to localize the drug loaded carriers at the target
site and the drug can then be released from the carriers either
via enzymatic activity or changes in physiological conditions
such as pH, osmolality, or temperature, and be taken up by
target cells. Smart control release systems have been
developed to meet the changed physiological conditions,
enhance accumulation, and control drug release at the
intended sites. The stimulus pH-/thermo-/photo-magnetic
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TDD systems are the common smart control release systems
[318]. Generally, the pH of body tissue is maintained around
7.4 in a healthy human. However, there exist several
mechanisms to modulate pH inside the body. The gastro-
intestinal tract changes the pH along the tube, which is ~1-3
in the stomach and ~7 in the intestine. Each mechanism has
been used as a triggering signal for pH-responsive TDD.
Basically, ionizable moieties, such as carboxylic acid, amine,
azo, phenylboronic acid, imidazole, pyridine, sulfonamide,
and thiol group functionalized IONPs can afford pH-
sensitivity drug loaded carriers [319]. A thermosensitive
polymer obtained by simple aliphatic modification of
biocompatibility/biodegradable block copolymers exhibited
a low critical solution temperature of ~38°C, thus the
functionalized IONPs released the drugs in response to a
variation in external temperature. For example, Zhang et al
have successfully developed a novel magnetic drug-targeting
carrier consisting of encapsulated magnetic IONPs with a
smart thermosensitive polymer dextran-g-poly (N-isopropy-
lacrylamide-co-N, N-dimethylacrylamide). The smart stimuli-
responsive polymer enabled controllable drug release through
small changes of temperature in the vicinity of a lower critical
solution temperature (LCST) and pH. The system has a lower
drug release at 20°C (below the LCST), while at 40 °C
(above the LCST) and at 37 °C (LCST) the drug release is
high and rapid for the initial 5h, followed by a sustained
release at longer duration. The drug release is primarily
influenced by a triggered drug release mechanism. The acidic
medium favors drug release because of the acid-labile linker
[320]. Additionally, targeted delivery of therapeutic agents to
the brain has enormous potential for the treatment of several
neurological disorders such as Alzheimer’s disease and brain
tumors. However, the blood—brain barrier (BBB) significantly
impedes the entry of drug molecules into the brain from the
bloodstream. IONP-based targeted delivery represents a
promising alternative strategy in overcoming the BBB [321].

Presently, the development of multifunctional magnetic
IONPs which were coated or functionalized with polymers,
lipidic, or inorganic shells further boost the potential use in
medicine. These multifunctional IONPs not only serve as a
vehicle for TDD but also have applications in MRI [322],
targeted thermosensitive chemotherapy [323], and fluores-
cent/luminescence imaging [324]. For instance, Chourpa et al
have developed novel biocompatible nanosystems, which are
useful for cancer therapeutics and diagnostics (theranostics).
These multifunctional NPs (SPION-DOX-PEG-FA) are not
only for bimodal cancer cell imaging (by means of MRI and
fluorescence) but also for bimodal cancer treatment (by
targeted drug delivery and by the hyperthermia effect).
Comparing the incubated cells with suspensions of SPION—
DOX-PEG-FA and SPION-DOX-PEG shows they provide
the same DOX fluorescence intensity. However, the uptake of
the FA-functionalized NPs was twice that of SPION-DOX-
PEG after 120 min of cell culture, while qualitatively the NP
distribution remained similar and appeared as cytosolic
staining, indicating that the quantity of FA grafted on the
elaborated NPs appears sufficient to significantly increase
their uptake by MCF-7 cancer cells [202]. Although
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considerable achievements have been reached in magnetic
TDD systems, to date, actual clinical trials are still
problematic. IONPs may be considered to be biocompatible,
but the immune response during the residence time of the
carrier—drug conjugate, the toxicity of carrier materials and
their possible decomposition products still warrant further
investigation.

4.1.2. MRI. MRI is an imaging technique used primarily in
medical settings to produce high quality images of the inside
of the human body, which is based on the principles of
nuclear magnetic resonance (NMR). Ultra small and related
functionalized IONPs possess unique superparamagnetic
properties, which generate significant susceptibility effects
resulting in strong 7, (spin—spin relaxation process) and 7,*
contrast, as well as T effects (spin—lattice relaxation process)
at very low concentrations for MRI, and are widely used for
clinical oncology imaging as contrast agents [325-327]. A
major barrier in the use of nanotechnology for practical
applications is the difficulty in delivering NPs to intracranial
positions. However, IONPs can deliver to the targeted site by
external magnetic field. Additionally, a cellular magnetic-
linked immunosorbent assay (C-MALISA) has been
developed as an application of MRI for in vitro clinical
diagnosis: first the different antibodies or fragments directed
to several types of receptors can couple onto the surface of
IONPs, then they can form a specific bind with the tumor for
in vivo testing and magnetomotive optical molecular imaging
[328]. Therefore, MRI is one of the most promising
applications for magnetic [ONPs [153].

Recently, Hadjipanayis et al reported IONPs (10 nm in
core size) conjugated to a purified antibody that selectively
binds to the epidermal growth factor receptor (EGFR) deletion
mutant (EGFRVIII) present on human glioblastoma multiforme
(GBM) cells and used for therapeutic targeting and MRI
contrast enhancement of experimental glioblastoma, after
convection-enhanced delivery. The MRI results revealed that
a significant decrease in glioblastoma cell survival was
observed after NP treatment and no toxicity was observed
with treatment of human astrocytes (P <0.001) [329]. Basly
et al grafted small dendritic molecules through a phosphonate
anchor by covalent attachment in order to stabilize iron oxide
suspensions. The enhancement contrast ratio values are 15% to
75% higher than those obtained for Endorem’" (a commercial
IONP contrast agent) on a MR T5,, image at 7 T. Such hybrid
and biocompatible nanoscale objects may open a new route for
the development of highly relaxing contrast agents displaying a
quite satisfactory R,/R; ratio even at high field [330].

In vivo cell tracking or labeling by MRI can provide the
observation of biological processes and monitor cell therapy
directly, which is another successful application of IONPs in
MRI [331-333]. MRI allows for cell tracking with a
resolution approaching the size of the cell when the cell
loaded enough magnetic IONPs (for increasing the iron
concentration). As shown in figure 22, Branca et al used
cancer-binding ligand functionalized IONPs to target the
cancer cells, then imaged by high-resolution hyperpolarized
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Figure 22. Detection of pulmonary metastases in a breast
adenocarcinoma mouse model. (a) HP images (TE=4 ms) from a
control mouse, showing normal ventilation patterns. (b) Images from
a human breast adenocarcinoma mouse model (TE =4 ms) after
injection of LHRH-SPIONSs. A clear signal defect can be seen in the
right lobe (yellow circles). All of the HP 3He lung MR images are
formatted with 1 mm slice thickness. (Reprinted with permission
from R T Branca et al 2010 Proc. Natl Acad. Sci. 107 3693.)

*He MRI. In vivo detection of pulmonary micrometastates
was demonstrated in mice injected with breast adenocarci-
noma cells. This method not only holds promise for cancer
imaging but more generally suggests a fundamentally unique
approach to molecular imaging and cell tracking in the lungs
[334]. Zhang et al investigated the feasibility of imaging
green fluorescent protein (GFP)-expressing cells labeled with
IONPs with the fast low-angle positive contrast steady-state
free precession (FLAPS) method and to compare them with
the traditional negative contrast technique. The GFP cell was
incubated for 24h using 20 ugFemL™" concentration of
SPIO and USPIO NPs. The labeled cells were imaged using
positive contrast with FLAPS imaging, and FLAPS images
were compared with negative contrast 7,*-weighted images.
The results demonstrated that SPIO and USPIO labeling of
GFP cells had no effect on cell function or GFP expression.
Labeled cells were successfully imaged with both positive
and negative contrast MRI. The labeled cells were observed
as a narrow band of signal enhancement surrounding signal
voids in FLAPS images and were visible as signal voids in
T,*-weighted images. Positive contrast and negative contrast
imaging were both valuable for visualizing labeled GFP
cells [335].

The use of these IONP colloids as specific contrast agents
for MRI is now a well-established area of pharmaceutical
development. Feridex®, Endoremm, GastroMARK®, Lumi-
rem®, Sinerem®, Resovist® and more pending patents tell us
that the last word in this area has not been said. There are
three remarkable advantages of IONPs in MRI applications as
follows: (1) a minimum delay of about 10 min between
injection (or infusion) and MR imaging extends the
examination time; (2) cross-section flow void in narrow
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blood vessels may impede the differentiation from small liver
lesions; and (3) aortic pulsation artifacts become more
pronounced [336].

It is noteworthy that more functionalized IONPs have
been utilized in MRI [337-339]. For example, Smolensky
et al have demonstrated that the incorporation of a thin
organic coating containing efficient iron oxide and gold
chelators significantly increased the saturation magnetization
of core—shell iron oxide@gold NPs. The resulting high
relaxivity of the nanocomposites, together with the small,
compact structure of the assemblies and their characteristic
plasmonic behavior, renders Fe;O,@organic@gold an attrac-
tive alternative to current magnetoplasmonic agents for
multimodal cell imaging [340]. Recently, Zhou et al have
prepared nearly monodispersed yolk-type Au@Fe;0,@C
nanospheres with hollow cores of 50 nm in diameter through
coating Au@SiO, NPs with Fe;0,@C double layers,
followed by dissolving SiO,. The coexistence of Fe;O4 and
Au also makes the nanospheres dual probes for MRI with a
specific relaxivity (r,*) of 384.38mM™'s™' and optical
fluorescence imaging using a near-infrared excitation [341].

4.1.3. Magnetic hyperthermia and thermoablation. The use of
ferromagnetic NPs for magnetic hyperthermia and
thermoablation therapies has attracted considerable attention
as one of the promising treatments for cancer [342, 343].
Hyperthermia is the heating of cells in the range of 41-47 °C,
which causes the preferential death of tumor cells [344].
When magnetic IONPs are subjected to an alternating
magnetic field, heat generation is a result of a combination
of internal Néel fluctuations of the particle magnetic moment,
hysteresis, and the external Brownian fluctuations that all rely
on the magnetic properties of IONPs. However, the
temperature of the thermoablation method is often greater
than 47 °C, which causes the rapid death of tumor cells due to
the high temperature. Thus, some difficulties are faced when
heating the tumor part to a sufficiently high temperature while
simultaneously maintaining the normal tissues at a lower
temperature. Modern techniques generally employ localized
hyperthermia for cancer therapy [345]. Many techniques have
been developed for the localized heating treatment of cancers,
for example, radio-frequency waves (as shown in figure 23
[346]), microwaves and ultrasounds [347-349].

In general, the specific adsorption rate (SAR) is the main
parameter determining how effectively NPs generate heat to
the tissue during magnetic hyperthermia treatment. SAR is the
rate at which electromagnetic energy (E.,,) is absorbed by a
unit mass of a biological material (m) when exposed to a radio
frequency (Rp) electromagnetic field.

It can be expressed as follows:

For a ferrofluid sample, the SAR is usually averaged
either over the whole body, or over a small sample volume

(typically 1 g or 10 g of tissue). It is also related to the electric
field or the temperature rise at a given point [350], and hence

SAR = 4
dt

Eem
dm
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Figure 23. Ferrofluids containing IONPs are synthesized and characterized as possible agents for medical treatment and diagnosis.

Specifically, novel iron-oxide-based NPs are investigated (i) as contrast agents for MRI, and (ii) for tumor treatment using the technique of
magnetic hyperthermia where magnetic NPs are injected in the tumor and heated by applying a strong ac magnetic field. In the left picture the
temperature increase of an extracranial tumor, after injecting a small quantity of ferrofluid and irradiating with low frequency radiofrequency

waves (150 kHz).

it can be calculated from the electric field within the tissue as
follows,

AT

At

cMIEMP |

r 418681 = C,
p (1)

me

SAR =

sample

where o is the sample’s electrical conductivity, E is the RMS
electric field, p is the sample density, P is the electromagnetic
wave power absorbed by the sample, m, is the mass of the
sample, and C, is the specific heat capacity of the sample.
Therefore, SAR can expressed as being proportional to the
rate of the temperature increase (A7/Af). Furthermore,
according to the equation, for both the ferrofluid sample
and the human body, the conductivity can be zero. Generally,
SAR is commonly used to measure power absorbed from
mobile phones and during MRI scans. The value will depend
heavily on the geometry of the part of the body that is
exposed to the RF energy (low-frequency magnetic wave of
100—400 KHz), and on the exact location and geometry of the
RF source.

Hence, increased heating rates of magnetic IONPs are an
important challenge in order to minimize dosages of magnetic
IONPs needed to reach therapeutic temperatures in magnetic
hyperthermia or thermoablation. Possible approaches to
increase heating rates are increasing the anisotropy of the
NPs (shape or magnetocrystalline) or increasing the field
strength. An alternative approach to increase the heating rates
would be to increase the monodispersity of a sample of
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magnetite NPs. Gonzales-Weimuller ef al reported the size-
dependant heating rates of IONPs for magnetic fluid
hyperthermia. The results demonstrated that the SAR does
indeed vary with particle size. The highest SAR measured
was 447Wg™' at 245kAm™" for 11.2nm particles and
models, indicating that higher heating rates were possible by
increasing the size of the particles to 12.5 nm [351].

Some reports reveal that the surface functionalization
improved the hyperthermic effect. As shown in figure 24, Liu
et al reported that enhanced SAR with decreased surface
coating thickness was observed and ascribed to the increased
Brownian loss, improved thermal conductivity as well as
improved dispersibility [352]. Moreover, the inorganic coat-
ing can also improve the SAR value. For example,
Mohammad et al found that the hyperthermic effect of
SPIONS is enhanced dramatically on coating with Au. The
results indicated possibilities for utilization of very low
frequency oscillating magnetic fields in hyperthermia treat-
ment. The gold coating should retain the superparamagnetic
fraction of the SPIONs much better than when compared to
uncoated SPIONs alone; this leads to a higher energy of
magnetic anisotropy of superparamagnetic NPs within the
gold shell as compared to uncoated SPIONs. Excellent
hyperthermia exhibited by SPION@Au NPs coupled with
their lack of cytotoxicity was anticipated to make them into
suitable candidates for thermolysis of cancer cells [353].
Recently, Balvata ef al reported their magnetic hyperthermia
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Figure 24. (a) The SAR values of the different sized Fe;O4 NPs for
different mPEG: 9 nm (orange), 19 nm (yellow), 31 nm (blue). (b) A
schematic diagram of nanoparticle based hyperthermia agents with
iron oxide core and varied mPEG coating. (Reprinted with
permission from X L Liu et al 2012 J. Mater. Chem. 22 8235.
Copyright 2012 Royal Society of Chemistry.)

results obtained after intratumoral injection, demonstrating
that micromolar concentrations of iron given within the
modified core—shell Fe/Fe;O, NPs caused a significant anti-
tumor effect on murine subcutaneous mouse melanoma with
three short 10 min alternating magnetic field (AFM) expo-
sures. These results indicated that intratumoral administration
of surface modified MNPs attenuated mouse melanoma after
AMF exposure, and these MNPs were capable of causing an
anti-tumor effect in a mouse melanoma model after only a
short AMF exposure time [354].

SPIONS can be considered as a very promising agent for
hyperthermia therapy, but this new field of application
requires an improvement of the reproducibility, size and
shape controlling in the preparing process and its biocompat-
ibility. Moreover, how to apply the cancer treatment of fine
tissues (such as brain and kidney) is also an ongoing
challenge.

4.2. In vitro applications

Another important kind of application of functionalized
IONPs is in vitro application (such as biosensor, cell biose-
paration), which promises increased sensitivity, speed, and
cost-effectiveness. There are several promising nanocompo-
sites for in vitro application, such as Au NPs, and quantum
dots (QDs). There are already in vitro diagnostic products on
the market, based on magnetic [ONPs.
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4.2.1. Bioseparation. As a successful application of
magnetic IONPs, bioseparation is also an important kind of
application, especially for in vitro DNA, antibody, protein,
gene, enzyme, cell, virus and bacteria separation [355-358].
Compared with the traditional separation procedures,
magnetic separation has many advantages of being able to
be quickly localized or retrieved with a common magnet (as
shown in figure 25(a)) [18], which is faster and more cost-
effective than traditional column affinity chromatography.
Generally, surface functionalized magnetic IONPs with
suitable intermediates are commonly used to enhance the
separation efficiency with such modification of surfactants,
polymers, and ligands for introducing functional end groups
(such as —OH, —-NH,, —-SH, —COOH, etc) through the
selective adsorption to the target biomolecules [359].

Recently, Chang et al reported a novel approach to
efficiently separate proteins such as bovine serum albumin
(BSA) by the modification of hydrophobic pockets on the
surface of Fe;0,@SiO, NPs with various alkyl groups at
various pH levels. The magnetic separation efficiency was
strongly reflected and could be attained by controlling the size
of the hydrophobic pocket and other factors such as the alkyl
chain length, salt concentration, and pH levels [360]. Wang
and Irudayaraj described the development of a facile route to
the site-selective assembly of Fe;O, NPs onto the ends, or
ends and sides, of gold nanorods with different aspect ratios
to create multifunctional nanorods incorporating optical and
magnetic materials that provided tunable plasmonic and
magnetic properties. As shown in figure 25(b), the Fe;04,—Au
necklace-like hybrid NPs were functionalized with relevant
antibodies to construct efficient platforms for simultaneous
optical detection, magnetic separation, and thermal ablation of
multiple pathogens from a single sample [361].

Additionally, IONP-based magnetic separation applica-
tions involve strict requirements such as chemical composi-
tion, particle size and size distribution, stability of magnetic
properties, morphology, adsorption properties and low
toxicity, and so on. For instance, Reza er al found that the
BSA protein adhesions for magnetite—silica, magnetite—
aminosilane and magnetite—silica—aminosilane arrays were
12.5%, 79.5% and 145.75% higher than for pure magnetite,
respectively [362]. Arsianti ef al systematically investigated
the effect of IONP-PEI-DNA arrangement on transfection
efficiency by varying the vector component mixing order. The
aim was to elucidate the role of IONPs and PEI in gene
delivery and to gain a fundamental understanding of the
design of a suitable IONP-based vector for optimal plasmid
DNA transfection. The highest magnetic vector cellular
uptake was observed for the largest IONP vector (IONPs +
PEI/DNA) due to enhanced gravitational and magnetic aided
sedimentation onto the adherent cells. The highest gene
expression was also observed for this MNP vector config-
uration [363].

Magnetic IONPs with a core—shell structure may enable
this development of bioseparation fields, especially silica
coated IONPs [364-366]. For example, Shao er al have
reported three-component microspheres containing a SiO,-
coated Fe;04 magnetite core and a layered double hydroxide
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Figure 25. (a) The Fe;0,4 and y-Fe,05 hollow NPs (dispersed in ethanol solution) before and after magnetic separation by an external magnet.
(b) The detection, separation, and thermal ablation of multiple bacterial targets. (Reprinted with permission from C G Wang and J Irudayar

2010 Small 6 283. Copyright 2010 John Wiley and Sons.)

(LDH) nanoplatelet shell via an in situ growth method. The
microspheres possess superparamagnetism and high satura-
tion magnetization (36.8 emu g~'), which allows their easy
separation from the solution, by means of an external
magnetic field, and subsequent reuse. The microspheres show
highly selective adsorption of the His-tagged protein from
Escherichia coli lysate, demonstrating their utility [367]. The
collection and separation rates for targets in a complex
environment are crucial in bioscience.

4.2.2. Biosensor. Biosensing as an effective diagnostic
platform has been developed to detect biomolecules and
cells with high sensitivity that could enable early disease
diagnosis [368]. Magnetic nanosensors exhibiting high
specificity and biocompatibility have been synthesized for
the in vitro and in vivo detection of molecular interactions.
Upon target-induced nano-assembly formation, a sensitive
and dose-dependent decrease in the spin—spin relaxation time
(T,, can be detected by magnetic resonance (NMR/MRI)
techniques) of adjacent water [369]. Furthermore, the
superparamagnetic IONP core of an individual nanoparticle
becomes more efficient at dephasing the spins of surrounding
water protons, enhancing 7, relaxation times so that the NPs
act as magnetic relaxation switches (MRS) in the cooperative
assembly process. For example, Perez et al found that the
MRS nanosensor can detect specific mRNA, proteins,
enzymatic activity, and pathogens (e.g., a virus) with
sensitivity in the low femtomole range (0.5-30 fmol)
[370, 371]. In addition, the anisotropy of the magnetic
shape was used to control the critical applied magnetic field
required to switch the magnetization of the element between
its two stable states, thus creating a binary barcode.
However, to date, magnetic biosensors for diagnosis have
not only been based on the properties of [ONPs, but also on
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functionalized coated materials. The magnetic bead-based
biosensors are functionalized IONPs by conjugating targeting
ligands, which endow new specificity to the magnetic bead—
based biosensors. Simultaneously, the IONPs, together with
targeted receptors and functionalized layers/materials, act as
the generator or detector of a signal, assigning the sensitivity
of magnetic bead-based biosensors (figure 26). Generally,
optical-magnetic bead-based biosensors exhibit excellent
optical performance because of the unique interactions
between light waves and the surface coating materials (such
as Au, Ag, QDs and fluorescent molecules), which displayed
excellent localized surface plasmon resonance (LSPR), sur-
face-enhanced Raman scattering (SERS), and fluorescence
[372, 373]. One-dimensional nanostructures (such as carbon
nanotube, nanowires, and grapheme) have been applied as
functional components for electrochemical magnetic bead-
based biosensors [374, 375]. Those are usually based on a
field-effect transistor (FET) where analyte molecules act as a
gate, which controls the electrical resistance by causing
depletion or accumulation of charge carriers. And the
electrochemical-magnetic bead-based biosensors in clinical
diagnosis are based on glucose, lactate, cholesterol, urea,
creatine, and creatinine biosensors [376-378].

Many studies have been conducted on developing all
kinds of magnetic bead-based biosensors with high-sensitivity
and high-specificity, which have opened up an era of early
disease diagnosis and better treatment [379, 380]. A
composite electrode of glucose oxidase (GOD)-Fe;O4—
Cs—Nafion was developed for glucose by combining the
intrinsic peroxidase-like activity of Fe;0, NPs and the anti-
interference ability of the Nafion film. The novel glucose
biosensor showed a relatively rapid response, high sensitivity
(11.54 yAcm™> mM™"), low detection limit (6x 107 M) and
broad linear range (from 6 X 107° to 2.2x 107> M). Further-
more, the wide detection range and high sensitivity may be
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assigned to the amplification of the magnitude of the current
response for catalysis of H,O, by Fe;O, NPs [381].
Composite immunosensors based on gold NPs (GNPs),
Fe;O, NP—functionalized multiwalled carbon nanotube—
chitosan (Fe;O4—FCNT-CS) and BSA composite film, were
developed for the determination of carbofuran. The immuno-
sensors exhibited good accuracy, high sensitivity, and
stability for the detection of carbofuran. Under optimal
conditions, the current detection limit was proportional to the
concentration of carbofuran ranging from 1.0ngmL™" to
100.0ngmL™" and from 100.0ng mL™" to 200 [gmL™" with
the detection limit 0.032 ng mL~! [382].

Importantly, the sensitivity and specificity of magnetic
biosensors are the crucial indicators to evaluate the newly
developed magnetic biosensors for diagnosis. Furthermore,
continuously improving the sensitivity and specificity of
magnetic biosensors is a requirement of analysis testing
[383, 384]. The routes for improvement of the sensitivity and
specificity of magnetic biosensors were adopted by the
measurement signal amplification via enzymatic amplification
[385], signal amplification by applying NPs [386] polymers
combination with functional groups [387]. For instance,
IONPs and a grating-coupled surface plasmon resonance

(GC-SPR) sensor surface with metallic diffraction grating
were modified with antibodies that specifically recognize
different epitopes of the analyte of interest. Furthermore, the
detection of f human chorionic gonadotropin (fhCG) was
implemented to evaluate the sensitivity of the IONP-enhanced
GC-SPR biosensor. The results revealed that the sensitivity of
PhCG detection was improved by four orders of magnitude
compared with the regular SPR sensor with direct detection
format, and a limit of detection below pM was
achieved [372].

Due to the complex components, and sensitivity and
specificity requirements, the conventional routes for magnetic
bead-based biosensors are a stepwise assembly process
[388, 389], layer-by-layer assembly [390], and primary
products that are solid-state platforms. Recently, however,
research has demonstrated that solution-based platforms are
beneficial over solid-state platforms because of the increasing
probability of interaction between magnetic bead-based
biosensors and analytes and allowing for biomolecule-based
analytes to preserve their native form and function when in
solution. For example, the lysine-modified diacetylene
monomer with 10,12-pentacosadiynoic acid (Lys-PCDA)-
SPION particles was prepared by the self-assembly of Lys-
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PCDA onto OA-SPIONS in the solution phase, which acted as
a platform for the capture and detection of serum proteins.
This magnetic biosensor showed a colorimetric response that
corresponded to an increasing concentration of anti-BSA
antibodies, with a lower detection limit of 0.5 mg mL~! [391].

The present trend for magnetic bead-based biosensors is
not only to connect the sensitivity and specificity but also to
develop multiplexed magnetic bead-based biosensors for
multi-detection [392]. There has been huge progress in the
development of magnetic bead-based biosensors in recent
years, but their application in clinical diagnosis is not
common, except for glucose magnetic bead-based biosensors,
which represents the large global market. There are still
challenges for magnetic bead-based biosensors in clinical
diagnosis [393].

5. Summary and perspectives

The size, size distribution, and shape of IONPs are the
important parameters influencing the pharmacokinetic and
bio-distribution in vivo applications [394]. However, absolute
control over the shape and size distribution of magnetic
IONPs remains a challenge, and the different formation
mechanisms of iron oxides under different conditions still
need to be investigated. Furthermore, the ligands and func-
tional layers are often comparable in size to the IONPs, and
their coupling effect can significantly increase the hydro-
dynamic size. Concequently, the increasing hydrodynamic
diameter contributes to the macrophage and systemic clear-
ance of functionalized IONPs. Therefore, it is necessary to
measure the hydrodynamic diameter and zeta potential of
IONPs before and after functionalization. Moreover, bio-
distribution is also related to the IONP size and final colloid
stability, which determines the fate of IONPs in in vivo and
in vitro applications. Mitragotri and Lahann already con-
cluded the size-dependent processes of NP transport in the
human body [395], and the optimal hydrodynamic diameter
range for in vivo application of intravenously injected NPs is
10-100 nm [396].

In addition, the surface properties IONPs such as surface
charge play an important role in the physical stability and
influence the interaction of IONPs with the biological system
and their safety. In general, positively charged IONPs inter-
acting strongly with blood components undergo relatively
rapid clearance from systemic circulation, leading to non-
specific tissue uptake. In contrast, negatively and neutrally
charged IONPs show lower interaction with plasma proteins
than positively charged IONPs, and tend to nonspecifically
stick to the cells [397]. Furthermore, studies on the influence
of the thickness of the functional layer, dispersant packing
density, and dispersant conformation on the protein resistance
of sterically stabilized IONPs have to be designed carefully to
make sure that the right outcomes are arrived at.

The saturation magnetization (M) of uncoated and
functionalized IONPs is one essential parameter that describes
the magnetic response of IONPs. The M, has been shown to
decrease if the IONPs are satirically stabilized. However, M,
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is increased by agglomeration of IONPs. Furthermore, the
anchor chemistry can also affect M via strong interactions
with the ions in the surface layer of the magnetic core
[397, 398].

Though magnetic IONPs exhibit many unique properties
which endow various advantages and opportunities in bio-
medical applications, more toxicological research is needed
on the as-synthesized IONPs, and the criteria to evaluate
toxicity need to be clearly defined [399, 400]. For future
studies, the use of better and faster methods to improve our
understanding of nanoparticle toxicity mechanisms should
greatly advance the field [401]. Additionally, the bio-
compatibility of IONPs is linked to both the intrinsic toxicity
of functional layers and its biodegradation metabolites, and to
the immune system response following its administration.
Importantly, when associated with functional layers, the
toxicity profile of the IONPs may be increased or decreased as
a consequence of the modification of their cell/tissue biodis-
tribution and clearance/metabolization. Accumulation may,
indeed, occur in biological sanctuaries where IONPs cannot
diffuse when administered alone.

It is desirable, especially for research and application
purposes, to add multifunctional labels or (imaging mod-
alities), such as fluorophores or radiotracers to IONP surfaces.
The successful engineering of multifunctional NPs would be
of particular interest for the development of theranostic
nanomedicine. However, the challenge remains in the clinical
translation of nanoparticle probes, and issues such as bio-
compatibility, toxicity, in vivo and in vitro targeting effi-
ciency, and long-term stability of the functionalized IONPs
need to be addressed [402].
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