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Abstract

Macromolecular complexes are essential to conserved biological processes, but their prevalence 

across animals is unclear. By combining extensive biochemical fractionation with quantitative 

mass spectrometry, we directly examined the composition of soluble multiprotein complexes 

among diverse metazoan models. Using an integrative approach, we then generated a draft 

conservation map consisting of >1 million putative high-confidence co-complex interactions for 

species with fully sequenced genomes that encompasses functional modules present broadly 
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across all extant animals. Clustering revealed a spectrum of conservation, ranging from ancient 

Eukaryal assemblies likely serving cellular housekeeping roles for at least 1 billion years, ancestral 

complexes that have accrued contemporary components, and rarer metazoan innovations linked to 

multicellularity. We validated these projections by independent co-fractionation experiments in 

evolutionarily distant species, by affinity-purification and by functional analyses. The 

comprehensiveness, centrality and modularity of these reconstructed interactomes reflect their 

fundamental mechanistic significance and adaptive value to animal cell systems.

Elucidating the components, conservation and functions of multiprotein complexes is 

essential to understand cellular processes1,2, but mapping physical association networks on a 

proteome-wide scale is challenging. The development of high-throughput methods for 

systematically determining protein-protein interactions (PPI) has led to global molecular 

interaction maps for model organisms including E. coli, yeast, worm, fly and human3–10. In 

turn, comparative analyses have shown that PPI networks tend to be conserved11,12, evolve 

more slowly than regulatory networks13, and closely mirror function retention across 

orthologous groups11,14,15. Yet fundamental questions arise16,17: To what extent are physical 

interactions preserved between phyla? Which protein complexes are evolutionarily stable 

across animals? What is unique about their composition, phylogenetic distribution and 

phenotypic significance?

Since previous cross-species interactome comparisons, based on experimental data from 

different sources and methods, show limited overlap12,18, we sought to produce a more 

comprehensive and accurate map of protein complexes common to metazoa by applying a 

standardized approach to multiple species. We employed biochemical fractionation of native 

macromolecular assemblies followed by tandem mass spectrometry to elucidate protein 

complex membership (Fig. 1; see Extended Methods). Previous application of this co-

fractionation strategy to human cell lines preferentially identified Vertebrate specific protein 

complexes6, so we selected eight additional species for study based on their relevance as 

model organisms, spanning roughly a billion years of evolutionary divergence (Fig. 1a). The 

resulting co-fractionation data (Fig. 1b) acquired for Caenorhabditis elegans (worm), 

Drosophila melanogaster (fly), Mus musculus (mouse), Strongylocentrotus purpuratus (sea 

urchin), and human was used to discover conserved interactions (Fig. 1c), while the data 

obtained for Xenopus laevis (frog), Nematostella vectensis (sea anemone), Dictyostelium 
discoideum (amoeba), and Saccharomyces cerevisiae (yeast) was used for independent 

validation. Details on the cell types, developmental stages, and fractionation procedures used 

are provided in Supplementary Table 1.

We identified and quantified (see Extended Methods) 13,386 protein orthologs across 6,387 

fractions obtained from 69 different experiments (Fig. 2a), an order of magnitude expansion 

in data coverage relative to our original (H. sapiens only) study6. Individual pair-wise 

protein associations were scored based on the fractionation profile similarity measured in 

each species. Next, we used an integrative computational scoring procedure (Fig. 1c; see 

Extended Methods) to derive conserved interactions for human proteins and their orthologs 

in worm, fly, mouse and sea urchin, defined as high pair-wise protein co-fractionation in at 

least two of the five input species. The support vector machine learning classifier used was 

Wan et al. Page 2

Nature. Author manuscript; available in PMC 2016 September 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



trained (using 5-fold cross validation) on correlation scores obtained for conserved reference 

annotated protein complexes (see Extended Methods), and combined all of the input species 

co-fractionation data together with previously published human6,19 and fly interactions5 and 

additional supporting functional association evidence20 (HumanNet). Notably, 

measurements of overall performance showed high precision with reasonable recall by the 

co-fractionation data alone (Fig. 2b), with external datasets serving only to increase 

precision and recall as we required all derived interactions to have significant biochemical 

support (see Extended Methods). Co-fractionation data of each input species impacted 

overall performance, in each case increasing precision and recall (Extended Data Fig. 1a).

The final filtered interaction network consists of 16,655 high-confidence co-complex 

interactions in human (Supplementary Table 2). All of the interactions were supported by 

direct biochemical evidence in at least two input species, with half (8,121) detected in 3 or 

more (Extended Data Fig. 1b), enabling cross-species modeling and functional inference.

Multiple lines of evidence support the quality of the network: Reference complexes withheld 

during training were reconstructed with higher precision and recall (Fig. 2b; see Extended 

Data Fig. 1c) relative to our human-only map6. The interacting proteins were also 6-fold 

enriched (hypergeometric p-value < 10−24) for shared subcellular localization annotations in 

the Human Protein Atlas Database21, 21-fold enriched (p-value < 10−56) for shared disease 

associations in OMIM22, and showed highly correlated human tissue proteome abundance 

profiles23 (Extended Data Fig. 2a).

To independently verify the reliability of these projections, we examined the co-fractionation 

profiles of putatively interacting orthologs (i.e., interologs) in the four holdout species, as 

obtained by protein quantification across 1,127 biochemical fractions (see Extended 

Methods). Strikingly, whereas sequence divergence changed absolute chromatographic 

retention times (Extended Data Fig. 2b), most of the predicted interactors showed highly 

correlated co-fractionation profiles among the holdout test species to a degree comparable to 

the input species used for learning (Fig. 2c). The biochemical data obtained for frog and sea 

anemone showed slightly better agreement than for Dictyostelium and yeast in proportion to 

evolutionary distance24.

Besides indicating stably-associated proteins, our multi-species biochemical profiles 

faithfully recapitulated the architecture of multiprotein complexes of known 3D structure, 

with a general trend for most correlated protein pairs to be spatially closer (Extended Data 

Fig. 2c). For example, hierarchical clustering of 30S proteasome subunits according to 

chromatographic elution profiles of all five input species correctly separated the 20S and 

19S particles and the regulatory lid from the base complex (Fig. 2d), reflecting known 

hierarchies of complex formation and disassembly.

Since most of the interacting components were phylogenetically conserved across vast 

evolutionary timescales, we were able to predict over 1 million high-confidence co-complex 

interactions among orthologous protein pairs for 122 extant Eukaryotes with sequenced 

genomes (Supplementary Table 3). The number of interactions ranged from 8,000 to 15,000 

interactions per species depending on phyla (Fig. 2e), with more projected among 
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Deuterostomes, Protostomes and Cnidaria, which show high component retention, and fewer 

in Fungi, Plants, and, especially, Protists, where the relative paucity of co-complex 

conservation likely reflects inherent clade diversity, especially in parasite genomes (e.g., 
gene loss among Apicomplexa). While largely congruent with previous smaller-scale studies 

of PPI conservation25, the majority of conserved co-complex interactions are novel (i.e., 
<1/3 curated in CORUM, STRING and GeneMania databases; Fig. 2e). This markedly 

increases the number of metazoan protein interactions reported to date (Supplementary 

Table 3), covering roughly 10–25% of the estimated conserved animal cell interactome26,27, 

opening up many new avenues of inquiry.

To systematically define evolutionarily conserved functional modules, we partitioned the 

interaction network using a two-stage clustering procedure (Fig. 1c; see Extended Methods) 

that allowed proteins to participate in multiple complexes (i.e., moonlighting) as merited 

(Extended Data Fig. 3a). The 981 putative multiprotein groupings (Fig. 3a; see 

Supplementary Table 4) includes both many well-known and novel complexes linked to 

diverse biological processes (Extended Data Fig. 3b). The complexes have estimated 

component ages spanning from ~500 million (i.e., metazoan-specific, or new) to over 1 

billion years (i.e., ancient, or old) of evolutionary divergence. Details of species, orthologs, 

taxonomic groups, protein ages and evolutionary distances are provided in Supplementary 

Tables 3 and 5 and Supplementary Material.

Strikingly, although proteins arising in metazoa (i.e. by gene duplication or other means) 

account for ~3/4 of all human gene products, they form only ~1/3 (39%; 147) of the clusters 

(Fig. 3a). These ‘new’ complexes tend to be smaller (i.e., ≤3 components; Fig. 3b) and 

specific (i.e., components not present in ‘mixed’ complexes). This indicates that although 

protein number and diversity greatly increased with the rise of animals25, most stable protein 

complexes were inherited from the unicellular ancestor and subsequently modified slightly 

over time (Fig. 3c and Supplementary Table 5). Indeed, the dominant phylogenetic profile of 

complexes across Eukarya (Fig. 3d) is composed either entirely (344 ‘old’ complexes) or 

predominantly (490 ‘mixed’ complexes) of ancient subunits ubiquitous among eukaryotes 

(Extended Data Fig. 4a; see Supplementary Table 5 for details), the latter presumably 

reflecting preferential accretion of new components to pre-existing macromolecules (Fig. 

3c)28.

These primordial complexes are present throughout the Opisthokonta supergroup (animals 

and fungi), estimated to be >1 billion years old29, and Plants (and presumably lost/

significantly diverged among parasitic Protists). Reflecting this central importance, these 

complexes tend strongly to be ubiquitously expressed throughout all cell types and tissues 

(Extended Data Fig. 5a), are abundant (Extended Data Fig. 5b), and are enriched for 

associations to human disease and perturbation phenotypes in C. elegans (Supplementary 

Table 6). In comparison with other proteins in the 16,655 interactions, the older, conserved 

proteins present in these stable complexes have lower average domain complexity (p < 0.02; 

see Extended Methods), suggesting multi-domain architectures underlie more transient or 

tissue-specific interactions. Notably, whereas ‘mixed’ and ‘old’ complexes are enriched for 

functional associations with core cellular processes, such as metabolism (Extended Data Fig. 

4c), the strictly metazoan complexes were far more likely to be linked to cell adhesion, 
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organization and differentiation, consistent with roles in multicellularity. Reflecting these 

different evolutionary trajectories, ‘new’ clusters are substantially more enriched for cancer-

related proteins (42%; 62/147; hypergeometric p ≤ 10−5) compared to strictly ‘old’ (15%; 

53/344; p ≤ 10−3) clusters (Z-test < 0.0001) (Supplementary Table 7), have generally lower 

annotation rates (Extended Data Fig. 4b), and show different preponderances of protein 

domains (Extended Data Fig. 4c and Supplementary Table 6).

We used multiple approaches to assess the accuracy (Fig. 4) and functional significance (Fig. 

5) of the predicted complexes. First, we performed affinity purification-mass spectrometry 

(AP/MS) experiments on select novel complexes from the ‘new’, ‘old’ and ‘mixed’ age 

clusters, validating most associations in both worm and human (Fig. 4a, Extended Data Fig. 

6a). We next performed a global validation by comparing our derived complexes to a newly 

reported large-scale AP/MS study of 23,756 putative human protein interactions detected in 

cell culture (BioGrid pre-publication 166968, Huttlin EL et al., downloaded Feb. 10, 2015), 

and observed a partial, but exceptionally significant, overlap to a degree comparable to 

literature-derived complexes (Fig. 4b, Extended Data Fig. 6b).

We also observed broad agreement between the derived complexes’ inferred molecular 

weights (assuming 1:1 stiochiometries) and migration by size exclusion chromatography 

(Fig. 4c; Extended Data Fig. 7a) and density gradient centrifugation (Extended Data Fig. 

7b). A prime example is the coherent profiles of a large (~500 kDa) ‘mixed’ complex with 

several unannotated components (Fig. 4d; Extended Data Fig. 8), dubbed Commander 

because most subunits share COMM (copper metabolism MURR1) domains30 implicated in 

copper toxicosis31, among other roles30,32. Commander contains coiled-coil domain proteins 

CCDC22 and CCDC93 (Figs. 4a, d) in addition to ten COMM domain proteins, broadly 

supported by co-fractionation in human, fly and sea urchin (Extended Data Fig. 9a–c and 

Supporting Web Site).

We found an unexpected role in embryonic development for Commander, whose subunits 

are strongly co-expressed in developing frog (Extended Data Fig. 9d, e). Strikingly, 

COMMD2/3 knockdown (morpholino) tadpoles showed impaired head and eye development 

(Fig. 5a; Extended Data Fig. 9f, h), and defective neural patterning and expression changes 

in brain markers PAX6, EN2 and KROX20/EGR1 (Fig. 5b; Extended Data Fig. 9g, h). Given 

CCDC22’s recent link33,34 to human syndromes of intellectual disability, malformed 

cerebellum and craniofacial abnormalities, the deep conservation of the Commander 

complex suggests COMMD2/3 as strong candidates in the etiology of these heterogeneous 

disorders.

Among metazoan-specific protein complexes, we confirmed physical and functional 

associations of spindle checkpoint protein BUB3 with ZNF207, a zinc finger protein 

conspicuously lacking orthologs in cnidarians and fungi. ZNF207 binds Bub3 via a Gle2-

binding-sequence (GLEBS) motif35 restricted to deuterostomes and protostomes (Extended 

Data Fig. 10a). As in human, knockdown of ZNF207 in C. elegans enhanced lethality due to 

impaired Bub3-mediated checkpoint arrest (Fig. 5c).
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Among ‘mixed’ complexes, we confirmed metazoan-specific coiled-coil domain protein 

CCDC97 as a sub-stoichiometric component of human and worm SF3B spliceosomal 

complex involved in branch site recognition (Fig. 4a). Consistent with a possible role in pre-

mRNA splicing, CRISPR-based CCDC97 knockout human cells were slower growing than 

control lines (Extended Data Fig. 10b, c) and hypersensitive to pladienolide B (Fig. 5d), a 

macrolide inhibitor of SF3b36.

Knowledge of conserved macromolecular associations provides a roadmap for additional 

functional inferences. For instance, fractionation profiles can be compared for any pair of 

proteins in our dataset to search for evidence of interactions. Notably, we found significant 

enrichment for interactions among pairs of human proteins acting sequentially in annotated 

pathways37 (Fig. 5e), especially G protein and MAP kinase cascades (Supplementary Table 

8). Enzymes acting consecutively in core metabolic reactions (Fig. 5f) also showed a higher 

tendency to interact (Supplementary Table 8), whose significance decayed with more 

intervening steps (Fig. 5e). For example, strong consecutive interactions were apparent 

within the widely conserved purine biosynthetic pathway, with enzymes (e.g. PAICS, 

GART) eluting in two peaks (Fig. 5g), one coincident with the prior enzyme and the second 

with the downstream enzyme, suggestive of substrate channeling38.

Despite the diversity of multicellular organisms, our study reveals fundamental attributes of 

the macromolecular machinery of animal cells with near universal pertinence to metazoan 

biology, development and evolution. Our massive set of supporting biochemical 

fractionation data (via ProteomeXchange with identifiers PXD002319-PXD002328), PPIs 

(via BioGRID; http://thebiogrid.org/185267/publication/panorama-of-ancient-metazoan-

macromolecular-complexes.html) and interaction network projections are fully accessible 

(http://metazoa.med.utoronto.ca) to facilitate in-depth exploration. Although we focused on 

global conservation properties, these data can be analyzed at the individual animal species or 

complex levels to assess the variety and functional adaptations of particular protein 

assemblies across phyla.
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Extended Data

Extended Data Figure 1. Performance measures
a, Performance benchmarks, measuring the precision and recall of our method and data in 

identifying known co-complex interactions from a withheld reference set of annotated 

human complexes (from CORUM39; as in Fig. 2b). 5-fold cross-validation against this 

withheld set shows strong performance gains, beyond a baseline achieved using only human 

and mouse co-fractionation data along with additional evidence from independent protein 

interaction screens5,19 and a functional gene network20 (far-left curve), made by integrating 

co-fractionation data from the additional non-human animal species (as indicated). “All 
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data” and “Fractionation data only” curves include biochemical fractionation data from all 5 

input species: human, mouse, urchin, fly and worm; the latter curve omits all external data. 

In all cases, at least 2 species were required to show supporting biochemical evidence. 

Recall is shown fraction of 4,528 total positive interactions derived from the withheld human 

CORUM complexes. b, All 16,655 interactions were identified at least in two species, half 

(49%, 8,121) found in three or more species. c, Among these high-confidence co-complex 

interactions, 8,981 (54%) were not reported in iRef44 (v13.0), Biogrid45 (v3.2.119) or 

CORUM reference (Supplementary Table 2) for any of the five input species or in yeast; half 

(46%, 4,128) of these novel co-complex interactions have co-fractionation evidences in 3 or 

more species. d, Final precision/recall performance on withheld interaction test set. An SVM 

classifier was trained using interactions derived from our training set of CORUM complexes, 

then ~1M protein pairs co-eluting in at least 2 of the 5 input species were scored by the 

classifier. Black curve shows precision and recall for ranked list of co-eluting pairs, with 

recall representing fraction recovered of 4,528 total positive interactions derived from the 

withheld set of merged human CORUM complexes, and precision measured using co-eluting 

pairs where both members of the pair are contained in the set of proteins represented in the 

CORUM withheld set. The top 16,655 pairs, giving a cumulative precision of 67.5% and 

recall of 23.0% on this withheld test set, form the high-confidence set of co-complex 

protein-protein interactions (blue circle). The highest-scoring interactions were clustered 

using the two-stage approach described in the Extended Methods, yielding a final set of 

7,669 interactions which form the 981 identified complexes (red circle; precision=90.0%, 

recall=20.8%).
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Extended Data Figure 2. Properties of protein elution profiles
a, Distribution of global protein tissue expression pattern similarity, measured as the Pearson 

correlation coefficient of protein abundance across 30 human tissues23, showing markedly 

higher correlations for 16,468 protein-protein pairs of putative co-complex interaction 

partners compared to the same number of randomized pairs of proteins in the network which 

were not predicted to interact. b, Heatmap illustrating the low to moderate cross-species 

Spearman’s rank correlation coefficients in the elution profiles observed between 

orthologous proteins during mixed-bed ion exchange chromatography (IEX-HPLC) under 

standardized conditions, highlighting the shift in absolute chromatographic retention times 

in different species. This variation indicates that the conservation of co-fractionation by 

putatively interacting proteins is not merely a trivial result stemming from fixed column 

retention times. c, The degree of co-fractionation is measured as the correlation coefficient 

between elution profiles. Spatial proximity is calculated from the mean of residue pair 

distances between components of multisubunit complexes with known 3D structures (see 

Extended Methods).
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Extended Data Figure 3. Derivation of complexes
a, The 2,153 proteins present in the 981 derived metazoan complexes participate in multiple 

assemblies (‘moonlighting’) to an extent comparable to the sharing of subunits reported for 

literature-derived complexes (CORUM). For comparison, we examined the 1,550 unique 

proteins from the full CORUM set of 1,216 human complexes passing our selection criteria 

for supporting evidence (‘Unmerged’) and the 1,461 unique proteins from the non-redundant 

set of 501 merged complexes used as the reference for splitting our training and testing sets, 

with some of the largest complexes removed to avoid bias in training (‘Merged’; see 

‘Optimizing the two-stage clustering’ in Extended Methods for details). b, Schematic of 981 
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identified complexes containing 2,153 unique proteins. In this graphical representation, 

7,669 co-complex interactions are shown as lines, and proteins as nodes. Red and green 

interactions were previously annotated in CORUM. Red interactions were used in training 

the classifier and/or clustering procedure, while green interactions were held out for 

validation purposes. Gray interactions were not previously annotated in CORUM.

Extended Data Figure 4. Properties of new and old proteins and complexes
a, The 2,153 protein components in the conserved animal complexes tend to be more ancient 

than the 2,301 proteins reported in the CORUM reference complexes or in two recent large-

scale protein interaction assays, based on either the 7,062 proteins found by affinity 

Wan et al. Page 11

Nature. Author manuscript; available in PMC 2016 September 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



purification/mass spectrometry (AP/MS; BioGrid 166968, Huttlin EL (2014/pre-pub), 

downloaded Feb 10th 2015) or the 3,667 proteins analyzed by yeast two-hybrid assays 

(Y2H)10. Ages are derived from OMA as in ref. 25. b, Annotation rates (mean count of 

annotation terms per protein) of old and new proteins in the derived complexes and pairwise 

PPI, compared with proteins in the CORUM reference complex set. Old proteins (defined by 

OMA) from the complexes generally exhibited higher annotation rates than new proteins. c, 

Differential enrichment of old, mixed and metazoan-specific protein complexes for 

functional annotations (select GO-slim biological process terms shown, top) and protein 

domains (Pfam, bottom).

Extended Data Figure 5. Abundance and expression trends for proteins in complexes
Proteins within the identified complexes tend to be ubiquitously expressed across human 

tissues. Pie charts show the proportions of proteins with varying tissue expression patterns, 

from a recently published human tissue proteome map46, comparing: a, the full set of 20,258 

human proteins, with b, the 2,131 proteins within the identified complexes. Consistent with 

these observations, 91% of the protein components in the complexes were expressed in >15 

tissues in data from a reference human proteome23, compared to less than half (46%) of the 

17,294 proteins in the overall reference set (Z-test p < 0.001). The distributions of average 

mRNA and protein abundances for all proteins identified and those within complexes are 

shown in panel c, mRNA abundances (data from EBI accession E-MTAB-1733) and d, 

protein abundances (data from PaxDb integrated dataset, 9606-H.sapiens_whole_organism-

integrated_dataset). Evolutionarily ‘old’ proteins (defined by OMA as described in ref. 25 

Wan et al. Page 12

Nature. Author manuscript; available in PMC 2016 September 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and mentioned earlier) tend towards higher abundances, even for proteins in reference 

complexes.

Extended Data Figure 6. Additional validation data
a, Confirmation of MIB2 interactions by co-immunoprecipitation. Extract (~10 mg protein) 

from cultured human HCT116 cells expressing FLAG-tagged MIB2 or control (WT) cells 

was incubated with 100 μl anti-FLAG M2 resin for 4 h by gently rotating at 4°C. After 

extensive washing with RIPA buffer, co-purifying proteins bound to the beads were eluted 

by the addition of 25 μl Laemmli loading buffer at 95 °C. Polypeptides were separated by 

SDS-PAGE and immunoblotted using FLAG, VPS4A, VPS4B or IST1 antibodies as 

indicated (expanded gel images provided in SI). b, Protein co-complex interactions reported 

in the CYC2008 yeast protein complex database42 are reconstructed accurately from the co-

fractionation data, regardless of whether the full set of co-fractionation plus external data are 

used to derive protein interactions (‘All data’, see also Fig. 4b) or if the external yeast data 

was specifically excluded from the analyses (‘All data, excluding yeast’).
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Extended Data Figure 7. Agreement of derived complexes’ molecular weights with measurement 
by HPLC and density centrifugation
a, CORUM reference complexes’ inferred molecular weights (MW) are consistent with their 

components’ average cumulative size exclusion chromatograms. The molecular weights of 

each complex was calculated as the sum of putative component molecular weights, assuming 

1:1 stoichiometry. Data from ref. 43 were analyzed as in Fig. 4c and show a similar trend as 

for the derived complexes. b, Derived complexes’ inferred molecular weights (MW) are 

broadly consistent with their components’ average cumulative ultracentrifugation profiles on 

a sucrose density gradient. Average profiles are plotted for X. laevis orthologs, based on a 

preparation of hemoglobin-depleted heart and liver proteins separated on a 7 – 47% sucrose 

density gradient, as described in the Extended Methods.
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Extended Data Figure 8. Distribution of uncharacterized proteins and novel interactions across 
the 981 derived complexes
Complexes were sorted by median age (defined by OMA). Among 2,153 unique proteins, 

293 (red) lack Gene Ontology (GO) functional annotations, while 1,756 of 7,665 co-

complex interactions are novel (light green) (i.e., not listed in iRef curation database).
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Extended Data Figure 9. Properties of the Commander complex
The automatically-derived 8 subunit Commander complex (Fig. 3b) was subsequently 

extended to 13 subunits (COMMD1 to 10, CCDC22, CCDC93, and SH3GLB1) based on 

combined analysis of AP-MS (Fig. 4a), size exclusion chromatograms43 (Fig. 4d), published 

pairwise interactions30,47,48, and analysis of elution profiles of the remaining COMM 

domain containing proteins, as shown here. Example protein elution profiles are plotted for 

Commander complex subunits observed from: a, HEK293 cell nuclear extract; b, sea urchin 

embryonic (5 days post-fertilization) extract; and c, fly SL2 cell nuclear extract; each 

fractionated by heparin affinity chromatography. d, Co-expression of Commander complex 
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subunits during embryonic development of X. tropicalis (plotting mean +/− s.d. of 3 

clutches; data from ref. 49). e, mRNA expression patterns of Commander complex subunits 

in stage 15 X. laevis embryos. Images show coordinated spatial expression in early 

vertebrate embryogenesis, as measured by in situ hybridization (3 embryos examined). f, 
Knockdown of Commd2 induced marked head and eye defects in developing X. laevis. (top) 

Commd2 antisense knockdown significantly decreased eye size, shown for stage 38 tadpoles 

(from 3 clutches; control n = 47 animals, 1 eye each); phenotypes were consistent between 

translation blocking (MOatg; n = 60) morpholino reagents, splice site blocking (MOsp; n = 

50) morpholinos, and knockdowns of interaction partner Commd3 (see Fig. 5a). ***, p < 

0.0001, 2-sided Mann-Whitney test. (bottom) Commd2 knockdown induced altered Pax6 

patterning in the embryonic eye (control n = 8 animals, 2 eyes each; MO n = 11). g, 

Commd2/3 knockdown animals show altered neural patterning. Changes in stage 15 X. 
laevis embryos, measured by in situ hybridization (assayed in duplicates; 5 embryos per 

treatment), seen upon knockdown but not on controls: the forebrain marker PAX6 was 

expanded, while the mid-brain marker EN2 was strongly reduced. Strikingly, while 

expression of KROX20/EGR1 in rhombomere R3 was shifted posteriorly, expression in R5 

was strongly reduced or entirely absent. Panels in Fig. 5b are reproduced from this figure 

and are directly comparable. h, Confirmation of splice-blocking Commd2 morpholino 

activity. Images and schematic show the basis and results of RT-PCR and agarose gel 

electrophoresis obtained with the corresponding X. laevis knockdown tadpoles.

Extended Data Figure 10. Supporting data for BUB3 and CCDC97 experiments
a, Sequence alignment showing conservation of ZNF207 GLEBS domain. b, Targeted 

CRISPR/Cas9 induced knockout of CCDC97 in two independent lines of human HEK293 

cells, as verified by Western blotting (expanded gel images provided in SI), also results in a 
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slight decrease in annotated SF3B3 component levels. c, Loss of CCDC97 impairs cell 

growth. Lines show growth curves of control versus knockout cell lines in two biological 

replicate assays.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Workflow
a, Phylogenetic relationships of organisms analyzed in this study. We fractionated soluble 

protein complexes from worm (C. elegans) larvae, fly (D. melanogaster) S2 cells, mouse (M. 
musculus) embryonic stem cells, sea urchin (S. purpuratus) eggs, and human (HEK293/

HeLa) cell lines. Holdout species (‘T’, for test) likewise analyzed were frog (X. laevis), an 

amphibian; sea anemone (N. vectensis), a Cnidarian with primitive Eumetazoan tissue 

organization; slime mold (D. discoideum), an amoeba; and yeast (S. cerevisiae), a 

unicellular eukaryote. b, Protein fractions were digested and analysed by high performance 

liquid chromatography-tandem mass spectrometry (LC-MS/MS), measuring peptide spectral 

counts and precursor ion intensities. c. Integrative computational analysis: after ortholog 

mapping to human, correlation scores of co-eluting protein pairs detected in each ‘input’ 

species were subjected to machine learning together with additional external association 

evidence, using the CORUM complex database as a reference standard for training. High-

confidence interactions were clustered to define co-complex membership.
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Figure 2. Derivation and projection of protein co-complex associations across taxa
a, Expanded coverage via experimental scale-up relative to our previous human study6. 

Chart shows number of proteins detected, most (63%) in two or more species. b, 

Performance benchmarks, measuring precision and recall of our method and data in 

identifying known co-complex interactions (annotated human complexes from CORUM39). 

Complexes were split into training and withheld test sets; 5-fold cross-validation against 

4,528 interactions derived from the withheld test set shows strong performance gains, 

beyond baselines achieved using only co-fractionation or external evidence alone. c, Plots 

showing high enrichment (probability ratio of interacting) of predicted interacting 

orthologous protein pairs (relative to non-interacting pairs) among highly correlated 

fractionation profiles, in both the holdout validation (test, ‘T’) and input species (colors 

reflect clade memberships). d, (left) Representative co-fractionation data (normalized 

spectral counts shown for portions of 3 of 42 experimental profiles) from human, fly, and sea 

urchin showing characteristic profiles of proteasome core, base and lid subcomplexes. 
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Hierarchical clustering (right) of pan-species pairwise Pearson correlation scores (centre) is 

consistent with accepted structural models (PDB id: 4CR2; core, red; base, blue; lid, green; 

out-clusters, white). e, Projection of conserved co-complex interactions across 122 

eukaryotic species, indicating overlap with leading public PPI reference databases39–41. 

STRING bars indicate excess over CORUM; GeneMania bars indicate excess over both; 

component and interaction occurences across Clades indicated at bottom.
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Figure 3. Prevalence of conservation of protein complexes across metazoa and beyond
a, Conserved multiprotein complexes, identified by clustering, arranged according to 

average estimated component age (see Extended Methods and ref. 25). Proteins (nodes) 

classified as metazoan (green) or ancient (orange); assemblies showing divergent 

phylogenetic trajectories termed ‘mixed’. b, Example complexes with different proportions 

of old and new subunits. c, Presumed origins of metazoan (new), mixed, and old complexes; 

‘?’ indicates variable origins of new genes. d, Heatmap showing prevalence of selected 

complexes across phyla. Color reflects fraction of components with detectable orthologs 

(absence, dark blue). Sea anemone (N. vectensis) most distant metazoan (Cnidarian) 

analyzed biochemically.
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Figure 4. Physical validation of complexes
a, Verification of complexes from tagged human cell lines and transgenic worms (see 

Extended Methods). Inset reports spectral counts obtained in replicate AP/MS analyses of 

indicated bait protein (header). MIB2-VPS4 complex confirmed by co-IP (Extended Data 

Fig. 6a). b, Conserved complexes significantly overlap large-scale AP/MS data reported for 

human cell lines (BioGrid pre-pub 166968, Huttlin et al., 2015) to a comparable extent as 

literature reference sets39,42, using 3 measures of complex-level agreement (see Extended 

Methods, Extended Data Fig. 6b); ***, p-value < 0.001, determined by shuffling (gray 

distributions). c, Agreement of inferred molecular weights (MW) of human protein 

complexes with size exclusion chromatography (SEC) profiles (data in c, d from ref. 43). d, 

Co-elution of human Commander complex subunits by SEC consistent with an approx. 500 

kDa particle.
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Figure 5. Functional validation of complexes
a, Morpholino knockdown of COMMD2 (n = 55 animals, 2 clutches, 1 eye each) or 

COMMD3 (n = 64) in X. laevis embryos causes defective head and eye development 

(control n = 57; Extended Data Fig. 9f, h). ***, p < 0.0001, 2-sided Mann-Whitney test. b, 

COMMD2/3 knockdown animals (5 embryos per treatment examined) show altered neural 

patterning, including posterior shift or loss of expression of mid-brain marker EN2 and 

KROX20(EGR1), the latter in rhombomeres R3/R5 (compare to Extended Data Fig. 9g, h). 

c, Enhanced embryonic lethality (i.e., epistasis) following RNAi knockdown in C. elegans of 

B0035.1 (ZNF207) and bub-3 together (eggs laid: HT115, 1308; B0035.1, 1096; bub-3, 445; 

bub-3 + B0035.1, 341). d, Enhanced sensitivity (mean +/− s.d. across four cell culture 

experiments) of two independent CCDC97-knockout lines to the SF3b inhibitor pladienolide 

B (PB) relative to control HEK293 cells. e, Enrichment (permutation test p-value) for 

interactions among sequential pathway components and metabolic enzymes relative to 

shuffled controls (n refers to enzyme index, where n,n+1 denotes sequential enzymes, n,n+2 

sequential-but-one, etc, as described in SI (“Analysis of consecutively acting signal 

transduction and metabolic enzyme interactions”). f, Metabolic channeling as opposed to 

traditional (typical) two-step cascade model. g, Conserved interactions among consecutively 
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acting enzymes involved in purine biosynthesis (2 representative co-fractionation profiles of 

the 69 total generated are shown).
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