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Abstract

Various genetic mutations associated with cancer are known to alter cell signaling, but it is not 

clear whether they dysregulate signaling pathways by altering the abundance of pathway proteins. 

Using a combination of RNA sequencing and ultrasensitive targeted proteomics, we defined the 

primary components—16 core proteins and 10 feedback regulators—of the epidermal growth 

factor receptor (EGFR)–mitogen-activated protein kinase (MAPK) pathway in normal human 

mammary epithelial cells and then quantified their absolute abundance across a panel of normal 

and breast cancer cell lines as well as fibroblasts. We found that core pathway proteins were 

present at very similar concentrations across all cell types, with a variance similar to that of 
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proteins previously shown to display conserved abundances across species. In contrast, EGFR and 

transcriptionally controlled feedback regulators were present at highly variable concentrations. 

The absolute abundance of most core proteins was between 50,000 and 70,000 copies per cell, but 

the adaptors SOS1, SOS2, and GAB1 were found at far lower amounts (2000 to 5000 copies per 

cell). MAPK signaling showed saturation in all cells between 3000 and 10,000 occupied EGFRs, 

consistent with the idea that adaptors limit signaling. Our results suggest that the relative 

stoichiometry of core MAPK pathway proteins is very similar across different cell types, with cell-

specific differences mostly restricted to variable amounts of feedback regulators and receptors. 

The low abundance of adaptors relative to EGFR could be responsible for previous observations 

that only a fraction of total cell surface EGFR is capable of rapid endocytosis, high-affinity 

binding, and mitogenic signaling.

INTRODUCTION

Cancer is a genetic disease frequently associated with alterations in signaling pathways. 

Dysregulated signaling can promote sustained cell proliferation and reduced apoptosis, 

which are both hallmarks of cancer (1). An important question is how specific genetic 

mutations can alter signaling pathways to produce the regulatory changes associated with 

cancer. Mutations can modify quantitative parameters associated with protein-protein 

interactions, for example, by changing the affinity between interacting proteins (2) or the 

loss of specific nodes within a signaling network (3). Alternatively, genetic alterations can 

lead to an increase in protein abundance, such as that observed with amplification of the 

HER2 gene, which can result in a loss of target specificity and modified kinetic parameters 

during signaling (4, 5). Previous modeling studies have also suggested that quantitative 

differences in the abundance of multiple signaling pathway proteins can produce significant 

differences in signaling outcomes (6–9). Thus, both qualitative and quantitative changes in 

signaling protein abundance can alter the functional topology of signaling networks.

Although numerous specific mutations are known to alter cell signaling, the extent to which 

they dysregulate signaling networks through altered protein abundance is largely unstudied. 

The overexpression of several proteins is known to be important in cancer, but these were 

initially identified because of their association with oncogenic viruses rather than because 

they displayed altered abundances (10, 11). Alterations in gene expression are commonly 

observed in cancers, but it is increasingly recognized that correlations between mRNA and 

protein abundances are often low (12,13), and thus, altered gene expression cannot be 

assumed to lead to changes in protein abundance. Proteomics studies providing “deep” 

coverage have started to address the issue of quantitative protein differences between cancer 

subtypes, but it is not clear whether quantitative differences in specific protein abundances 

between normal and cancer cells are important in disease progression or simply reflect cell 

type–specific variations (14, 15).

One of the most important signaling pathways in cancer is the mitogen-activated protein 

kinase (MAPK) [also known as extracellular signal–regulated kinase (ERK)] pathway, 

which has a critical role in both stimulating proliferation and suppressing apoptosis. 

Understanding MAPK regulation is central to efforts to rationally design new 
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antiproliferative drugs and other therapies (16). Members of the epidermal growth factor 

receptor (EGFR) family are potent regulators of MAPK in both normal and transformed 

epithelial cells (17). Both mutations and amplified expression of the gene encoding this 

receptor are associated with poor prognosis in cancer (18, 19), and drugs targeting it are 

effective in subsets of cancers (20). Unfortunately, resistance to drugs targeting the EGFR 

family is frequent. How frequently this is due to secondary mutations or to altered 

abundance of other EGFR-MAPK pathway proteins is not yet clear.

Investigating quantitative differences in signaling proteins is challenging. First, the complete 

set of proteins that constitute a specific signaling pathway is rarely known. In the case of the 

EGFR-MAPK pathway, the core (or canonical) pathway components have been well 

described for a number of cell types. However, often there are multiple isotypes of these 

proteins, such as SOS1 and SOS2, which appear to have overlapping but distinct functional 

properties (21, 22). There are also numerous regulators that can modify the activity of 

specific pathway proteins by either forming complexes (23) or altering posttranslational 

modifications (24). Differences in the abundance of pathway regulators could have a marked 

effect on signaling, but identifying which are functionally active in a specific cell type is 

rarely done. There are also technological problems in reliably quantifying protein abundance 

in cells. Antibody-based approaches require specific antibodies as well as purified protein 

standards, which are usually not available (25). Current detection technologies for antibodies 

also have a limited dynamic range (26). Mass spectrometry–based proteomics, including 

label-free and isobaric labeling strategies, provide broad coverage of relatively abundant, 

nonmodified proteins, but they have limited sensitivity and are therefore often unable to 

detect low-abundance signaling proteins. Moreover, the quantification accuracy for global 

shotgun proteomics is often questionable because of several common issues such as ratio 

suppression of isobaric reagents and missing data (27, 28). Targeted approaches using 

selected reaction monitoring (SRM) and heavy isotope–labeled standard peptides can greatly 

improve the quantification accuracy of low-abundance proteins but require previous 

knowledge of which pathway components are important (29). Thus, it is important to first 

establish the essential components of a signaling pathway before conducting a comparative 

analysis of their abundance in different cell types.

To investigate whether there are quantitative alterations in the EGFR-MAPK signaling 

pathways in cancer cells, we first characterized this pathway in 184A1 human mammary 

epithelial cells (HMECs), which is a well-studied, nontransformed model system. We 

identified both the core pathway proteins and the feedback regulators that modulate their 

activity by using a selective perturbation strategy together with transcriptional profiling and 

shotgun proteomics. By using a combination of RNA sequencing (RNA-Seq) and targeted 

proteomics, we then quantified mRNA and protein abundance of these components across a 

panel of breast cancer cell lines as well as normal human fibroblasts. In agreement with 

previous studies, the correlation between mRNA and protein abundances was relatively low 

(12). However, we found that all pathway proteins identified in normal cells were also found 

in cancer cells at very similar amounts, with the exception of EGFR itself and 

transcriptionally controlled feedback regulators. Surprisingly, we found that in most cell 

lines, EGFR was present at far greater concentrations than were the adaptor proteins that 

couple it to the MAPK pathway, indicating that adaptor abundance is generally limiting for 
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EGFR-MAPK signaling. Our results suggest that the relative abundance and stoichiometry 

of most core EGFR-MAPK pathway proteins are highly conserved, indicating that relative 

abundance and stoichiometry are important for pathway function. Variability in receptor 

abundance and the feedback regulators that modulate the activity of core pathway proteins, 

rather than differences in expression of the core proteins themselves, is most likely 

responsible for cell type–specific responses to EGF

RESULTS

Identification of core pathway proteins and the feedback regulators that modulate EGF-
stimulated MAPK phosphorylation

To define the abundance of EGFR-MAPK pathway proteins in nontransformed cells, we 

initially used a mammary epithelial cell line that displays constitutive autocrine signaling 

through EGFR [184A1 HMECs (30, 31)]. We started with the core “compendium” pathway 

described by Kirouac et al. (32) because it contains most of the proteins experimentally 

associated with the EGFR-MAPK pathway in these cells (33–35). We added the adaptors 

SHC1 and GAB1 (GRB2-associated binding protein 1) because of multiple studies 

indicating their importance in EGFR signaling (36, 37) and because of their pronounced 

phosphorylation in response to EGF addition (discussed further below). We added RASA1 

(RasGap) because of its important role in negatively regulating RAS activation and the 

ability of EGFR activation to control its localization and activity (37, 38). We also included 

the known isotypes of the different pathway proteins, for example, MAP2K1 and MAP2K2. 

However, several proteins were omitted from the analysis because of their multiple roles in 

cells, such as CAV1 and PEBP1 (also known as RKIP). In addition, the very high abundance 

of those proteins (>106 copies per cell) indicates that their abundance is unlikely to be 

limiting to MAPK signaling (39).

Stimulation of EGFR can also result in activation of many non-MAPK signaling pathways 

(such as that of the kinase AKT) that can affect the overall amount of phosphorylation of 

MAPK (40). In the case of HMECs, however, inhibition of the AKT pathway has little, if 

any, effect on EGFR-induced MAPK activation; thus, we did not examine the amounts of 

those pathway proteins (41). Similarly, inhibitors of the kinases PKC, PKA, JAK2, JNK, and 

p38-MAPK have no effect on EGFR-MAPK signaling in HMECs (42); hence, proteins 

comprising those pathways were not included in our analysis. SRC family kinase inhibitors 

affect ligand shedding in HMECs, but not EGF-induced MAPK signaling (42), indicating 

that SRC family kinases are indirect rather than direct modulators of MAPK signaling in 

HMECs.

Overall EGFR-MAPK pathway activity also depends on feedback regulators that either 

enhance or inhibit the activity of the core pathway proteins (42). To identify which of these 

regulatory proteins are active in HMECs, we used a perturbation strategy, assuming that 

proteins whose abundance or state of phosphorylation responded to modulations in EGFR-

MAPK pathway activity were most likely to be involved in pathway regulation (Fig. 1A). 

Because HMECs are autocrine cells that depend on constitutive signaling through the 

EGFR-MAPK pathway (31), we reasoned that important regulators should be present or 

phosphorylated in the basal state. Thus, inhibiting normal autocrine signaling in HMECs by 
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blocking EGFR with the monoclonal antibody 225 mAb (42) should show a reciprocal effect 

to adding exogenous EGF. Because of the relatively low sensitivity of global proteomics 

measurements in detecting EGF-induced protein changes (34), we used transcriptome assays 

(microarray and RNA-Seq) as a first-pass surrogate for relative protein abundance. To 

determine which EGF-induced changes resulted from activation of the MAPK pathway, we 

identified genes whose expression was modulated by the addition of the MEK inhibitor 

U0126. Finally, we looked at the effect of EGFR-MAPK pathway perturbation on both 

protein Tyr phosphorylation and Ser/Thr phosphorylation (table S1).

Proteins whose mRNA expression changed by at least twofold or displayed significant 

changes in either Tyr or Ser/Thr phosphorylation were then restricted to those 

experimentally shown to directly interact with canonical EGFR-MAPK pathway proteins. 

The list was then further restricted to proteins documented to have either a positive or a 

negative effect on MAPK pathway activity. For example, addition of EGF induced a 

substantial (~5-fold) increase in the Tyr phosphorylation of PTPN18. However, this 

phosphatase has been shown to inhibit the ability of HER2 to activate MAPK but has no 

effect on EGFR-MAPK activation (43). Thus, it was excluded from the list. The result of 

these restrictions was a set of 17 regulatory feedback proteins (table S1). Several were 

positive pathway regulators, such as the EGFR ligands (TGFA, AREG, HBEGF, and EREG) 

and their releasing protease (ADAM17) as well as the phosphatase PTPN11 (also known as 

SHP2). However, most were negative regulators that have been reported to attenuate the 

activity of the core signaling components (44), with three being members of the dual-

specificity protein phosphatase family (DUSP4, DUSP5, and DUSP6) and four being 

members of the sprouty family (SPRED1, SPRED2, SPRY2, and SPRY4). For our initial 

study, we selected the two members of the DUSP and sprouty families that showed the most 

robust response to EGF addition or inhibition (DUSP4, DUSP6, SPRED1, and SPRY4). We 

also selected the ligand TGFΑ because it has been shown to be critical for autocrine 

signaling in HMECs (30). This yielded a total of 26 proteins for this study (Fig. 1B).

Detection of feedback regulators by global proteomics measurements

To determine the abundance of the EGFR-MAPK pathway proteins in HMECs, we initially 

used global shotgun proteomics. We were able to detect unique peptides for all of the 15 

core proteins of the EGFR-MAPK pathway (table S2), with the exception of KRAS, most 

likely because it has few unique peptides due to its strong homology with other members of 

the RAS family. Several pathway proteins, such as SOS1, SOS2, and TGFA, were 

represented by only a single peptide, indicating low abundance. Of the 11 feedback 

regulators, 4 (DUSP4, DUSP6, SPRED1, and SPRY4) were not detected.

To determine whether the abundance of EGFR-MAPK core proteins and feedback regulators 

was correlated with their mRNA expression, we performed deep transcriptome profiling 

using RNA-Seq, identifying about 14,500 expressed genes. We then compared the 

abundance of the transcripts with the abundance of corresponding proteins, estimated by 

spectral counts (45). We found that there was a general correspondence between transcript 

abundance and spectral counts (Fig. 1C), in agreement with previous studies (46). The 

probability of observing any given protein remained between 80 and 90% for the top 8000 
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transcripts, but fell sharply thereafter. Thus, there should be a very high probability of 

detecting a protein encoded by abundant transcripts. Surprisingly, we found that mRNA 

expression for feedback regulators was similar to the core proteins despite their lack of 

representation in the proteomics data. This suggests that the EGFR-MAPK feedback 

regulators are either inefficiently translated or rapidly degraded.

To determine whether feedback regulators generally displayed low abundance in cancer 

cells, we examined the data from two studies that attempted to comprehensively quantify 

protein expression in multiple cancer cell lines. The study of Geiger et al. (47) identified an 

average of about 10,000 distinct proteins in 11 cancer cell lines. Most of the core proteins of 

the MAPK pathway were detected in these lines (Fig. 2A), although EGFR was detected in 

only about half of them, and GAB1 and SOS2 were detected in only a single line (fig. S1A). 

Only half of the feedback regulators were detected in any of the cell lines, suggesting that 

either there is cell specificity in the pattern of expression of feedback regulators or their 

abundance is near the limit of detection of current global proteomics technologies. Relative 

protein abundance across all of the lines was highly variable, especially in the case of EGFR.

A more recent study by Lawrence et al. (2015) compared protein abundance across 20 breast 

cancer lines and 4 tumors, yielding peptides to almost 13,000 distinct proteins, with at least 

9000 proteins found in each cell line (14). Here, most of the feedback regulators were 

detected in at least some of the cell lines, except for SPRED1 (Fig. 2B). The general protein 

abundance pattern was similar to that observed by Geiger et al. (47), with the exception of 

relatively higher amounts of RAS proteins. RAS, MEK, and ERK (encoded by RAS, 
MAP2K, and MAPK, respectively) were present at very similar amounts in all cell lines and 

tumors, but lower-abundance proteins and feedback regulators were present at highly 

variable amounts (fig. S1B). These data suggest that there could be differences in either the 

presence or abundance of multiple EGFR-MAPK pathway proteins in cancer cells.

Estimation of the real versus observed variability in cellular protein abundance

The high degree of observed variability in the presence and/or abundance of EGFR-MAPK 

pathway proteins in different cell types could be due to either real biological differences or 

limitations in the particular proteomics technologies used. To estimate the relative 

contribution of real versus methodological variability to the observed protein abundance 

variance between cell types, we calibrated our data against a “gold standard” set of highly 

conserved proteins. These proteins were identified in the study by Khan et al. (48), who 

investigated proteins that display relatively constant expression across multiple animal 

species despite significant variations in their mRNA expression. Although these proteins 

were identified in hematopoietic cells, we postulate that the same proteins in other cell lines 

will also be conserved and thus can be used as internal calibration proteins.

To test this idea, we compared the relative expression of “conserved” proteins and EGFR-

MAPK pathway proteins in a subset of the cell lines used in the Lawrence et al. study (14) 

that showed highly variable detection (between 16 and 20 of 26 EGFR-MAPK proteins). 

These lines included nontumorigenic MCF10A cells and HER2-overexpressing (SKBR3), 

hormone receptor–positive (MCF7), and triple-negative (BT20 and HS578T) breast cancer 

subtypes. We also included normal human dermal fibroblasts (NHDFs) to serve as a 
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nonepithelial cell control as well as our original 184A1 HMEC line. We first performed 

transcriptional profiling of the cell lines using RNA-Seq, yielding 12,261 genes expressed in 

common. Global comparative proteome analysis of all of our cell lines using isobaric tags 

for relative and absolute quantitation (iTRAQ)–based quantification (49) yielded a total of 

2862 high-confidence proteins across all of our cell lines, including 11 proteins in the 

EGFR-MAPK pathway. There were 781 proteins (~27%) corresponding to those with 

conserved protein abundances across species (table S3). The abundance variance distribution 

of these conserved proteins across our cell lines was similar to that reported by Khan et al. 
(48) (median log2 variance of 0.15 versus 0.08, respectively; Fig. 3), whereas nonconserved 

proteins showed significantly greater variance (log2 variance of 0.34, P < 0.0001; fig. S2). 

The log2 variance of the RNA-Seq data on conserved proteins in our cells yielded a higher 

value of 0.29 (fig. S2), despite the generally higher precision of RNA-Seq measurements 

(50, 51), consistent with protein rather than mRNA abundances being under selective 

pressure (48). The core EGFR-MAPK pathway proteins displayed a median log2 variance of 

0.12 (table S6), essentially the same as the highly conserved protein set (Fig. 3). Signaling 

protein abundances were also less variable than the corresponding mRNAs (median value of 

0.12 versus 0.30).

When we extracted the abundance values of the highly conserved protein set from the study 

of Lawrence et al. (14) and compared their variance with our values and those of Khan et al. 
(48), we found them to be substantially greater (median log2 variance of 1.23 versus 0.15 

and 0.08; Fig. 3). The abundance variance of the EGFR-MAPK pathway protein was 

similarly shifted (median log2 variance of 1.1). These results support the idea that the high 

variability in the measurement of signaling proteins observed by previous investigators (Fig. 

2) was likely due to the use of proteomics methods with relatively low precision.

Measuring low-abundance proteins of the EGFR-MAPK pathway using targeted proteomics

RNA-Seq analysis of our panel of cell lines showed that mRNA transcripts of all of the core 

proteins and feedback regulators of the EGFR-MAPK pathway could be detected at some 

level, although some displayed highly variable mRNA expression, especially those encoding 

proteins that function in feedback regulation (Fig. 4A, top, and table S4). This shows that, at 

least at the mRNA level, all the components of the EGFR-MAPK pathway in HMECs are 

also found in the other cell types. To increase our ability to detect potentially low-abundance 

proteins with high precision, we used our ultrasensitive targeted proteomics approach 

(PRISM-SRM) together with isotopically labeled peptides as internal standards. PRISM-

SRM can quantify very low concentrations of proteins (50 to 100 pg/ml in human serum), 

providing the sensitivity needed to quantify even low amounts of signaling protein (52). For 

each targeted protein in the EGFR-MAPK pathway, we first selected two highly detectable 

unique surrogate peptides that had no potential posttranslational modification sites. For each 

surrogate peptide, three transitions [specific pairs of mass/charge ratio (m/z) values 

associated with the precursor and fragment ions of the peptide] were selected on the basis of 

their abundances, the intensity of the SRM signal, and the absence of coeluting interference.

We found that SRM-based targeted quantification allowed the detection and quantification of 

all signaling pathway proteins across all our cell lines, with the exception of DUSP4 in the 
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fibroblasts and TGFA in several cell lines. Transcriptomics analysis showed very low 

expression of DUSP4 mRNA in fibroblasts but high expression of DUSP1 mRNA (table S4), 

which probably serves an analogous role (53). TGFΑ is one of seven secreted EGFR ligands 

that can activate the receptor in an autocrine fashion. Transcriptome analysis showed that the 

expression pattern of genes encoding different EGFR autocrine ligands was highly variable 

across all of the epithelial cells, with TGFA and AREG being the most commonly expressed. 

However, all ligands appeared to be absent in fibroblasts and the HS578T breast cancer cell 

line (Table 1). Although peptides from TGFΑ were sometimes detected, they were usually 

below the concentration needed for reliable quantification.

Abundances of core MAPK pathway proteins across different cell lines

Using the measured peak area ratio of endogenous peptides relative to isotope-labeled 

internal standards, we calculated absolute concentrations of all proteins in terms of protein 

copies per cell (table S5). We found that the abundance pattern of the signaling pathway 

proteins was similar to that observed in the study of Lawrence et al. (14) (Fig. 2B) but with 

much less variability between different cell types (Fig. 4A, bottom). In general, the core 

signaling pathway proteins were more abundant than the feedback regulators, with the 

exception of GAB1, SOS1, and SOS2, which were present at low concentrations in all cell 

types.

The availability of absolute protein abundance values for components of the EGFR-MAPK 

pathway together with RNA-Seq data from the same samples allowed us to quantify the 

relationship between mRNA expression and signaling protein abundance in the different cell 

types (fig. S3). We found that mRNA expression generally displayed a lower dynamic range 

than protein abundance (Fig. 4A, top), in agreement with previous studies (13). At the level 

of individual proteins, we found that the correlation between mRNA expression and protein 

abundance was strong for some and weak or nonexistent for others. For example, EGFR 

abundance strongly correlated with mRNA expression [Pearson’s correlation coefficient (cc) 

of 0.91; Fig. 4B]. The negative feedback regulators PTPRE and ERRFI1 also showed high 

correlations between mRNA and protein expression (Fig. 4B). Conversely, SHC1 showed 

essentially no correlation (cc = 0.09), whereas RAF1 displayed a negative correlation (cc = 

−0.13). Overall, the median Pearson’s correlation coefficient between mRNA expression and 

protein abundance was 0.42, indicating that mRNA expression is a poor surrogate for 

estimating the relative abundance of most signaling proteins.

The low variance of some MAPK pathway proteins across different cell lines (Fig. 3) 

suggests the presence of evolutionary pressure to maintain their absolute concentrations 

(48). To extend this analysis to all pathway proteins measured by SRM, we first calibrated 

the expected variance values. By comparing the abundance variance of a common set of 

proteins measured by multiple techniques (table S6), we estimate that the observed log2 

variance of highly conserved proteins measured by SRM should be <0.7 (see Materials and 

Methods). When we compared the variability of mRNA and protein abundance for all 26 of 

the measurable proteins of the EGFR-MAPK pathway, we found a strong correlation 

between mRNA and protein variance (cc = 0.78; Fig. 5A). All of the core members of the 

EGFR-MAPK signaling pathway, with the exception of EGFR, displayed relatively low 
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protein abundance variance (median, 0.38; Fig. 5A and table S6). In contrast, 

transcriptionally controlled feedback regulators were highly variable in both their protein 

and mRNA abundances (median variance, 2.03 and 1.45, respectively). Proteins regulated by 

phosphorylation (ADAM17, CBL, GAB1, and PTPN11) displayed an average variance of 

0.52, essentially the same as the core components (table S6).

Stoichiometric bottlenecks in the EGFR-MAPK signaling pathway

Although the abundances of most core proteins in the EGFR-MAPK pathway were similar 

across cell types, their stoichiometry relative to each other was quite distinct (Fig. 4A, 

bottom). To better understand the relationship between network topology and protein 

stoichiometry, we added information on both median protein abundance and protein variance 

to our reconstructed network (Fig. 5B). EGFR and several of its directly interacting proteins 

(PTPN11, SHC1, and GRB2) were relatively abundant as were the isoforms of RAS (NRAS, 

KRAS, and HRAS), MEK (MAP2K1 and MAP2K2), and ERK (MAPK1 and MAPK3). In 

contrast, abundances of the adaptor GAB1 as well as SOS1 and SOS2 were relatively low. 

The abundance of both ARAF and RAF1 was low compared to that of either upstream RAS 

species or downstream MAP2Ks. The abundance of most feedback regulators was very low, 

especially those that showed the greatest variability in their expression, such as DUSP4 and 

DUSP6.

The abundance of EGFR was generally much greater than its downstream adaptor proteins. 

For example, the median ratio of EGFR/GRB2 and EGFR/SHC1 was ~4:1. The exception 

was MCF7 cells in which the abundance of EGFR was much less than its downstream 

adaptors (EGFR/GRB2 and EGFR/SHC1 ratios of 1:90 and 1:10, respectively). The 

abundance of SOS1 and SOS2 was also lower than that of the upstream adaptor GRB2 

(GRB2/SOS ~10:1) and the downstream RAS isoforms with which they interact (SOS/RAS 

~1:35). GAB1 was also present at stoichiometries far below its primary interaction partners 

GRB2 and PTPN11, with mean ratios of GRB2/GAB1 and PTPN11/GAB1 of ~18:1.

The much greater abundance of EGFR relative to its downstream adaptor proteins could 

explain previous reports that many of the cellular responses to EGF saturate at low receptor 

occupancy. To explore the idea that adaptors might be limiting in the activation of the 

MAPK pathway, we examined the relationship between EGFR occupancy and maximum 

MAPK activation. Different cell lines were treated with a range of EGF concentrations for 

10 min, at which time MAPK phosphorylation was maximal (fig. S4). As outlined in 

Materials and Methods, we then converted EGF dose to absolute EGFR occupancy using the 

measured receptor abundance and EGF concentrations as input parameters (54). This 

approach yields very accurate estimates of total receptor occupancy (fig. S5). Our analysis 

showed that amounts of phosphorylated MAPK at 10 min for all the cell lines were saturated 

between 3000 and 10,000 occupied receptors (Fig. 6A). This roughly corresponds to the 

abundance of SOS1 + SOS2 (2000 to 10,000 per cell). Half-maximum activation of the 

MAPK pathway of most of the cell lines was ~250 occupied EGFR, with the exception of 

SKBR3 cells at ~50 receptors and MDA-MB231 cells at ~1200.

To ensure that the cellular abundance of MAPK was not limiting for signaling, we treated 

cells with a saturating dose of EGF for 10 min and then quantified the absolute abundance of 
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total and phosphorylated MAPK1 by targeted proteomics (55). We found very little 

phosphorylated MAPK1 in cells in the absence of EGF (Fig. 6B), except in the case of 

MDA-MB231 cells, which have an activating RAS mutation (56). After EGF addition, 

however, only about 30% of the pool of MAPK1 was converted into the doubly 

phosphorylated form, confirming that MAPK abundance was not limiting (Fig. 6B). We also 

examined the relationship between EGFR occupancy and its phosphorylation to downstream 

RAS activation and MAPK phosphorylation. Maximal activation of both RAS and MAPK 

was observed when only a small percentage of total EGFR was phosphorylated (Fig. 6C), 

showing that receptor activation is not limiting. Activation of RAS and MAPK displayed 

very similar dose responses, with half-maximal responses at <3000 occupied receptors, 

indicating that any limiting pathway components are likely to be between the EGFR and 

RAS. Together, these data support the idea that adaptor abundance limits the extent of 

MAPK signaling.

Because increased signaling through the EGFR-MAPK pathway is frequently associated 

with cancer, we sought to determine whether gene amplification of adaptors showed a 

similar association. To address this, we used the copy number variation (CNV) data from the 

COSMIC database and determined whether amplification of genes in the EGFR-MAPK 

pathway occurred at a higher frequency than random. We found that SHC1 and GRB2, as 

well as EGFR and KRAS, were amplified at a significantly higher frequency than random (P 
< 0.05; table S7). This was true for both breast cancer and other cancers. However, SOS1 
and SOS2 as well as GAB1 displayed amplification frequencies similar to the bulk of the 

cellular genes (fig. S6), suggesting that the amplification of only a subset of adaptor proteins 

is associated with cancer.

DISCUSSION

We initiated this study to determine whether cancer cells displayed quantitative differences 

in the abundance of proteins that could dysregulate the EGFR-MAPK pathway. Previous 

studies have clearly established an association between the overexpression of select 

signaling proteins, such as receptors, and cell transformation. Thus, we sought to 

systematically evaluate the abundance of proteins that comprise the core components and 

primary regulators of the EGFR-MAPK pathway and determine whether there were any 

alterations associated with the cancer phenotype. By using deep transcriptional profiling and 

targeted proteomics, however, we were able to show that all of the core proteins and the 

great majority of feedback regulators were found in both normal epithelial cells and 

fibroblasts as well as all of the surveyed cancer cell lines. Furthermore, most pathway 

proteins were found at very similar concentrations across all cell lines.

We were surprised that several proteins important in the EGFR-MAPK pathway were absent 

in previous proteomics surveys, despite the reported detection sensitivities of those studies 

of 10,000 to 12,000 proteins per cell type, which is between 85 and 95% of the estimated 

number of expressed genes (13, 14, 47). Our analysis of previous data sets suggests that this 

was likely a result of the very low abundance of the missing proteins, which prevented them 

from being reliably detected. For example, in the data-driven approach used by Geiger et al. 
(47), lower-abundance peptides are less frequently selected and are more difficult to match 
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across instrument runs (57). The iBAQ protein quantification approach used by Lawrence et 
al. (14) uses both peptide intensity and detection frequency to extend its dynamic range (58), 

thus introducing additional noise into abundance measurements, especially for proteins at 

the limits of detectability. Because of the inherent limitations of previously used proteomics 

technologies, both highly variable and low-abundance proteins in the EGFR-MAPK 

pathway frequently appeared to be absent.

In contrast to global, label-free approaches for estimating protein abundance, we used highly 

purified, specific labeled peptides together with multistage separations to detect proteins that 

were sometimes present at only hundreds of copies per cell. The precision of the PRISM-

SRM proteomics approach allowed us to rigorously evaluate the relative abundance of 

signaling proteins across different cell lines. By using a gold standard set of proteins that has 

previously been shown to be under selective pressure for constant protein expression, we 

found comparably low variance of most EGFR-MAPK pathway proteins. With the exception 

of the transcriptionally controlled feedback regulators and EGFR itself, all pathway proteins 

were found at remarkably similar concentrations in all cell types. This strongly suggests that 

both the presence and absolute abundance of these proteins are under selective pressure (48), 

and, thus, the relative abundance and stoichiometry of pathway proteins are likely important 

for effective signaling or regulation.

Despite the very similar concentrations of EGFR-MAPK pathway proteins in all the cell 

types we examined, there were still distinct differences in their response to EGF. Sensitivity 

differences were likely due to the variable expression of EGFR family members. For 

example, the greater sensitivity of SKBR3 cells to EGF (Fig. 6A) is likely caused by their 

over-expression of HER2, which is known to increase the affinity and activity of EGFR (5). 

However, the number of occupied EGFRs needed to elicit a maximal MAPK response was 

very low and similar for all cell types, typically corresponding to <5% receptor occupancy. 

We found that RAS activation showed a similar EGF dose response as did MAPK activation, 

consistent with our previous results that showed that initial MAPK phosphorylation is 

proportional to RAS activity (42). Thus, any limiting pathway component(s) between EGFR 

and RAS would also limit the extent of MAPK signaling. The most likely candidates are 

SOS1 and SOS2, which form a molecular complex with GRB2 to couple EGFR to RAS 

activation (59). Unlike the major core components of the EGFR-MAPK pathway, such as 

RAS, MAP2K, and MAPK that are present at between 60,000 and 120,000 copies per cell, 

SOS1 and SOS2 are only present at between 1000 and 6000 copies. Other adaptors that are 

associated with MAPK signaling, such as GRB2, SHC1, and GAB1, are also much less 

abundant than EGFR, ranging from 3000 to 55,000 as compared with the median EGFR 

abundance of 210,000 per cell. Thus, at full occupancy, most of the EGFRs will probably 

not be able to form complexes with the adaptor proteins we examined here.

If adaptors are limiting for signaling, then an increase in their expression could facilitate 

cancer development. We found a significantly greater frequency of gene amplification for 

both SHC1 and GRB2 relative to the average in cancer. Amplification of GRB2 and SHC1 

in cancers has been reported previously (60, 61) and is probably responsible for the 

relatively high GRB2 abundance and GRB2/EGFR ratios that we observed in MCF7 cells 

(Fig. 4A). The core proteins with the lowest abundance in the EGFR pathway (SOS1, SOS2, 
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GAB1, and RAF1) showed no significant amplification, although functional mutations in 

some of these proteins are associated with diseases, such as Noonan syndrome (62, 63). This 

suggests that the relative stoichiometry of these proteins in the EGFR-MAPK pathway is 

important to their function.

The low stoichiometry of adaptors to EGFR suggests a ready explanation for the classic 

observation that EGFR signaling occurs through a relatively small class of “high-affinity” 

receptors. Formation of a stable receptor-adaptor complex would be expected to increase the 

affinity of the receptor for EGF (64), which would only be seen below adaptor saturation. 

The measured number of high-affinity receptors on HMECs [~40,000 (65)] is similar to the 

measured number of GRB2 adaptors (table S5). Similarly, the required GRB2 binding for 

occupancy-induced EGFR endocytosis would explain why it saturates below full receptor 

occupancy (66, 67). We only observed high amounts of EGFR self-phosphorylation at 

receptor occupancies much higher than needed to obtain maximal MAPK signaling, which 

presumably corresponds to maximal adaptor binding. Similar observations have been made 

previously (68). The reason for this is not clear, but it is tempting to speculate that adaptor 

protein binding could sterically inhibit self-phosphorylation of the EGFR on multiple 

residues. Regardless, the substantial difference between the dose of EGF necessary to 

produce a maximal biological response and that required to produce EGFR phosphorylation 

detectable in standard assays suggests that phosphoproteomics studies using high EGF 

concentrations should be interpreted with caution.

Our observations on the high similarity in both the types and abundance of core EGFR-

MAPK pathway proteins in both normal and cancer cells have important implications with 

respect to efforts to build predictive models of cell signaling. Previous models lacked 

information on relative protein abundance, which can limit their ability to predict outcomes 

(8). For example, most previous models assumed that adaptors were in excess relative to the 

EGFR, thus making receptor occupancy limiting to MAPK activation (38, 69). That is 

clearly not the case in most circumstances. Instead, EGFR and other receptor tyrosine 

kinases likely compete for the less abundant adaptor proteins controlling downstream signal 

transduction (70). Competition for adaptors has been shown to be an important mechanism 

for regulating differential cellular responses in other receptor systems (71, 72), and such a 

mechanism could be important in the EGFR pathway as well.

The protein abundance measurements that we have established for the EGFR-MAPK 

pathway can provide the foundation for “universal” signaling models that include cell-

specific feedback regulators. However, all of the environmental inputs and mechanisms that 

contribute to the steady-state concentrations of positive and negative feedback regulators are 

not known. Our results show that the expression level of positive and negative regulators of 

the MAPK pathway varies widely between different cell types and thus likely constitutes the 

most important source of cell type specificity. The expression level of these feedback 

regulators is dictated by the basal activation state of the EGFR-MAPK signaling pathway 

itself and, thus, is likely to be influenced by the mutational status of pathway components, 

such as BRAF, and crosstalk with other pathways. Thus, the mechanisms that control the 

amounts of the different MAPK pathway feedback regulators will need to be understood to 
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predict how they change in response to the activation of any given receptor system and the 

role each plays in shaping cell-specific responses to EGF.

MATERIALS AND METHODS

Cell culture

Breast cell lines BT20, MCF10A, MCF7, MDA-MB231, HS578T, and SKBR3 were 

obtained from the American Type Culture Collection and were grown as previously 

described (73). HMEC line 184A1 was obtained from M. Stampfer (Lawrence Berkeley 

National Laboratory) and maintained in DFCI-1 medium as previously described (74). Cells 

were plated in 15-cm dishes or 96-well plates, grown for 24 hours, starved in serum-free 

medium for 18 hours, and starved again for an additional hour before treatment. Primary 

NHDF cells were obtained from Lonza and cultured to confluence in Fibroblast Growth 

Media-2 (Lonza).

Sample preparation

For protein samples, cells were washed twice with ice-cold phosphate-buffered saline (PBS), 

detached from the plate with 1.5 ml of trypsin, harvested in 8.5 ml of PBS with 10% fetal 

bovine serum, and counted. Cells were spun down in 50-ml Falcon-type tubes at 200g for 5 

min at 25°C, resuspended in 1 ml of cold PBS, and transferred to a low-retention 

microcentrifuge tube. Cells were spun for 1 min at 500g, supernatant was removed, and the 

protein pellets were snap-frozen in liquid nitrogen. For RNA extraction, cells were washed 

twice with ice-cold PBS, lysed in 1 ml of RLT buffer (RNeasy Mini Kit, Qiagen) 

supplemented with 1:100 β-mercaptoethanol, transferred to a microcentrifuge tube, and 

snap-frozen in liquid nitrogen.

EGF response assays

Cells were treated with 10× stock of an EGF (PeproTech) dilution series for 10 min. Cells 

were treated with varying concentrations of EGF for 10 min before the evaluation of 

phosphorylated MAPK amounts by immunofluorescence as previously described (73) using 

an Operetta high-content imaging system (PerkinElmer). Data are the average of replicate 

wells generated using the Columbus image data storage and analysis system (PerkinElmer).

Transcriptomics

Genomic DNA was removed from RNA samples using a Qiagen RNase-Free DNase Set kit. 

RNA integrity was ascertained with a Bioanalyzer, and all samples had an RNA integrity 

number between 9 and 10. A Ribo-Zero Gold rRNA Removal Kit was used to enrich 

transcripts, and a SOLiD Total RNA-Seq Kit was used to construct template complementary 

DNA (cDNA) for RNA-Seq. The ribosomal depleted mRNA was fragmented using 

hydrolysis, followed by ligation with strand-specific adapters and reverse transcript to 

generate cDNA. Fragments greater than 150 base pairs were subsequently selected using 

Agencourt AMPure XP beads. The isolated cDNA went through 15 cycles of amplification 

to produce enough templates for the SOLiD EZ Bead system to generate a templated bead 

library for ligation-based sequencing on the SOLiD 3 platform using barcoding, with a 
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minimum of 2.2 × 107 mapped reads per cell line. Reads were normalized to the average of 

all lines after sequencing, yielding 12,261 common expressed genes.

Proteomics

Cell pellets from different cell lines were lysed in 100 µl of lysis buffer containing 8 M urea 

in 100 mM NH4HCO3 (pH 7.8). Proteins were reduced by 5 mM dithiothreitol for 1 hour at 

37°C and alkylated using 20 mM iodoacetamide for 1 hour at room temperature in the dark. 

Samples were diluted eightfold with 50 mM NH4HCO3 and digested by sequencing grade 

modified trypsin at a 1:50 enzyme-to-protein ratio (w/w) at 37°C for 3 hours. Each sample 

was then desalted by C18 solid phase extraction and concentrated to a volume of ~50 µl. The 

final peptide concentration was measured using bicinchoninic acid assay.

Global proteomics

For mass spectrometry–based shotgun proteome analysis, we used the accurate mass and 

time (AMT) tag approach (75). An existing AMT tag database encompassing the 

monoisotopic mass and normalized chromatographic elution times of peptides identified 

from previous liquid chromatography–tandem mass spectrometry (LC-MS/MS) analyses of 

HMEC proteins under a range of experimental conditions (33, 76–78) was used as a base 

reference database for the LC–Fourier transform ion cyclotron resonance measurements in 

this study. Details of LC-MS/MS analysis and data filtering involved in peptide 

identification have been described elsewhere (78). Criteria that would yield an overall 

confidence of greater than 95% at the unique peptide level were established for filtering raw 

peptide identifications.

For comparative proteomics, peptides were labeled with 8-plex iTRAQ reagents according 

to the manufacturer’s instructions (AB Sciex). The iTRAQ-labeled peptide mixtures were 

analyzed on a high-resolution, reversed-phase capillary LC system coupled with a Thermo 

Fisher Scientific LTQ-Orbitrap Velos mass spectrometer. Mobile phases consisted of 0.1% 

formic acid in water and 0.1% formic acid acetonitrile operated at a constant flow of 300 nl/

min, with a gradient profile over the course of 100 min. The 10 most abundant parent ions, 

excluding single-charge states, were selected for MS/MS using high-energy collisional 

dissociation with a normalized collision energy setting of 40%.

Peptides were identified on the basis of tandem MS/MS spectra using the SEQUEST search 

algorithm against a human protein database (UniProtKB, released May 2010), and the 

abundance information across 8-plex samples was extracted from the reporter ion intensities 

within a given spectra. All peptides were identified with <0.1% false discovery rate by using 

an MS-generating function score (MS-GF) <1 × 10−10 and a decoy database searching 

strategy. The reporter ion intensities for each peptide were summed for all identified spectra 

for each channel in each biological condition. Relative abundances at peptide level were 

rolled up to the protein level using the software tool DAnTE (79), with the abundances being 

log2-transformed and normalized by the central tendency approach.
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SRM assay configuration and LC-SRM measurements

To detect pathway proteins by an SRM assay, 10 tryptic peptides without miscleavage 

(except those peptides containing inhibitory motifs for trypsin) were initially chosen for 

representing each target protein based on existing LC-MS/MS results from our own 

laboratory and public data repositories such as PeptideAtlas, GPM, and PRIDE. For the core 

pathway proteins without existing LC-MS/MS data, in silico digestion was performed for 

peptide selection. All selected peptides were unique to the given proteins with no predicted 

posttranslational modifications. The selected peptides were further evaluated by two 

prediction tools: the ESP predictor and CONSeQuence software. Five peptides per protein 

with moderate hydrophobicity, high spectral counts, and high score from the prediction tools 

were selected for peptide synthesis. The synthesized crude heavy isotope–labeled peptides 

were further evaluated for peptide response and fragmentation pattern. For each peptide, 

three transitions were selected on the basis of their abundances and optimal collision energy 

(CE) values, which is achieved by direct infusion of the individual peptides and/or multiple 

LC-SRM runs with CE ramping. Two peptides with the best response were selected to 

configure final SRM assays for each target protein, and the best transition (the one with the 

most intense SRM signal and without clear evidence of coeluting interference) was used to 

quantify the target protein. The potential interference for given transitions was assessed on 

the basis of the relative intensity ratios between the three transitions for both light and heavy 

peptides using a similar approach as previously reported (52).

With the crude heavy isotope–labeled internal standards spiked in, all cell line samples were 

initially measured by regular LC-SRM using the scheduled SRM algorithm (80). For the 

core pathway proteins that cannot be reproducibly detected and quantified by regular LC-

SRM, highly sensitive PRISM-SRM assays (52) were used to measure their relative 

abundances. All LC-SRM measurements were performed using the nanoACQUITY UPLC 

system coupled online to a TSQ Vantage triple quadrupole mass spectrometer (Thermo 

Scientific), and SRM data were analyzed using Skyline software (81).

Except for the secreted proteins TGFA and DUSP4, all the targeted proteins were 

confidently quantified by PRISM-SRM across all the eight cell lines. To obtain absolute 

protein concentration values of those core pathway proteins, high-purity light peptides 

(>95%) were purchased and used to determine their corresponding crude heavy peptide 

purity and the spiked-in concentrations in cell line samples. On the basis of the peak area 

ratio of endogenous light peptides over heavy-labeled internal standards, known 

concentrations of heavy internal standards, and cell density, the relative copy number of each 

protein per cell was estimated. This was then corrected for extraction and digestion 

efficiency by normalizing copy numbers to the number of EGFRs directly measured by 

steady-state 125I-EGF binding, which includes estimates of internal receptor pools (65).

Estimating EGFR occupancy

The level of binding of EGF to its receptor at any given time point was calculated by 

numeric integration of the rate equations describing the forward and reverse rate constants as 

well as receptor internalization (54). These equations accurately describe the dynamics of 

cells interacting with the EGFR at short time intervals (<15 min) (82). Rate constants used 
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were as follows: ka = 1.2 × 106 M−1s−1; kd = 3.67 × 10−2 s−1; ke = 4.0 × 10−3 s−1; kt = 1.17 

× 10−3 s−1. The value of Vr was adjusted to yield the initial number of EGFR measured for 

each cell type in our SRM proteomics measurements. The simulated volume was 2 ml, and 

cell number was 1.2 × 106. Calculated occupied receptors included both receptors at the cell 

surface and those that were internalized.

To validate the accuracy of the estimates, we treated 184A1 cells with concentrations 

of 125I-labeled EGF ranging from 0.1 to 120 ng/ml for 5 min and then quantified the total 

amount of labeled EGF associated with the cells. We then compared the amount to that 

predicted by our calculations (fig. S5).

Data analysis and normalization

Proteomics data from iTRAQ proteomics were normalized to an internal standard that was 

created by mixing equal amounts of protein from all seven cell lines being analyzed. iTRAQ 

data were then expressed as the log2 ratio to the standard. Sample variance was calculated 

for the ratios for each protein detected across all seven cell lines. RNA-Seq data were rolled 

up to the gene level and then filtered to remove non–protein-coding reads. Total reads were 

normalized to the average across all seven cell lines and then converted to RPKM using 

Avadis NGS. RPKM values for each gene were then converted to the log2 ratio of the 

average value across all seven cell lines. Sample variance of the log2 ratios was then 

calculated for each gene. Significance of differences of the distribution of gene expression or 

protein abundance variances between groups was calculated using an unpaired sample z test.

To assess amplification frequency of genes in the EGFR-MAPK pathway that could be 

associated with cancer, we downloaded CNV data from COSMIC database. The CNV data 

were converted into frequencies of copy number gain, and the frequency distribution was 

modeled as a two-component mixture of beta distributions. One component represents the 

bulk of the genes (~80%) that are amplified at random. The other minor component with a 

higher frequency of amplification represents a high-amplification subset of genes. The 

parameters of the two beta distributions were inferred using expectation-maximization 

algorithm. The null hypothesis is that the frequency is the same as the bulk of the genes. The 

null hypothesis was rejected at P < 0.05. All network maps were generated with Cytoscape 

3.0.2 (83).

Comparing precision estimates across different proteomics measurements

The median log2 variance of our iTRAQ data was 0.15 with an SD of 0.3, which 

corresponds to the median value of 0.08 for the Khan et al. data (48), with an SD of 0.43. 

Because these proteins are under selective pressure to conserve their relative abundance 

across cell lines, we consider these “best case” variance values limited by the stochastic 

nature of protein expression and the precision of our proteomics measurements.

Proteins measured by SRM should have the same biological variance as those measured by 

iTRAQ. We had 11 proteins with corresponding iTRAQ and SRM data. However, because 

iTRAQ data tend to be compressed in their dynamic range (84), this will tend to reduce the 

observed variance. We excluded the EGFR data because their extreme variability and 

dynamic range skew the data. For the remaining 10 proteins, the median variance for the 

Shi et al. Page 16

Sci Signal. Author manuscript; available in PMC 2016 September 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



iTRAQ data was 0.12 with an SD of 0.15, approximately the same as the full data set, 

indicating that they are a representative set of proteins. The SRM data for the same 10 

proteins displayed a median variance value of 0.48, with an SD of 0.18. Thus, the observed 

variance of SRM data was about four times greater than that of the iTRAQ data. To estimate 

the limits of low-variance proteins from SRM data, we used the median value +1 SD or a 

log2 variance of <0.7. For the corresponding mRNA data, the median variance was 0.28 with 

an SD of 0.57, or <0.85. These are the limits shown in Fig. 4B.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Identification of core and primary feedback regulators of the EGFR-MAPK pathway
(A) Schematic of the “omics” assays (yellow) and analysis (red and blue). HMECs were 

perturbed with EGF (10 ng/ml), 10 µM U0126, or 225 mAb (10 µg/ml) overnight to identify 

genes whose expression was significantly altered or with EGF or 225 mAb to assess changes 

in protein phosphorylation. From the results (see table S1), significantly altered genes or 

proteins that interact with core MAPK pathway proteins and altered pathway activity were 

classified as feedback regulators. (B) Map of the EGFR-MAPK interaction network. Core 

proteins are in red, positive feedback regulators are in green, and negative feedback 
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regulators are in blue. Activating interactions are shown as arrows, inhibiting interactions are 

shown as blue “T” lines, and protein-protein interactions are shown as dotted lines. Red 

arrow indicates unknown biochemical mechanisms. (C) HMEC 184A1 cells analyzed by 

global RNA-Seq and shotgun proteomics. Genes were then ranked by the sum of their 

mapped reads. Spectral counts of the corresponding genes were then averaged in bins of N = 

500. The percent of genes in each bin for which spectral counts were recorded is indicated 

with filled circles. Arrows indicate ranking of gene expression of either core EGFR-MAPK 

pathway proteins (red) or feedback regulators (blue). Error bars are the SD of the mean of 

the spectral counts per bin. Data are listed in table S2.
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Fig. 2. Relative abundance of proteins of the EGFR-MAPK signaling pathway as assessed by 
deep proteomics surveys
(A) Reported abundances of proteins in the EGFR-MAPK pathway from the study of Geiger 

et al. (47) with n = 11 different cell lines. Proteins are grouped into either core components 

or feedback regulators as described in the text. Within groups, proteins are listed 

alphabetically. Data from the label-free quantification intensity values for both core and 

regulated components of the EGFR-MAPK pathway are plotted. The box encloses the upper 

and lower quartiles, the midline is the median value, and the whiskers show the data range. 
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Numbers below each protein group indicates the number of cell types in which that protein 

was detected. Green arrows indicate proteins that were observed in less than half of the 

surveyed cell types. Asterisks (*) indicate proteins that were not detected or reported. (B) 

Same as in (A), except the study was that of Lawrence et al. (14). In this survey, the iBAQ 

(intensity-based absolute quantification) label-free method was used for protein 

quantification, using n = 20 different cell types (n = 2 replicates each) and n = 4 tumors.
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Fig. 3. Abundance variance of highly conserved proteins and MAPK pathway proteins appears 
different depending on the approach used for protein quantification
Blue distribution is log2 sample variance SILAC (stable isotope labeling with amino acids in 

cell culture) data from Khan et al. (48), using n = 5 biological replicates per species and n = 

3 species (N = 15 total samples). Red distribution is iTRAQ data from the current study (n = 

7 cell types), and green curve is data from the study of Lawrence et al. (14) (n = 24 

samples). Data were sorted into 50 equal bins of between 15 and 40 protein variance values 

each. Red arrows represent the variance values of MAPK pathway proteins found in our data 

set for comparison, whereas the green arrows are data on the same proteins in the Lawrence 

et al. (14) data set.
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Fig. 4. Variability of mRNA and protein abundance of EGFR-MAPK pathway components 
across cell lines using RNA-Seq and targeted proteomics
(A) Top: the expression of mRNA for the species indicated on the x axis was determined by 

RNA-Seq and normalized to reads per kilobase per million mapped reads (RPKM). Symbols 

correspond to values from the indicated cell lines (n = 8). Boxes represent the statistics of 

each species as described in the legend of Fig. 2A. Bottom: absolute quantification of the 

indicated proteins by targeted SRM (n = 8 cell types, each representing n = 4 samples), 

corrected for cell number and normalized to measured EGFR abundance as described in 

Materials and Methods. (B) Relationship between relative mRNA versus protein abundances 

of selected EGFR-MAPK pathway components across all cell lines shown in (A). The log2 

value of the mRNA of each cell line (pooled from n = 4 samples) divided by the average of 

all lines was plotted against the comparable protein value. Error bars are SD from n = 4 

samples. The lines are linear regression of the values with Pearson’s correlation coefficient 

(cc).
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Fig. 5. Median abundance and variability of proteins in the EGFR-MAPK pathway in a panel of 
cell lines
(A) Plot of log2 variance of mean mRNA and protein abundance of EGFR-MAPK pathway 

proteins across a panel of cell lines. Red symbols are core components. Black squares are 

feedback regulators. Line is linear regression of all values. Dotted box is the median 

variance of highly conserved proteins +1 SD, derived as described in Materials and 

Methods. Proteins falling outside of the dotted box are individually labeled. (B) Size of each 

node is directly proportional to median protein abundance with a minimum node size of 7 

and a maximum node size of 390. Node color reflects the calculated percent coefficient of 

variation of the protein (n = 7 cell lines, each value being the average of n = 4 samples). 

Edges are as described in the legend of Fig. 1B.
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Fig. 6. Maximal phosphorylation of MAPK in a panel of responsive cell lines occurs well below 
maximal receptor occupancy
(A) Plot of the amounts of occupied EGFR and activated (phosphorylated, “p”) MAPK in 

the indicated cell lines. Data are the mean response of n = 5 independent experiments 

normalized to a scale of 0 to 1 ± SEM as a function of occupied receptors at 10 min. 

Sigmoidal curves were fit to data from SKBR3 (red), HS578T (dashed), and MDA-MB231 

(blue) cell lines. Range marker corresponds to the abundance range of SOS1 + SOS2 in 

evaluated cell lines. Results from MCF7 cells were not included because of their lack of 
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significant response. (B) Abundance of MAPK1 or doubly phosphorylated MAPK1 in cells 

treated with and without EGF (10 ng/ml) for 10 min assayed by quantitative SRM-based 

proteomics (55). Results are from n = 3 samples with technical replicates expressed as 

percent of total MAPK1 ± SD. Open circles are from MCF7 cells, whereas other symbols 

are the same as in (A). (C) HMEC 184A1 treated with EGF (10 ng/ml) for 5 min and 

occupied EGFR calculated as described in Materials and Methods. The amounts of 

phosphorylated MAPK (blue squares) and phosphorylated EGFR (red circles) were 

measured using an enzyme-linked immunosorbent assay; RAS activity was measured by a 

pull-down assay (42). Data are the mean response of n = 4 independent experiments 

normalized to a scale of 0 to 1 ± SEM and fit to a sigmoid function.

Shi et al. Page 31

Sci Signal. Author manuscript; available in PMC 2016 September 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Shi et al. Page 32

Ta
b

le
 1

E
xp

re
ss

io
n 

of
 m

R
N

A
 e

nc
od

in
g 

au
to

cr
in

e 
lig

an
ds

 in
 m

ul
ti

pl
e 

ce
ll 

lin
es

L
ib

ra
ri

es
 f

ro
m

 e
ac

h 
ce

ll 
lin

e 
w

er
e 

pr
ep

ar
ed

 a
s 

de
sc

ri
be

d 
in

 M
at

er
ia

ls
 a

nd
 M

et
ho

ds
, s

eq
ue

nc
ed

, a
nd

 m
ap

pe
d 

ag
ai

ns
t t

he
 r

ef
er

en
ce

 h
um

an
 g

en
om

e.
 R

ea
ds

 

m
ap

pi
ng

 to
 th

e 
in

di
ca

te
d 

ge
ne

s 
w

er
e 

co
nv

er
te

d 
to

 R
PK

M
 u

si
ng

 A
va

di
s 

N
G

S.
 V

al
ue

s 
in

 th
e 

to
p 

10
,0

00
 r

an
ki

ng
 o

f 
ge

ne
 e

xp
re

ss
io

n 
ar

e 
in

 b
ol

df
ac

e.

G
en

e
sy

m
bo

l

C
el

l t
yp

e

B
T

20
H

M
E

C
s

M
C

F
10

A
M

C
F

7
M

B
23

1
N

H
D

F
SK

B
R

3
H

S5
78

T

A
R

E
G

1.
0

14
2.

4
84

.6
26

.4
31

.7
1.

6
1.

4
0.

1

B
T

C
0.

7
1.

1
1.

1
0.

8
1.

1
0.

2
1.

7
0.

2

E
G

F
0.

5
0.

2
0.

4
0.

6
1.

4
0.

4
3.

6
0.

5

E
PG

N
0.

2
11

.7
28

.5
0.

2
0.

5
0.

3
2.

0
0.

0

E
R

E
G

0.
5

53
.2

1.
7

0.
4

2.
7

0.
5

0.
3

0.
0

H
B

E
G

F
0.

2
4.

2
1.

2
0.

6
11

.1
0.

4
0.

3
1.

8

T
G

FA
7.

9
34

.0
3.

3
2.

6
22

.5
0.

5
0.

6
0.

1

Sci Signal. Author manuscript; available in PMC 2016 September 26.


	Abstract
	INTRODUCTION
	RESULTS
	Identification of core pathway proteins and the feedback regulators that modulate EGF-stimulated MAPK phosphorylation
	Detection of feedback regulators by global proteomics measurements
	Estimation of the real versus observed variability in cellular protein abundance
	Measuring low-abundance proteins of the EGFR-MAPK pathway using targeted proteomics
	Abundances of core MAPK pathway proteins across different cell lines
	Stoichiometric bottlenecks in the EGFR-MAPK signaling pathway

	DISCUSSION
	MATERIALS AND METHODS
	Cell culture
	Sample preparation
	EGF response assays
	Transcriptomics
	Proteomics
	Global proteomics
	SRM assay configuration and LC-SRM measurements
	Estimating EGFR occupancy
	Data analysis and normalization
	Comparing precision estimates across different proteomics measurements

	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6
	Table 1

