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Abstract

Antibodies are important immune molecules with high commercial value and therapeutic interest
because of their ability to bind diverse antigens. Computational prediction of antibody structure
can quickly reveal valuable information about the nature of these antigen-binding interactions, but
only if the models are of sufficient quality. To achieve high model quality during complementarity-
determining region (CDR) structural prediction, one must account for the VL–VH orientation. We de-
veloped a novel four-metric VL–VH orientation coordinate frame. Additionally, we extended the CDR
grafting protocol in RosettaAntibody with a new method that diversifies VL–VH orientation by using
10 VL–VH orientation templates rather than a single one. We tested the multiple-template grafting
protocol on two datasets of known antibody crystal structures. During the template-grafting
phase, the new protocol improved the fraction of accurate VL–VH orientation predictions from only
26% (12/46) to 72% (33/46) of targets. After the full RosettaAntibody protocol, including CDR H3 re-
modeling and VL–VH re-orientation, the new protocol produced more candidate structures with ac-
curate VL–VH orientation than the standard protocol in 43/46 targets (93%). The improved ability to
predict VL–VH orientation will bolster predictions of other parts of the paratope, including the con-
formation of CDR H3, a grand challenge of antibody homology modeling.
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Introduction

Antibodies are important immune molecules with high commercial
value and therapeutic interest because of their ability to bind diverse
antigens, from small molecules and short peptides to full-length pro-
teins. Antibodies’ binding diversity is a function of their hypervariable
FV domains, each consisting of two immunoglobulin domains: VL and
VH. The antigen-binding site (paratope) is located at six loops near the
VL–VH interface, known as complementarity-determining regions, or
CDRs.

Many structural studies of the FV have focused on the conform-
ation of the CDRs, particularly CDR H3 (Al-Lazikani et al., 1997;
North et al., 2011; Wang et al., 2013; Weitzner et al., 2015; Xu
et al., 2015). Because the CDRs are attached to the framework of

the VL and VH domains, any change in the relative orientation of
the VL and VH domains will propagate to change the CDRs’ relative
orientation, and therefore, the shape of the paratope. Failing to ac-
count for the VL–VH orientation during CDR or paratope structure
prediction dramatically hinders the quality of the output models,
and recent evaluation found the VL–VH orientation to be a limiting
factor in antibody structure prediction (Weitzner et al., 2014).

Abhinandan andMartin (2010) were the first to codify a metric for
measuring the VL–VH orientation. They defined the packing angle as a
torsional angle between the primary axes of the VL and VH domains.
Among the ∼500 FV crystal structures they examined, packing angle
differed by as much as 30°. Chailyan et al. (2011) defined VL–VH

orientation differently, via clustering. The resulting description was
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limited in scope: only two distinct orientational clusters and a distinct
singleton were found; however, a number of key residues were found
to correlate with the orientational clusters, indicating that VL–VH

orientation may be predictable from sequence.
The Second Antibody Modeling Assessment (AMA-II) measured

the ability of several computational antibody structural prediction
methods to capture native VL–VH orientation in a blind prediction
challenge. Two metrics were used to evaluate the antibody orienta-
tions generated in AMA-II: (i) an analogue to RMSDvariable as de-
scribed by Sela-Culang et al. (2012), and (ii) the tilt angle as
described in Almagro et al. (2014). While these measures encode
more orientational information than the Abhinandan–Martin packing
angle, both are pairwise difference metrics rather than absolute ones.
A geometrically complete, absolute measure of VL–VH orientation,
ABangle, was published by Dunbar et al. (2013). ABangle is composed
of one torsional angle, four plane angles and one distance, represent-
ing the six degrees of freedom of the two-body VL–VH complex. The
ABangle measure was applied in a study to predict VL–VH orientation.
In tests on the AMA-II antibody set, the authors predicted ABangle
metrics corresponding to an average RMSD of misorientation of
0.50 Å, performing better than the average competitor (0.63 Å), beat-
ing the average in 9 of 11 targets (Bujotzek et al., 2015).

RosettaAntibody is an application for blind prediction of antibody
structure (Sivasubramanian et al., 2009; Weitzner et al., 2014).
RosettaAntibody operates in two phases: (i) template selection and
grafting, wherein known antibody structure fragments are combined
to create a coarse-grained model, and (ii) structure refinement, which
uses Monte Carlo perturbations with minimization to remodel the
CDR H3 loop, refine all CDR loops, and redock the VL and VH

domains.
Until recently, RosettaAntibody’s efficacy in predicting native VL–VH

orientations had only been investigated implicitly by measuring RMSD
values across all FV residues. During the Second Antibody Modeling
Assessment (AMA-II), RosettaAntibody’s orientation predictions were
evaluated explicitly, comparing the packing angles of the Rosetta models
to those of their corresponding crystal structures (Weitzner et al., 2014).
RosettaAntibody compared favorably in most respects to the competing
protocols, producing two sub-Ångstrom H3 models and achieving the
best H3model in four targets. However, VL–VH orientationwas aweak-
ness, as RosettaAntibody created a structure with sub-Ångstrom cross-
domain RMSD for only 5 of 11 targets. VL–VH orientation prediction
for targets with uncommon packing angles was particularly poor: all
three targets with a packing angle more than 1 SD removed from the
database average were predicted incorrectly.

Fig. 1 Orientational coordinate (LHOC) definition. (a) FV structure showing light chain (left), heavy chain (right) and the key beta strands for defining the LHOC
framework (Chothia numbering: L35-L38, L85-L88, H36-H39, and H89-H92, see ‘Materials and Methods’ for details). The inset shows the placement of the four
points, which form the basis of the LHOC framework. (b) Packing angle, α, is the dihedral angle between points 1, 2, 3 and 4. (c) Interdomain distance, δID, is
the distance between Points 2 and 3. (d) L-opening angle, θL, is the plane angle between Points 1, 2 and 3. (e) H-opening angle, θH, is the plane angle between
Points 2, 3 and 4.
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In this article, we developed a novel four-metric VL–VH orientation
coordinate frame, which we called Light–Heavy Orientational
Coordinates (LHOC). Additionally, we extended the RosettaAntibody
protocol with a newmethod to diversify VL–VH orientations by grafting
multiple templates.We tested the newRosettaAntibody protocol on two
datasets of known antibody crystal structures: a 46-member high-
resolution antibody set, and the 11-member AMA-II dataset. We com-
pared the performance of the new RosettaAntibody against the previous
version, as well as against the ABangle method for predicting VL–VH

orientation.

Materials and methods

Orientational coordinates framework calculation
The four coordinates used to describe VL–VH orientation (α, δID, θL,
and θH) are defined from a common framework of four non-atomic
points at the VL–VH interface (Fig. 1). Point 2 is located at the center
of a conserved pair of beta strands in the VL framework; it is defined as
the centroid of the Cα coordinates of residues L35–L38 and L85–L88
using Chothia numbering (Al-Lazikani et al., 1997). Point 3 is the VH

counterpart to Point 2, defined as the centroid of theCα coordinates of
residues H36–H39 and H89–H92, Chothia numbering. Point 1 is lo-
cated nearer the CDRs than Point 2, along the first principal compo-
nent line of the coordinate set used to calculate point 2. Point 4 is the
VH counterpart to point 1.

All coordinates were calculated with a Rosetta implementation of
the above framework. α is defined in the same manner as Abhinandan
and Martin (2010); specifically, it is defined as the dihedral angle be-
tween points 1, 2, 3 and 4. δID is defined as the distance between Points
2 and 3. θL is defined as the plane angle between Points 1, 2, and 3. θH
is defined as the plane angle between Points 2, 3 and 4.

Orientational Coordinate Distance measurement
Orientational Coordinate Distance (OCD) is calculated as:

OCD ¼
X

i¼fa;δID;θL ;θHg
xi;A � xi;B

σ i;dB

� �
;

where xi,A and xi,B represent the value of LHOCmetric i of structure A
and structure B, respectively, and σi,dB represents the standard devi-
ation of the Gaussian distribution best fit to the database distribution

Fig. 2 Two RosettaAntibody FV models of AMA-II target 5 (PDB ID 4M6M) with
equivalent values of the packing angle. Structures have light chains (black)
superimposed. Heavy chains are shown in red and blue. CDR residues
(Chothia definition) are omitted for clarity.

Fig. 3Histograms of each of the four LHOCmetrics across the 1,040 structures in the Rosetta antibody database. Histogrambin widths are 1° for packing angle, α, (a),
0.1 Å for interdomain distance, δID, (b), and 0.5° for plane angles, θL and θH, (c and d). Kernel density estimates of each distribution are shown as curves over the
histograms.
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of LHOC metric i. The four values for i are α, δID, θL and θH. OCD is
dimensionless.

RosettaAntibody command lines
The new MT protocol, part of the Rosetta software package, is avail-
able free of charge for academic and nonprofit use at www.
rosettacommons.org. The code used to generate data in this article is
available starting from release revision 57, deposited 21 May 2015.
The MT protocol is available on the ROSIE public Web server
(rosie.graylab.jhu.edu, Lyskov et al., 2013) as an option of the
Antibody homology modeling protocol.

To create the grafted structures, the following command line was
used. The homolog_exclusion argument should be 99 when perform-
ing blind predictions, and 80 when evaluating algorithm performance
on a known set.

antibody.py --both-chains < FASTA file> --relax

--homolog_exclusion=<99||80>

--multi-template-grafting --number-of-tem-

plates 10

--light_heavy-multi-graft

--filter-by-orientational-distance = 1

--orientational-distance-cutoff 0.5

To create the candidate structures, the following command line
was used for each grafted structure. abH3.flags is a text file containing
the set of option flags for a standard RosettaAntibody run. The cter_-
constraint file is a two-line text file containing two atomic constraints;
it is generated automatically by the previous command line. The
grafted structure is one of 10 models generated by the previous com-
mand line. The -nstruct argument should be 1000 for the first grafted
structure, and 200 for the other nine models.

antibody_H3.linuxgccrelease @abH3.flags

-s < grafted structure, 1 of 10> -nstruct <200||

1000>

-constraints:cst_file < cter_constraint file>

Preparation of antibody database set
The RosettaAntibody database consists of 1040 antibody FV crystal
structures culled from the Protein Data Bank using the methods
described by Sivasubramanian et al. (2009). One outlier antibody
(1MCO) has an interdomain distance of 19.6 Å, farther removed
from the second-largest interdomain distance than the second-
largest is from the smallest. This antibody is highly irregular,
with the FAb–FC hinge region deleted (Guddat et al., 1993), ex-
plaining the unnaturally large interdomain distance; this antibody
was consequently removed from analyses of the RosettaAntibody
database.

Fig. 4 Comparison of five RosettaAntibody FV models with 1.0 OCD (a) and
2.0 OCD (b) to a reference antibody FV structure. Structures have light
chains (left) superimposed. CDR residues (Chothia definition) are omitted
for clarity.

Fig. 5 H-opening angle, θH, distributions among candidate structures
generated by RosettaAntibody from three different starting grafted
structures with different VL–VH orientations. (a) Plots of θH versus score,
showing scoring funnels for each of the three runs in a different color, with
the grafted structure θH marked by a matching-color triangle below the
x-axis. (b) Histograms and kernel density estimates for each of the three
runs in a different color, with the θH of each grafted starting structure
marked as in (a).
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Preparation of antibody benchmark sets
A high-resolution antibody set was compiled from the PyIgClassify
database (Adolf-Bryfogle et al., 2015). A series of restrictions was
placed on the structures: a maximum resolution of 2.5 Å, a maximum
R value of 0.2, a maximum B-factor of 80.0 Å2 for each atom in the
structure, an asymmetric unit containing only one copy of the FV, a
CDR H3 loop length between 9 and 20 residues, a human or mouse
species tag and no non-canonical or modified amino acid residues.
Additionally, the set was filtered to remove antibodies with identical
sequences in any of the heavy-chain CDR loops. Of the resultant 49
structures, 3 (1X9Q, 2W60, 3IFL) were eliminated because of chal-
lenges presented in sequence misalignment or numbering (e.g. 1X9Q
is missing highly conserved heavy-chain residues C92 andW103). The
Second Antibody Modeling Assessment (AMA-II) antibody set
consists of the 11 antibodies described in Almagro et al. (2014).

Results

A new VL–VH coordinate frame
To describe the geometry of antibody VL–VH orientation, we devel-
oped a new coordinate frame (Fig. 1) as an extension of the packing
angle described by Abhinandan and Martin (2010). Three vectors
compose the Abhinandan–Martin framework: two primary axis
vectors, one each drawn through VL and VH, and a third vector
linking the axis vectors tail-to-tail across the VL–VH interface. The
Abhinandan–Martin packing angle (α) is defined as the apparent
angle between the VL and VH vectors as seen when looking down
the connecting line from VH to VL (Fig. 1b). The packing angle metric
captures the set of VL–VH relative positions in which the VL and VH

domains twist past each other, broadening or contracting the
paratope. Figure 2 shows, however, that antibodies with identical
α will not necessarily superimpose, and in practice, they often do

not. This structural ambiguity is an inherent limitation of the αmetric.
Therefore, we sought a more complete description of the VL–VH

orientation.
To capture more of the VL–VH orientation degrees of freedom, we

repurposed the Abhinandan–Martin packing angle vector framework
to define the other metrics: an interdomain distance (δID) and two
plane angles, L-opening angle (θL) and H-opening angle (θH). δID is
defined as the length of the linking vector (Fig. 1c). θL and θH are de-
fined as the plane angle between the linking vector and the VL and VH

vectors, respectively (Fig. 1d and e). Together, we refer to the four co-
ordinates (α, δID, θL and θH) as the LHOC.

For LHOC to be a non-redundant coordinate frame and more de-
scriptive than the Abhinandan–Martin packing angle, each coordinate
must capture some component of VL–VH orientational diversity that is
sufficiently independent from the components captured by other coor-
dinates. To evaluate the effectiveness of the LHOC coordinate frame,
we calculated the LHOC metrics for each antibody in a curated set of
1040 antibody FV crystal structures, representing a high- andmedium-
resolution (≤3.5 Å) subset of all antibodies in the Protein Data Bank.

Figure 3 shows distributions for each of the four LHOC metrics
across all antibodies in the database. All three angle distributions
are approximately Gaussian. Consistent with the prior use of packing
angle to solely define VL–VH orientation (Abhinandan and Martin,
2010; Almagro et al., 2014), the α distribution is the largest compo-
nent of diversity in VL–VH orientation, with a range of nearly 35°
[mean (μ) =−52.3°, standard deviation (σ) = 3.9°, minimum =−70.9°,
maximum =−36.7°]. The two LHOC plane angle distributions each
show a range approximately half as large as the α distribution. The
θL distribution has a range of about 15° (μ = 97.2°, σ = 1.9°, min =
89.3°, max = 104.4°), while the θH distribution has a range of about
20° (μ = 99.4°, σ = 2.6°, min = 87.9°, max = 108.1°). The δID distribu-
tion is also approximately Gaussian, but with a long right tail. While
the bulk of the distribution, 1030 of 1040 structures, lies between 13.5

Fig. 6 Flow chart for the RosettaAntibody protocol. The grafting phase is shown in light gray, above the solid black line, while the refinement phase is shown in dark
gray, below the solid black line. Steps from the standard ST grafting protocol are shown on the left. New steps added to create theMT grafting protocol are enclosed
in the black box; the ST steps are also part of the MT protocol.

Prediction of VL–VH Orientation 413



and 15.5 Å, 9 of the 10 remaining structures have a δID between 15.5
and 16.5 Å.

To test the independence of the four LHOCmetrics, we plotted all
pairwise distributions of metrics for the database antibodies, shown in
Supplementary data, Figure S1. Five of the six pairs of metrics show no
correlation (r2 ≤ 0.01), with approximately 2D-Gaussian distribu-
tions. The remaining pair, θH and δID, show a small degree of correl-
ation (r2 = 0.16); antibodies with larger-than-average δID tend to also
have larger-than-average θH. Such a correlation could arise because
the hinge of the θH definition differs from the physical hinge about
which the VL–VH orientation actually varies between antibodies. If
the physical hinge were upstream of the θH hinge, a naturally ‘open’
antibody would have both a larger θH and a larger δID. In this case,
one would also expect the antibody to also have a larger θL, as it is
effectively a mirror image of θH; however, there is no correlation
seen between δID and θL, suggesting that the mathematical and phys-
ical hinges are in a similar place. This implies that the correlation be-
tween θH and δID is not due to misplacement of the LHOC framework,
nor a redundant selection of coordinates to include in LHOC.

The four-coordinate nature of the LHOC framework allows it to
describe more facets of VL–VH orientation than α alone, but it requires
a combination metric to simplify the difference to one dimension.
Therefore, we defined the OCD by summing the squared z-score

deviations in each of the four LHOC base metrics (see ‘Materials
and methods’ for details). Figure 4a shows that a pair of antibodies
with an OCD of 1.0 or less superimpose closely, and Figure 4b
shows that a pair of antibodies with an OCD of 2.0 or greater are
clearly distinct.

Because changes in the different LHOC metrics exert different
lever-arm effects on the antibody domains, and because the contribu-
tions to OCD can be dominated by a large variation in one or two
LHOCmetrics, two antibody pairs with the sameOCDwill not neces-
sarily have the same RMSD between them. For example, two anti-
bodies with a 3.0 OCD due only to a difference in packing angle
will have a much larger RMSD than two antibodies with a 3.0
OCD due only to a difference in interdomain distance. Nonetheless,
OCD and RMSD are loosely correlated: as shown in Supplementary
data, Figure S2, two structures with a high OCD tend to have a high
RMSD as well. An OCD of 2.0 is roughly equivalent to an RMSD of
1 Å, although most 2.0 OCD structure pairs will have a larger RMSD
due to intradomain variations.

VL–VH orientation prediction in Rosetta
With the OCD metric, we next sought to test the efficacy of
RosettaAntibody at predicting correct VL–VH orientations. A prelim-
inary examination of the RosettaAntibody candidate structures for
one of the AMA-II targets with an incorrect VL–VH orientation predic-
tion revealed that a wide range of VL–VH orientations were sampled
by docking moves during the structure refinement phase—so wide,
in fact, that nearly the entire database distribution is spanned in all co-
ordinates. However, the lowest-scoring candidate structures, and thus,
the ones selected as final models, had orientations quite similar to the
starting point of the refinement trajectories, i.e. the grafted structure.
To examine how the starting point biases the output orientations, we
launched refinement trajectories from grafted structures with alternate
VL–VH orientations. Figure 5 shows the orientation distributions of
candidate structures generated by these runs. In each trajectory,
there is a visible well in which low-scoring candidate structures tend
to have orientations matching their individual grafted structures rather
than converging to the native orientation. These data suggest that the
refinement phase of RosettaAntibody has an effective limit on how far
it can alter the VL–VH orientation. While more orientationally distant
structures can be sampled, these structures do not resemble natural
antibodies, as evidenced by their high scores. This behavior is benefi-
cial when the grafted structure has a native VL–VH orientation, but in
the general case, it indicates an inadequate search.

To attempt to produce low-scoring candidate structures near the
native VL–VH orientation, we created a new RosettaAntibody grafting
protocol that runs several trajectories rather than a single trajectory. A
flowchart description of the protocol, called multiple-template (MT)
grafting, is shown in Figure 6 in the context of the previous
RosettaAntibody protocol, henceforth described as single-template
(ST) grafting. Instead of creating only a single-grafted structure during
the first phase of RosettaAntibody, MT creates 10 grafted structures
from the 10 best-matching (by BLAST alignment) VL–VH orientation
templates. Additionally, to diversify the grafted structures, we enforce
a minimum OCD cutoff value of 0.5 between all orientation template
pairs, rejecting candidate templates with a lower OCD to any of the 10
and replacing them with the next-best BLAST match. The number 10
and the 0.5 OCD cutoff were selected to capture a near-native VL–VH

orientation in all targets in our calibration set, the 11 AMA-II anti-
bodies, while minimizing the number of redundant templates. Each
grafted structure is refined in multiple independent RosettaAntibody

Fig. 7 Comparison of VL–VH orientation prediction performance between MT
RosettaAntibody and ST RosettaAntibody after the grafting stage for the 46
members of the benchmark set. The OCD between the native structure and
the ST post-grafting stage structure is plotted against the lowest OCD
between the native and any of the 10 MT post-grafting stage structures.
Targets where the best MT structure is the same as the ST structure appear
on the x = y line also plotted. Targets where the best MT structure has a
closer OCD to native than the ST structure are above the x = y line. MT
success cases (OCD ≤ 2.0) are found to the left of the vertical OCD = 2.0 line,
while MT failures (OCD > 2.0) are found to the right. Likewise, ST success
cases are found below the horizontal OCD = 2.0 line, while failures are found
above. The top-left points indicate the 21 targets that improved from a failure
case to a success case when using the MT protocol, while the bottom-left
points indicate the 12 targets that remained successes, and the top-right
points indicate 10 of the 13 targets that remained failures (the other three
have OCD values exceeding the bounds of the plot).
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refinement runs to create a pool of candidate structures: 1000 from the
shared ST/MT grafted structure, and 200 each from the remaining 9
MT grafted structures.

To evaluate the sampling efficacy ofMT grafting, we compared the
performance of ST and MT RosettaAntibody on a benchmark set of
46 high-resolution, manually curated antibody crystal structures from
the Protein Data Bank (PDB) (Berman et al., 2000). Figure 7 shows the
pairwise comparisons of OCD values between the ST andMT predic-
tions for all targets. In the grafting phase of RosettaAntibody, the ST
VL–VH orientation prediction was within 2.0 OCD of the native in
only 26% (12/46) of targets. The MT predictions nearly tripled this,
with the best match among theMT predictions within 2.0 OCD of na-
tive in 72% (33/46) of targets. Additionally, of the remaining 13 tar-
gets, 10 showed an improved OCD to native in their best MT
prediction versus the ST prediction.

After the RosettaAntibody refinement phase, including H3 remod-
eling and VL–VH re-orientation, the MT protocol produced more can-
didate structureswithin 2.0OCDof native than the ST protocol in 43 of
46 targets (93%) (Fig. 8a). The remaining three targets all had poorly
predicted repertoires of grafted structures, in which none of the 10 MT
predictions (including the ST prediction) were closer than 15.0 OCD to
native (Supplementary data, Table SIII). While the MT protocol gener-
ated more cases under 2.0 OCD, it also required more total candidate
structures for each target, 2800 versus 1000, at the proportional cost of
computing time (∼1440 CPU-hours for the full MT protocol). To
evaluate the candidate-structure-equivalent performance of the ST

andMTprotocols, we compared only the 1000 lowest-scoringMT can-
didate structures against the 1000 ST candidate structures; this is hence-
forth described as the biased MT (bMT) protocol. Additionally, to
more fairly evaluate the time-equivalent performance of the ST and
MT protocols, we also pared the output from the MT protocol to
1000 randomly selected candidate structures per target, maintaining
as best as possible the 5:1 ratio of input structures; this is henceforth de-
scribed as the reduced MT (rMT) protocol.

The bMT protocol produced more sub-2.0 OCD candidate struc-
tures for 22 targets, with 20 targets generating fewer sub-2.0 OCD
candidate structures than the ST protocol due to dilution effects
(Fig. 8c). Likewise, the rMT protocol produced more sub-2.0 OCD
candidate structures for 20 targets, and fewer sub-2.0 OCD candidate
structures for 22 targets (Fig. 8e). The remaining four targets had no
sub-2.0 OCD candidate structures created by either the ST, bMT, or
rMT protocol (Supplementary Table SIII). When counting only
sub-1.0 OCD structures, those with essentially identical VL–VH orien-
tations to the native antibody, the rMT protocol fared better, with 25
targets improving on the ST counts, and only 16 worsening from di-
lution (Fig. 8f). The bMT protocol showed little improvement, better-
ing the ST counts in 21 targets, falling short of the ST counts in 18
targets, and matching the ST counts in the remaining 3 targets
(Fig. 8d). Nearly all of the targets with fewer low OCD candidate
structures in the rMT and bMT protocols still had at least 100
sub-2.0 OCD and 10 sub-1.0 OCD candidate structures, however, in-
dicating that the dilution effects are largely benign.

Fig. 8 Performance of the full ST,MT, bMTand rMT RosettaAntibody protocols on the 46 benchmark antibodies, showing the number of candidate structureswith an
OCD value below 2.0 (a, c and e) or below 1.0 (b, d and f ) for the ST protocol versus the MT (a and b), the bMT (c and d) and the rMT (e and f) protocols. The ST, the
bMT and the rMT protocols each include 1000 candidate structures in total, while the MT protocol includes 2800 candidate structures.
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We compared the grafting phase of RosettaAntibody, both the old
ST protocol and the new MT protocol, against the recently published
VL–VH orientation predictor, ABangle (Bujotzek et al., 2015). The
coordinate-by-coordinate ABangle prediction results for the AMA-II
antibody set are published, allowing for a direct comparison of the
two methods. Four of the ABangle coordinates, HL, dc, LC1 and
HC1, are directly analogous to α, δID, θL and θH, respectively. All
are calculated using a similar reference frame centered on the same
FV residues, and the corresponding coordinate pairs populate native
distributions of similar size and shape, albeit at different absolute
values. By virtue of the similarity of these four ABangle coordinates
to the four LHOC metrics, an OCD value can be calculated using
the published model-to-native deviations in the four ABangle coordi-
nates corresponding to LHOC.

Of the 11 AMA-II antibody targets, ABangle achieved a sub-2.0
OCD prediction for five. The original RosettaAntbody protocol (ST)
performed similarly, shown in Figure 9a, predicting a sub-2.0 OCD
structure for 4 of the 11 targets, and predicting a structure with an
OCD better than ABangle for 5 of the 11 targets. Interestingly,
ABangle and ST RosettaAntibody have almost no overlap in their
correct predictions, with only one target achieving a sub-2.0OCD pre-
diction from both methods. When the template with the best OCD of
the 10 models from the MT grafting prediction was used, however,
RosettaAntibody substantially outperformed ABangle, as shown in
Figure 9b. RosettaAntibody predicted 10 of 11 targets within 2.0
OCD of native, including six targets for which ABangle had made
an incorrect prediction. The OCD values for each of the AMA-II anti-
body targets predicted by RosettaAntibody ST, RosettaAntibody MT
(best prediction only), and ABangle, both as reported by Bujotzek
et al. (2015) and as predicted by the ABangle server, are shown in
Table I. Counts of strong successes (OCD ≤ 1.0), total successes
(OCD≤ 2.0) and failures (OCD > 2.0) are included for each protocol.

Discussion

Predicting VL–VH orientation in antibodies is not trivial, though it has
been treated as such until recently, with no one quantifying it, let alone
explicitly predicting it, until 2010 (Abhinandan and Martin, 2010).
The sequence signal determining VL–VH orientation is less strong,

Fig. 9 Results of ST (a) and MT (b) RosettaAntibody after the grafting stage for
the 11 members of the AMA-II set compared with the predictions of ABangle
(Bujotzek et al., 2015). In (b), only the template with the lowest OCD is plotted;
the other nine MT templates are omitted. Points above the line indicate targets
in which the RosettaAntibody models are more accurate than the ABangle
models, and vice versa.

Table I. Performance of ST and MT RosettaAntibody and ABangle in capturing VL–VH orientation for the 11 members of the AMA-II antibody
set

Target ST MTa ABangle (paper) ABangle (server)

1 2.60 1.54 0.38 1.05
2 3.47 1.51 2.61 5.74
3 7.48 0.97 2.60 1.44
4 3.04 0.30 1.07 2.59
5 1.27 1.27 8.15 6.16
6 2.60 2.60 1.53 3.71
7 3.43 1.48 4.96 4.36
8 0.64 0.19 3.36 0.01
9 0.68 0.15 1.41 1.34
10 2.04 0.50 0.78 15.11
11 0.66 0.66 4.36 5.40
Strong successes (≤1 OCD) 3/11 (27%) 6/11 (55%) 2/11 (18%) 1/11 (9%)
Successes (≤2 OCD) 4/11 (36%) 10/11 (91%) 5/11 (45%) 4/11 (36%)
Failures (>2 OCD) 7/11 (64%) 1/11 (9%) 6/11 (55%) 7/11 (64%)

Both the ABangle results reported by Bujotzek et al. (2015) and the results from the ABangle server are shown.
aBest OCD of 10 MT grafted structures.
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or at least less well-understood, than the conserved sequences of
non-H3 CDR loops. Prediction is made more difficult by the wide-
ranging yet fine-grained variation of VL–VH orientation: the VL and
VH domains do not fall neatly into discrete canonical conformations,
and the qualities of a successful prediction are less clear than those of a
CDR loop. Quantifying the orientation unambiguously is thus an im-
portant step toward ‘setting the goalposts’ by defining the success case:
where a predicted structure and a native structure have matching
orientation definitions. The new framework, LHOC, with just a four-
dimensional complexity, creates a functionally unambiguous orienta-
tion definition, where two structures with similar LHOC metrics will
always superimpose within the tolerance of their intradomain struc-
tural differences.

The addition of MT grafting into RosettaAntibody advances
VL–VH prediction. While the quick rMT protocol only makes slight
gains on the ST protocol, sacrificing accuracy for speed, the full-length
MT protocol makes nearly universal gains on the former standard,
sampling orientationally accurate candidate structures in 93% of the
targets in our benchmark set. By including additional candidate
VL–VH donor orientation models, MT RosettaAntibody also doubles
the number of correctly predicted targets within the AMA-II bench-
mark set relative to the ABangle prediction method. Although
ABangle’s single prediction is more accurate, on average, than the
ST prediction, the 10 predictions from MT RosettaAntibody cover a
larger conformational space, producing higher fidelity predictions
overall. MT RosettaAntibody is not necessarily limited to using only
RosettaAntibody predictions, however; it is easily extensible. Outside
predictions, such as ABangle’s, could replace one of the 10 templates
or be added as an eleventh, which would likely improve the predictive
power further. A limitation of the newMTRosettaAntibody approach
is that it requires significantly more computation time: more than 1000
CPU hours are needed per prediction.

The VL–VH orientation is only one part of the paratope orientation,
but it is closely coupled to the other parts. Improving our ability to pre-
dict VL–VH orientation will improve our ability to predict the conform-
ation of CDR H3, a grand challenge of antibody homology modeling.
A correct VL–VH orientation places the H3 stem residues in the correct
location, and it defines the available space through which the H3 loop
can fold between the L and H chains. Conversely, better H3 prediction
methods should also benefit orientation predictions by limiting the
VL–VH geometries that can closely pack with the CDR H3.
Ultimately, in antibody modeling, the whole is more than the sum of
the parts.

Supplementary data

Supplementary data are available at PEDS online.
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