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Abstract
Craniofacial development is an intricate process of patterning, morphogenesis, and growth that involves many tissues
within the developing embryo. Genetic misregulation of these processes leads to craniofacial malformations, which comprise
over one-third of all congenital birth defects. Significant advances have been made in the clinical management of craniofacial
disorders, but currently very few treatments specifically target the underlying molecular causes. Here, we review recent stud-
ies in which modeling of craniofacial disorders in primary patient cells, patient-derived induced pluripotent stem cells
(iPSCs), and mice have enhanced our understanding of the etiology and pathophysiology of these disorders while also ad-
vancing therapeutic avenues for their prevention.

Introduction
The craniofacial complex is one of the most intricate and so-
phisticated parts of the human body. Its patterning and mor-
phogenesis involve a dynamic interplay between the ectoderm,
mesoderm, and endoderm, and a critical role is played by neural
crest cells, which give rise to the majority of skeletal and con-
nective tissues in the craniofacial region. These interactions are
established and maintained by numerous genes, including
those encoding a variety of transcription factors, growth factors,
and receptors (1,2). Disruption of gene expression or function re-
sults in devastating craniofacial anomalies, which have a

collective incidence rate of 1 in 600 births (3). Much of our cur-
rent understanding of the etiology and pathophysiology of cra-
niofacial disorders has been uncovered through the use of
model systems. Mice are considered by many to be the gold
standard for disease modeling, as they are anatomically and
physiologically comparative to humans and can be genetically
manipulated to mimic human phenotypes (4). Primary patient
cells and patient-derived iPSCs have proven to be a valuable
complement to the mouse model system by either highlighting
species-specific differences or further validating the observa-
tions already made in mice (5). The modeling of craniofacial
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disorders has not only informed genetic risk assessment and
patient prognosis but also identified potential targets for phar-
maceutical intervention. In this review, we highlight recent
efforts that have provided new information to advance the
treatment of five general classes of human genetic disorders,
with particular emphasis on the craniofacial region. In addition,
we discuss how this information furthers our understanding of
the molecular mechanisms regulating normal craniofacial
development.

Craniosynostosis
The cranial sutures are fibrous joints that form between the five
principal flat bones of the skull vault during embryogenesis.
From the early fetal period through the first years of life, the cra-
nial sutures are primary sites of bone growth and allow the skull
vault to expand with the growing brain. Formation and mainte-
nance of the suture, which include the osteogenic fronts of the
jointed bones and their interposed mesenchyme, is critical to
its function as a growth center. Dysfunction in genes that regu-
late the organization, proliferation, and/or differentiation
within the suture can lead to its premature fusion, a relatively
common birth defect known as craniosynostosis (6). Serious
clinical problems associated with craniosynostosis include cra-
niofacial deformities, increased intracranial pressure, and im-
paired brain development leading to learning difficulties or
developmental delay. Treatment plans involve surgery to re-
moves and reshapes large areas of the calvaria; however, for
many patients suture re-fusion necessitates repeated surgeries
(7). Thus, there is a clinical need to develop less invasive, more
effective therapies for craniosynostosis. Recent studies that ap-
ply our current knowledge of the molecular players in normal
and abnormal suture development have advanced the potential
for these new therapies.

The pathogenesis of syndromic craniosynostosis is com-
monly associated with gain-of-function mutations in Fibroblast
Growth Factor receptors (FGFRs) 1-3. FGF signaling promotes
proliferation and differentiation in osteogenic cells, most nota-
bly in the cranial sutures (8,9). Apert syndrome is usually caused
by dominant mutations in FGFR2 that increase ligand-
dependent activation and subsequently enhance osteoblast dif-
ferentiation (10). New findings show that expression or
nanogel-mediated delivery of a soluble form of FGFR2 harboring
the Apert mutation S252W blocks enhanced FGFR2 signaling
and inhibits craniosynostosis in a mouse model for Apert syn-
drome (11,12).

The Bone Morphogenetic Protein (BMP) pathway plays a crit-
ical role in the development of the skull vault. Increased BMP
signaling is associated with craniosynostosis (13–15), and antag-
onists of the pathway are being tested as a possible treatment
to prevent post-operative re-fusion. In a recent study, delivery
of the BMP antagonist GREMLIN1 via hydrogel that rapidly poly-
merized upon injection prevented bone re-growth in a mouse
model for re-synostosis (16).

Hypophosphatasia, a metabolic disorder with craniosyn-
ostosis, is caused by loss-of-function mutations in ALPPL,
the gene encoding Tissue-nonspecific Alkaline Phosphatase
(TNAP). TNAP is an osteoblast surface protein that induces
hydroxyapatite crystal growth by increasing inorganic
phosphate (17,18). A recent report shows that craniosynos-
tosis in Alppl knockout mice is rescued by subcutaneous
injection of a mineral-targeted form of recombinant
TNAP (19).

Craniofacial Dysmorphologies
Dysmorphic craniofacial features can often be quantified as an-
thropometric measurements outside the normal variance, and
these can be isolated or occur in a syndrome. As such, current
treatments are directed towards addressing the specific anoma-
lies on a patient-by-patient basis. While craniofacial dysmor-
phologies can have phenotypic overlap, the underlying
mechanism of disease is quite disparate. Due to their genetic
heterogeneity, an exciting frontier in the treatment of craniofa-
cial dysmorphologies is the possibility of targeted therapeutics
such as genome editing (20–23).

Brachio-ocular-facial (BOF) syndrome is associated with mis-
sense mutations in the TFAP2A gene encoding AP-2a, a tran-
scription factor with early roles in neural crest cell specification
and survival (24–26). Generation of the first fully penetrant cleft
lip and palate mouse model caused by mutations in Tfap2a re-
vealed that one cause of clefting can be subtle changes in FGF
pathway gene expression in the facial prominences.
Manipulation of Fgf8 gene dosage partially rescued the pheno-
type, suggesting that FGF signaling and/or downstream effec-
tors may be possible targets of pharmacological intervention in
BOF syndrome and nonsyndromic cases of clefting associated
with TFAP2A mutations (27).

Heterozygous mutations in BRAF are found in 50-75% of pa-
tients with cardio-facio-cutaneous (CFC) syndrome (21). BRAF is
a serine threonine kinase that regulates the RAS-MAPK signal-
ing pathway, and therefore CFC syndrome is classified as a
RASopathy (28). BrafQ241R/þmice exhibit embryonic/neonatal le-
thality with liver necrosis, edema, and craniofacial abnormali-
ties, effectively mimicking the phenotypes of human patients.
Interestingly, co-treatment with MEK inhibitors and histone
demethylase inhibitors rescued the pathophysiology (29). This
finding has implications not only for prospective therapies of
CFC syndrome but for other RASopathies as well. It will be im-
portant to examine the epigenetic contributions to heart and
skeletal defects in these disorders to inform upon the treatment
potential of combined inhibition of HRAS signaling and histone
demethylases.

Treacher Collins syndrome (TCS) is an autosomal dominant
disorder which presents with hypoplasia of the facial bones,
cleft palate, and low set, malformed ears (30). In a mouse model
of TCS, haploinsufficiency of the Tcof1 gene encoding the nucle-
olar phosphoprotein treacle reduces ribosome biogenesis, caus-
ing deficient proliferation and extensive apoptosis of
neuroepithelial cells via a nucleolar stress-induced, p53 path-
way (31,32). The recent discovery that treacle also functions in
DNA damage response/repair to limit oxidative stress-induced
neuroepithelial cell death identified a novel underlying contrib-
utor to the pathogenesis of TCS. Excitingly, in utero treatment
with antioxidants prevented DNA damage and minimized cell
death in the neuroepithelium to substantially ameliorate the
craniofacial anomalies in Tcof1þ/- embryos (33). While previous
work has shown that genetic and pharmacological inhibition of
p53 can suppress the neuroepithelial apoptosis in Tcofþ/- em-
bryos, maternal antioxidant dietary supplementation may be a
safer potential therapeutic for patients with TCS, given the risk
of tumorigenesis associated with p53 manipulation (32,33).

Dental Anomalies
Developmental dental anomalies are defined as marked devia-
tions from the normal color, contour, size, number, and degree
of formation of teeth. These malformations can occur either as
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part of a syndrome or as an isolated finding (34). In Costello syn-
drome (CS), a RASopathy associated with craniofacial, cardiac,
musculoskeletal, and neurodevelopmental abnormalities, char-
acteristic dental phenotypes include class III malocclusion,
enamel hypomineralization, and soft tissue hyperplasia (35).
Nearly all individuals with CS have a heterozygous mutation in
HRAS that results in constitutive activation of Ras signaling
(36,37). A CS mouse model expressing HRasG12V phenocopies
many aspects of the syndrome and was used to understand the
cellular mechanism underlying the hypomineralization of the
enamel (38). In this model, enamel-forming ameloblasts lack
polarity, and the ameloblast progenitor cells are hyperprolifera-
tive. Inhibition of MAPK led to complete rescue of the dental
phenotype, whereas modulation of either MAPK or PI3K signal-
ing corrected the defect in progenitor cell proliferation in CS
mice (38). This work defined for the first time distinct roles of
Ras signaling in tooth development and provided additional evi-
dence for the use of Ras inhibitors in treating CS and other
RASopathies.

Hereditary conditions involving nonsyndromic enamel con-
ditions are referred to as amelogenesis imperfectas (AIs). The
X-linked form of hypoplastic AI is associated with missense
mutations in Amelogenin, an extracellular matrix protein se-
creted by ameloblasts (39,40). The murine Y62H Amelogenin
mutation similarly results in the eruption of malformed tooth
enamel with severely compromised mechanical properties (41).
Recent work has demonstrated that this specific mutation dis-
rupts proper intracellular trafficking of amelogenin and induces
ER stress-related apoptosis in ameloblasts, classifying AI as a
protein conformational disease for the first time (42). Treatment
with 4-phenylbutyrate, which can act to relieve conformational
abnormalities of the protein, rescued the enamel phenotype in
affected female mice by promoting cell survival over apoptosis,
offering a potential therapeutic option for patients with this
form of AI (42,43).

Skeletal Dysplasias
Skeletal dysplasias represent one of the largest classes of birth
defects, with over 450 recognizable conditions (44). The cranio-
facial defects in these disorders result from the combinatorial
interactions of transcription factors, growth factors, and recep-
tors responsible for the intricate genetic patterning and mor-
phogenesis of craniofacial structures (45). With the advent of
next-generation DNA sequencing, clinical phenotypes can be
linked to key cellular processes of skeletal development, includ-
ing proliferation, differentiation, and apoptosis. Dominant mis-
sense mutations in FGFR3 that reduce chondrocyte proliferation
are associated with achondroplasia (ACH) and thanatophoric
dysplasia (TD), the most common genetic forms of dwarfism
(46–48). Craniofacial findings include macrocephaly, frontal
bossing, and midface hypoplasia in ACH, and macrocrania, clo-
verleaf skull, and frontal bossing in TD. The severity of these
chondrodysplasias is linked with the degree of constitutively
activated FGFR3 signaling through MAPK or STAT1, and as such,
therapeutic strategies have focused on decreasing excessive
downstream signaling (49,50). Recent work in patient-specific
iPSCs has identified statins as a potential drug to treat FGFR3-
mediated chondrodysplasias. Treatment with statins rescued
cartilage formation in chondrogenically differentiated TD1 and
ACH iPSCs and led to significant recovery of bone growth in an
ACH mouse model (51). While the precise mechanism of action
remains to be determined, the success of statin treatment

highlights a previously unappreciated role for anabolic activity
during chondrogenesis (52–54).

Maintaining the proper balance between proliferation and
differentiation is also critical for bone formation. Examination
of the pathophysiology of Bent Bone Dysplasia Syndrome
(BBDS) revealed an unexpected nuclear route for FGF signaling
to regulate osteoprogenitor cell proliferation and differentiation
via ribosome biogenesis (55). BBDS is a dominant disorder char-
acterized by bent long bones in the lower extremities and cra-
niofacial abnormalities including poorly mineralized calvaria,
craniosynostosis, midface hypoplasia, micrognathia, low-set
ears, and prenatal teeth. BBDS results from mutations in the
transmembrane domain of FGFR2 that redistribute the receptor
from the plasma membrane to the nucleolus, where it activates
ribosomal DNA transcription by halting RUNX2-mediated re-
pression (55,56). Inhibition of ribosomal RNA synthesis by small
molecules has been shown to be effective in preclinical cancer
models in mice and may be a potential therapeutic strategy to
specifically target the pro-proliferative nucleolar role FGFR2 in
BBDS and other FGFR2 gain-of-function disorders (57–60).

Cherubism is a condition caused by excessive osteoclast ac-
tivity in the mandible and maxilla, which drives progressive
proliferation of fibrous tissues and leads to severe facial defor-
mities. Spontaneous regression of bone lesions is usually ob-
served at puberty, and surgical intervention is only considered
when functional or aesthetic concerns arise (61,62). Recently,
two independent studies presented promising pharmacological
therapeutic approaches to inhibit or delay the progression of
cherubic lesions. Most patients with cherubism have gain-
of-function mutations in the gene encoding SH3BP2, an adapter
protein involved in the immune response. Sh3bp2 knock-in
mice develop massive infiltration of macrophages into skeletal
elements, including the jaw, which can be rescued by genetic
inhibition of TNF-a expression (63). Consistent with the role of
TNF-a, treatment with the anti-TNF-a inhibitor etanercept sig-
nificantly reduced facial swelling and bone loss in neonatal
mice. Furthermore, this phenotypic rescue was not recapitu-
lated in adult mice, emphasizing the importance of early diag-
nosis and treatment of cheribusm (64). An effective therapy for
patients with actively growing and established inflammatory le-
sions may be bone marrow (BM) transplants. Transplantation of
wild type BM cells to Sh3pb2 knockin mice rescued the systemic
inflammation and bone loss in adult cherubism that could not
be ameliorated by etanercept treatment (65). Treatment with
tacrolimus, an immunosuppressor that has been shown to in-
hibit activation of the calcineurin/NFATc pathway and osteo-
clastogenesis (66–68), led to significant clinical improvement in
a 4-year old boy with an aggressive form of cherubism; specifi-
cally noted was stabilization of jaw size and intraosseous osteo-
genesis (69). Future studies are needed to determine the precise
mechanism of action of tacrolimus and whether combined
treatment with anti-inflammatories may further ameliorate the
pathophysiology of cherubism.

Bone Mineral Density
Bone mineral density (BMD) is determined by the relative rates
of bone deposition and resorption, which are carried out by os-
teoblasts and osteoclasts, respectively. Mutations in the genes
controlling osteoblast and osteoclast function cause congenital
disorders with abnormal BMD. While these conditions present
with generalized skeletal abnormalities, the craniofacial find-
ings have important clinical complications. In osteopenic and
osteoporotic disorders, where bone resorption exceeds
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deposition, calvaria are undermineralized, malformed, and frac-
tured. In osteopetrotic disorders, where bone deposition out-
paces resorption, there is focal or widespread thickening of the
calvaria, skull base, and facial bones. Recent studies have sup-
ported the use of biologics to restore the balance between bone
anabolism and catabolism in congenital BMD disorders.

Genetic studies of congenital BMD disorders have demon-
strated that the Wnt/LRP5 pathway increases bone density by
promoting osteoblast production and function. Loss-of-function
mutations in the Wnt co-receptor LRP5 cause the low bone
mass disorder osteoporosis-pseudoglioma syndrome (OPPG),
while LRP5 gain-of-function mutations cause higher bone mass
disorders Van Buchem disease, osteosclerosis, and osteopetro-
sis (70–74). LRP5 mutations in higher bone mass disorders in-
crease the co-receptor activity by disrupting the binding of the
inhibitor sclerostin, which is inactivated in higher bone density
disorder sclerosteosis (75–78). These studies laid the ground-
work for development of an inhibitory antibody against sclero-
stin that is now in phase 3 clinical trials for the treatment of
postmenopausal osteoporosis (79). New evidence supports
repurposing anti-sclerostin to treat the very syndromes that ad-
vanced its discovery: depletion of sclerostin, either genetically
or through the use of anti-sclerostin, increases the BMD of
mouse models for OPGG (80,81). These findings also provide the
rationale for use of a recombinant Wnt/LRP5 inhibitor or inhibi-
tory antibody against LRP5 to block bone overgrowth in the
osteopetrotic disorders.

There is strong evidence to suggest that anti-sclerostin will
increase BMD in other skeletal fragility syndromes as well, such
as osteogenesis imperfecta (OI) and hereditary hypophosphate-
mic rickets, despite differences in the molecular pathologies.
While OI is largely caused by deficiencies in type I collagen pro-
duction, modification, or secretion, mouse models for OI gain a
significant increase in bone mass and strength when Wnt/LRP5
signaling is increased, through either expression of LRP5
gain-of-function mutation or treatment with anti-sclerostin
(82–86). Additionally, anti-sclerostin significantly improved os-
teomalacia in DMP1 knockout mice, a model for hereditary
hypophosphatemic rickets (82).

Mouse models with reduced BMD have enabled identifica-
tion of promising new targets for protein-based therapies.
Defective type I collagen biosynthesis in OI increases the bio-
availability of TGFb, leading to excessive TGFb signaling (87).
Promotion of osteoclast bone resorption by TGFb signaling pro-
vides a rationale for the use of inhibitory antibodies against
TGFb. Indeed, anti-TGFb treatment improved bone mass in
mouse models for OI (87). Knockout of Nell1, which codes for a
secreted bone-inducing factor, leads to age-related osteoporosis
(88). Correspondingly, delivery of recombinant NELL1 was
shown to increase bone formation via the Wnt pathway in both
small and large animal models of osteoporosis (89).

Future Directions
Studies that model congenital disorders in primary patient cells,
iPSCs, and mice have advanced therapeutic opportunities for
craniofacial disorders (Fig. 1). New technologies such as CRISPR/
Cas9 that increase the speed, efficiency, and simplicity in ge-
nome editing will allow for rapid generation of cell lines and
animal models that carry human disease-causing mutations
(90–93). Specifically, genome-editing techniques offer a way to
model Mendelian disorders in large animals, whose disease
states may more closely resemble humans than the mouse
models. Indeed, strategies for CRISPR/Cas9-modification in
monkey, pig, and goat embryos have recently been reported
(94–96). Genome editing will also aid in the study of congenital
disorders associated with allelic or locus heterogeneity, which
can complicate the diagnosis and treatment of these conditions
(44,97). Introducing patient-specific mutations will help to iden-
tify genotype-phenotype correlations and subtle differences in
the mechanistic effects of specific mutation. One of the most
exciting clinical applications of genome editing is the possibility
of correcting disease-causing genes. The therapeutic potential
of CRISPR/Cas9 is currently being investigated in patient-
derived iPSCs, organoid cultures, and mouse models (98–103).
These studies raise high hopes for improving the clinical diag-
nosis, treatment, and outcome of patients with craniofacial and
skeletal malformations.
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Figure 1. Pipeline for transforming insights from disease models into potential therapeutics for craniofacial disorders. Human genetic studies identify critical genes

linked to craniofacial disease. Mechanistic studies, using primary patient cells, patient-specific iPS cells, and/or animal models, probe the disease gene’s role in cranio-

facial biology. Once the biological function of the gene is discovered, therapeutic targets can be identified. Having an in-depth view of the target’s biology aids in select-

ing therapeutic modalities, such as biologics, small molecules, stems cells, and possibly gene editing.
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