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ABSTRACT
Master genes are known to induce the differentiation of a multipotent cell into a specific cell type.
These molecules are often transcription factors that switch on the regulatory cascade that triggers
cell specification. Gcm was first described as the master gene of the glial fate in Drosophila as it
induces the differentiation of neuroblasts into glia in the developing nervous system. Later on, Gcm
was also shown to regulate the differentiation of blood, tendon and peritracheal cells as well as that
of neuronal subsets. Thus, the glial master gene is used in at least 4 additional systems to promote
differentiation. To understand the numerous roles of Gcm, we recently reported a genome-wide
screen of Gcm direct targets in the Drosophila embryo. This screen provided new insight into the
role and mode of action of this powerful transcription factor, notably on the interactions between
Gcm and major differentiation pathways such as the Hedgehog, Notch and JAK/STAT. Here, we
discuss the mode of action of Gcm in the different systems, we present new tissues that require
Gcm and we revise the concept of ‘master gene’.
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The Gcm Cascade

Glial Cell missing/Glial cell deficient (Gcm/Glide or
Gcm throughout the text) is an atypical zinc finger
transcription factor essential for the differentiation of
the lateral glial cells in the Drosophila embryo. gcm
loss of function (LOF) embryos are devoid of glial
cells, with neural precursors or neuroblasts producing
essentially neurons (Fig. 1A, A0). Conversely, embryos
expressing Gcm throughout the nervous system (gcm
gain of function (GOF) embryos) present supernu-
merary glial cells with neuroblasts producing essen-
tially glia.1-3 Due to its preponderant role in glia
development, Gcm was first described and named as
the master regulator of glia differentiation and indeed
ectopic expression of Gcm is sufficient to induce the
expression of glial markers even in the epidermis and
in the mesoderm,4 much as the ectopic expression of
the famous eyeless master gene is sufficient to induce
the formation of ectopic eyes on wings, legs and
antennae.5

Subsequently, Gcm was shown to be expressed and
required in the immune system, where it participates

to the development of the embryonic professional
macrophages called plasmatocytes (Fig. 1B).6-8 The
role of gcm in plasmatocytes is not as essential as in
the nervous system. gcm LOF animals present a deficit
in plasmatocytes but not a total lack; moreover, the
mutant plasmatocytes differentiate incompletely,
expressing only some markers and lacking their
phagocytic capacity.6,8,9 Interestingly, glia and blood
represent the major phagocytic cells within and out-
side the nervous system respectively,10,11 a functional
relation that is worth exploring in the future and that
may explain the shared requirement for Gcm.

More recently, however, Gcm was also shown to be
expressed in tendon cells, in peritracheal cells and in
specific neuronal populations (Fig. 1C and D).12-17

Importantly, in these tissues, the gene is expressed in
the differentiated cells, as opposed to the transient and
early expression observed in glia and in hemocytes,
already suggesting that the so-called master genes may
have distinct roles depending on the cell type. In ten-
don cells, Gcm is necessary for their function/terminal
differentiation. gcm LOF embryos display altered
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muscle attachment.18,19 In the trachea, gcm is expressed
in the peritracheal secretory cells called INKA cells.17

The INKA cells secrete the ecdysis-triggering hormone
and participate to the control of ecdysial behaviors.20

gcm LOF animals are devoid of INKA cells.17 Finally,
gcm is expressed in specific embryonic and post-embry-
onic neuronal populations of the brain and indeed the
only cell type expressing Gcm in the adult nervous sys-
tem are the neuronal clusters in the brain.12-17 The
neuronal expression of Gcm represents a conundrum,
since the ectopic expression of Gcm throughout the
neurogenic region leads to the differentiation of glia at
the expense of neurons. One likely explanation is that
these neurons may express Gcm only when they are
already differentiated, as it is known that ectopic
expression of Gcm in postmitotic neurons does not
trigger their conversion into glia.21

Similar to Gcm, other “master genes” are also
expressed in several cell types. Eyeless, which was first
described for its role in retina development,5 is
involved in the development of the mushroom
body,22-27 in the development of the insulin producing
neurons 25 and in the optic lobes, where it participates
to the temporal cascade defining the medulla neuro-
blasts’ fate 26,27 and regulates neuronal migration.22

…revisited by the DamID screen

To gain a better understanding of the Gcm regulatory
network, we recently performed a genome-wide screen
of Gcm direct targets in the whole organism using the
DNA adenine methyltransferase (Dam) identification
technique.28-30 This technique consists in building a
fusion protein between Gcm and the Dam, expressing
the fusion protein in the whole embryo and deducing
the binding sites of Gcm from the adenine methyla-
tion profile of the genome. This approach allowed a
comprehensive identification of the Gcm direct tar-
gets, a strong advantage over microarray assays that
likely favor the identification of indirect targets. This
method also allowed us to identify the potential direct
targets without tissue or developmental stage biases.
Typically, we identified and validated direct targets of
Gcm that are found to be expressed in larvae but not
in embryos. Thus, this approach allowed a compre-
hensive identification of the genes directly regulated
by Gcm and we could validate the efficiency of the
DamID by functional assays (41 genes were validated
out of 47 tested).

Overall, the DamID screen revealed 1031 direct targets
and gave novel insights on the biological pathways

Figure 1. A-A0) Confocal projections of wild type (A) and gcm LOF (A0) embryos at stage 14 immunolabelled with the Repo glial marker,
anterior to the left, latero-ventral views. Note the absence of glia in the gcm LOF embryo. B, C) Confocal sections of a gcm > GFP
transgenic embryo at stage 14 labeled with the anti-GFP antibody, anterior to the left, dorso-lateral views. The section was acquired in
the inner layers of the embryo to reveal the circulating hemocytes, outlined by a dashed line in (B) and in the outer layers to reveal the
tendon cells indicated by arrowheads in (C). The scale bar in (A–C) represents 50 mm. D) Tracheal branch of a gcm > GFP 3rd instar larva
analyzed by epifluorescence microscopy (200x magnification). The INKA cells are recognizable by their position and are outlined by the
dashed line.
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regulated by the Gcm transcription factor. The most
prominent observations are that (i) Gcm targets major
developmental cascades, (ii) Gcm accompanies cell speci-
fication, from the inhibition of the stem cell identity to
the activation of genes necessary for the function of the
differentiated cell and (iii) Gcm is present in tissues where
it was never detected before.

Interaction between Gcm and major
signaling pathways

One of the foremost observations of our DamID
screen is the impact of Gcm on 3 major developmental
pathways: JAK/STAT, Hedgehog and Notch. These
pathways are activated mostly in non-cell autonomous
fashion, which means that they allow a cell to sense
and react to the surrounding environment. During
development, these pathways are widely used to syn-
chronize the development of specific cell types at the
appropriate time and place.

The Notch pathway was extensively described dur-
ing the differentiation of sensory organ precursors
(SOP). Notch (N) is a transmembrane protein that is
activated by adjacent cells expressing the transmem-
brane ligands Delta (Dl) or Serrate (Ser).31,32 In the
wing disc, the SOPs are specified during the larval
stage from groups of 3 to 7 cells called proneural clus-
ters.33 One cell of the cluster expresses Dl and differ-
entiates into the SOP. Dl activates the N pathway in
the adjacent cells and leads to the inhibition of the
SOP fate ensuring that only one SOP is defined per
cluster.34-36 This mechanism is known as lateral inhi-
bition. Of note, the N pathway is directly involved in
gliogenesis by inducing Gcm expression in the central
nervous system and repressing Gcm expression in spe-
cific lineages of the peripheral nervous system.37-39

According to the DamID screen, Gcm induces the
expression of the receptor N, its ligands Ser and Dl as
well as its down-stream targets the E(spl) complex.

For the JAK/STAT pathway, its non-cell autono-
mous activation is observed in the differentiation of
plasmatocytes into lamellocytes after parasitization.
The parasitoid wasps lay eggs in the Drosophila larvae
and trigger an immune response.40,41 Upon parasitiza-
tion, the circulating plasmatocytes secrete cytokines
such as Unpaired 2 (Upd2) and Unpaired 3 (Upd3)
and recruit more hemocytes.42 The cytokines activate
the JAK/STAT pathway, thus inducing plasmatocytes
proliferation and differentiation into lamellocytes,43-46

which then encapsulate the wasp egg.40,47 Gcm was
previously described as an inhibitor of the JAK/STAT
pathway,48 and the DamID screen indicates that Gcm
targets the transcription factor Stat92E, the inhibitors
Ptp61F and Socs36E and the cytokine Upd1.

As per the Hedgehog pathway, this non-cell auton-
omous signalisation is exemplified in the setting of
segmentation in the Drosophila embryo. The pathway
is activated by the secreted protein Hedgehog (Hh)
(reviewed by Lum and Beachy 49). Hh is expressed in
the posterior part of each segment of the embryo and
diffuses toward the anterior part. This creates a gradi-
ent of Hh from posterior to anterior that activates the
Hh target genes in a dosage dependent fashion and
allows the differentiation of specific precursors
according to their positions in the segment (reviewed
by Sanson 50). Of note, the Hh pathway controls Gcm
expression during tendon cell differentiation.19 The
DamID screen revealed that Gcm induces the expres-
sion of the secreted molecule Hh, its receptor Ptc, the
transmembrane protein Smo, the transcriptional regu-
lator Ci and the down-stream targets Roadkill (Rdx)
and Decapentaplegic (Dpp).

Importantly, for the 3 pathways Gcm induces the
expression of the ligands (i.e. Dl/Ser, Hh, Upd1), that
of the receptors and of core components (i.e., N, Ptc/
Smo/Ci and Stat92E) as well as that of the down-
stream targets (i.e. E(spl) complex, Rdx/Dpp), mean-
ing that Gcm can act upstream and downstream of
the pathways. In addition, the N and the Hh pathways
are already known to modulate Gcm expression,
which suggests the presence of feedback regulatory
loops between Gcm and the different signaling path-
ways. Overall, these data show that Gcm interacts
strongly with the 3 major signaling pathways and that
it can modulate the pathways at multiple levels.

Gcm accompanies cell specification, from the
inhibition of stem cell identity to the function
of the differentiated cell

Gcm induces the expression of inhibitors of alterna-
tive fates and inhibitors of stem cells factors. For
instance, Drosophila neuroblasts produce glia and
neurons and Gcm induces the expression of the tran-
scription factor Tramtrack (Ttk), which represses the
neuronal fate,51 as well as the expression of genes
repressing neuroblast proliferation (mira, lola, pros
and brat).30 In the developing immune system,
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prohemocytes produce crystal cells and plasmatocytes
and Gcm promotes the expression of the zinc finger
transcription factor called U-shaped (Ush), which
inhibits crystal cell formation.30,52

Gcm also induces the transcription of genes that
control the final differentiation of the cells. The most
described target of Gcm is Repo, a homeodomain
transcription factor that remains expressed in glia
until adulthood.53-56 After an initial phase of gliogene-
sis in which repo expression depends on Gcm, Repo
maintains its own expression through autoregulation
and becomes independent of Gcm.56,57 This fits with
the recently emerged concept that transiently
expressed master genes are relayed by their target
genes that code for permanently expressed transcrip-
tion factors. In line with this idea, repo mutant glia
lose the expression of late glial markers (reviewed by
Cattenoz and Giangrande 58).54,59 Comparable mecha-
nisms are displayed during the specification of the
muscle cells in the mesoderm: the myogenic determi-
nant Twist (Twi) is expressed transiently and induces
the expression of Myocyte enhancer factor 2 (Mef-2)
that initially depends on Twi and subsequently
becomes independent of it, to carry over the myogenic
differentiation program.60-63

In addition to the classes of genes described above,
the screen revealed that Gcm targets directly numer-
ous genes that function in the fully differentiated cells.
Typically, Gcm induces the expression of proteins
working in the blood brain barrier, in axon ensheath-
ment or in chemoattraction. These genes are necessary
in glial subsets when these cells are thought to be ter-
minally differentiated. In the immune system, Gcm is
expressed at early embryonic stages and induces the
expression of proteins involved in the defense against
pathogen that will not be necessary before the larval
stage.30 Thus, the DamID data strongly suggest that
the Gcm fate determinant directly contributes to late
aspects of differentiation/function by inducing the
expression of effector molecules, the expression of
whose could be maintained/sustained by molecules
such as the Repo transcription factor in glia. A first
example is provided by Frazzled (Fra), the chemoat-
tractant receptor for the Netrin ligand. We have
recently found that this receptor is expressed in wing
peripheral glia where it triggers the initiation of migra-
tion. Gcm induces the expression of Fra, which is sub-
sequently maintained by Repo (Gupta et al. Under
Revision). The simplest interpretation is that

migration (and Fra expression) is part of the glial
specification pathway, which is hence initially trig-
gered by Gcm. In this way, the long-lasting impact of
fate determinants may ensure a safer cell specification
pathway. Similar observations were made for Eyeless,
which regulates the expression of the photoreceptor
Rhodopsin necessary for the function but not the
development of the eye.64-67

Novel tissues and molecular pathways
involving Gcm

A Gene Ontology (GO) analysis was carried out on the
list of genes identified by the DamID screen. In such
analysis, each gene is associated to a list of terms (GO
terms) summarising their functions. The comparison
of the DamID list of terms with the list of terms of the
whole genome allows the identification of terms that
are over-represented.68 Surprisingly, the analysis sug-
gests a role for Gcm in tissues/biological processes in
which its expression or function had never been
described before: the reproductive system, salivary
glands, eye and heart development, further broaden-
ing the spectrum of Gcm activity (Fig. 2A). While con-
firmation awaits thorough functional studies, a
developmental analysis of the gcm expression profile
has been initiated using the G-trace approach in order
to validate the DamID finding.69 This type of experi-
ments detects the cells that express or have expressed
a given gene at some point of their life. For instance,
gcm G-trace analyses identify the 3rd instar larva sali-
vary gland as a tissue expressing Gcm (Fig. 2B). Quan-
titative PCR assays do confirm gcm expression
(normalized to Act5C and Gapdh the level is
0.00015 s.e.m. 2,93E-05, n D 3 with > 10 glands per
sample) and the analysis of a gcm hypomorphic, viable
allele obtained by gene conversion on a P element
inserted into the gcm promoter (gcmGal4)14,70 reveals
a stronger variability in the length of the salivary
glands as compared to that observed in wild type ani-
mals (Fig. 2C). Of note, the size of the nuclei and the
number of cells per gland do not vary significantly
(Fig. 2D and E). This data suggest a potential role for
Gcm in the late differentiation or function of the sali-
vary gland. Thus, the DamID screen allowed us to dis-
cover new territories requiring Gcm and further
experiments will clarify the precise role of Gcm in
these tissues.
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Together with the observation that the glial master
regulator is also required in tendon, neurons and peri-
trachea, the DamID data already indicate that the
instructive role of ‘master genes’ has to be reconsid-
ered as the activity of these regulatory genes depends
on cell-specific factors/epigenetic landscapes. This is
exemplified by the loss of Gcm gliogenic potential in
differentiated neurons and in aging neuroblasts. The
neuroblasts divide several times during embryogenesis
and Gcm efficiently converts early neuroblasts toward
the glial fate but is unable to do so in late neuro-
blasts.21 Another example is provided by cell-specific
manipulation of gene expression in the tendon cells,
where gcm activity is tightly localized by the positional
cues wingless and hh. Overexpression of gcm through-
out the posterior region of the segment, where
tendons cells differentiate from, leads to the expres-
sion of both tendon and glial cell markers whereas
ectopic expression in the anterior region leads to the
expression of glial cell markers only.19 Similar cell-
specific factors may be at work in other tissues/stages

(see also below). A particularly interesting question
related to cell specificity concerns the factors that
allow Gcm to control gliogenesis vs. hematopoiesis,
which may help understanding how similar are the
phagocytic cells outside and within the nervous
system, an open question in vertebrates as well.

Gcm: More than the glial master gene

Altogether, the above data call for master genes having
a much more refined role than expected in time and
in space. They have a long lasting effect on cell differ-
entiation, as seen for the migrating glia. They act in
many more tissues than initially thought and they
have a more prominent role in some tissue than in
others, for example in the nervous system all lateral
glia, but only few neuronal subsets require Gcm. And
finally, some systems express them transiently during
differentiation like glia and hemocytes whereas others
express them in differentiated cells, like neurons and
salivary glands. This prompts us to consider more

Figure 2. A) Tissues associated GO terms issued from the enrichment analysis carried out on the list of genes identified as Gcm direct
target by the DamID screen, using DAVID.30,69,70 The list displayed was arbitrarily limited to 3 GO terms per tissue, each GO term being
enriched more than 2 folds with a P-value below 0.05. Dark gray indicates tissues/biological processes already known to require Gcm,
intermediate intensity gray indicates a tissue analyzed in this report, pale gray indicates tissues/biological processes still not shown to
require Gcm. B) Gcm lineage analysis revealed by GFP labeling in a gcmGal4/C;gtrace/C 3rd instar larva. Tissues were analyzed by epi-
fluorescence microscopy (20x). Note the presence of GFP positive cells throughout the salivary glands (SG), in the central nervous system
(CNS) and in the trachea (T). The signal is much stronger in salivary glands, due to chromosome polytenysation. C) Length of the salivary
glands in wild type and in gcm hypomorphic 3rd instar larvae (n D number of salivary glands). F-test was used to compare the variance
in the 2 genotypes. The gcm hypomorphic allele used is gcmGal4 (also called P{GawB}gcmrA87.P, Flybase ID: FBti0130081) in homozygous
condition. D) Size of the nuclei (diameter) of the salivary gland cells in wild type and in gcm hypomorphic 3rd instar larvae. Size was esti-
mated on 50 nuclei from 5 salivary glands using FIJI. 72 Student test was used to calculate the P-value. E) Number of nuclei in the salivary
glands (n D 10) of wild type and gcm hypomorphic 3rd instar larvae. ns indicates that the difference is not significant.
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sophisticated approaches to study Gcm function.
Indeed, genes acting on a single tissue can be charac-
terized directly by observing the phenotype of the full
knock-out. Such experiments led to the definition of
Gcm as the master regulator of glia differentiation.1-3

However, pleiotropic genes should be studied in a tis-
sue/stage specific fashion to understand the molecular
mechanisms at play in each system.71 Further charac-
terization of Gcm using conditional knock down and
MARCM clones will allow a complete understanding
of Gcm’s role in Drosophila development and will
shed light on the real impact of this fate determinant.

More broadly, investigations of regulatory genes
including gcm and ey clearly suggest that master genes
have multiple functions in multiple tissues. These
powerful transcription factors are largely “reused” in a
large range of systems. This goes in line with the fact
that the development of an organism requires the
generation of numerous cell types with a limited
number of instructive molecules, which implies the
multi-usage of the most powerful of them.
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