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Abstract

Human visual performance has been observed to exhibit superiority in localized regions of the 

visual field across many classes of stimuli. However, the underlying neural mechanisms remain 

unclear. This study aims to determine if the visual information processing in the human brain is 

dependent on the location of stimuli in the visual field and the corresponding neuroarchitecture 

using blood-oxygenation-level-dependent functional MRI (fMRI) and diffusion kurtosis MRI 

(DKI), respectively in 15 healthy individuals at 3 Tesla. In fMRI, visual stimulation to the lower 

hemifield showed stronger brain responses and larger brain activation volumes than the upper 

hemifield, indicative of the differential sensitivity of the human brain across the visual field. In 

DKI, the brain regions mapping to the lower visual field exhibited higher mean kurtosis but not 

fractional anisotropy or mean diffusivity when compared to the upper visual field. These results 

suggested the different distributions of microstructural organization across visual field brain 

representations. There was also a strong positive relationship between diffusion kurtosis and fMRI 
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responses in the lower field brain representations. In summary, this study suggested the structural 

and functional brain involvements in the asymmetry of visual field responses in humans, and is 

important to the neurophysiological and psychological understanding of human visual information 

processing.
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Introduction

Human visual performance differs throughout the visual field in response to a variety of 

stimuli. Specifically, humans may perform better in the lower visual field than upper visual 

field, a phenomenon often referred to as vertical asymmetry1–3. Horizontal-vertical 

anisotropy has also been demonstrated, whereby visual performance appears better in the 

horizontal meridian than vertical meridian in many classes of stimuli4,5. However, the neural 

mechanisms of such lower visual field and horizontal meridian advantages in human visual 

processing remain incompletely understood6–9. It is unclear whether and how the human 

brain is involved, through structure or function, in this differentiation of behavioral 

performance across the visual field. It is also unclear if structural-functional brain 

relationships exist across the visual field. Understanding the neural correlates of visual field 

performance in normal healthy subjects may lay a foundation into the neurophysiological 

and psychological mechanisms of visual information processing. It may also help provide 

insights to the neural basis of visual outcomes in diseases that are susceptible to regional 

visual field deficits. For example, primary open angle glaucoma has been shown to 

preferentially affect the superior visual field over the inferior visual field10, however falls 

may occur more frequently in subjects with inferior than superior visual field loss11.

This study aims to determine if the processing of visual information in the brain is 

dependent on the location of stimuli in the visual field by quantitatively examining the 

brain’s response to visual presentations to (1) the upper and lower hemifields and (2) the 

vertical and horizontal meridians using functional magnetic resonance imaging (fMRI). To 

detect a potential structural correlate of visual field asymmetry, the neural tissue 

characteristics across the activated brain areas in fMRI were evaluated using diffusion 

kurtosis imaging (DKI) and diffusion tensor imaging (DTI). DTI implicitly assumes that 

water molecule diffusion occurs in a free and unrestricted environment with a Gaussian 

distribution of diffusion displacement. However, the complex cellular components and 

structures in biological tissues hinder and restrict the diffusion of water molecules12,13. Such 

restricted or non-Gaussian diffusion hence cannot be approximated accurately by a DTI 

model. DKI is an extension of the DTI technique, which approximates the diffusion 

weighted signal attenuation more accurately by quantifying the degree of non-Gaussian 

diffusion. This may provide a more precise representation of water diffusion properties in 

the brain than DTI alone, and thus is potentially more sensitive to microstructural 

complexities in both gray matter and white matter of the brain12,13. We hypothesized that the 

human brain is more sensitive to visual stimulation to the lower hemifield and the horizontal 
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meridian than the upper hemifield and the vertical meridian, respectively in fMRI. 

Additionally, DKI may be more sensitive than DTI to detect differences in neuroarchitecture 

between different visual field representations.

Materials and Methods

Fifteen healthy adults (8 males and 7 females, mean age = 27.1±3.5 years, age range = 22–

32 years) were recruited for participation in this study. All subjects had no known mental or 

neurological disorders and had normal or corrected-to-normal vision. Informed consent was 

obtained from all individual participants included in the study prior to participation. All 

studies were approved by the University of Pittsburgh Institutional Review Board in 

accordance with the Declaration of Helsinki.

MRI Protocol

All fMRI and DKI data were collected on a 3-Tesla Siemens Allegra scanner using a single 

channel transmit/receive head volume coil with an integrated mirror and a rear-projector 

giving a field of view of 26 degrees. For fMRI, the brain activity in response to visual field 

presentations was assessed by fMRI scans with both eyes open and focusing on a fixation 

point to establish the center of the visual field. Each fMRI scan was 5 min long consisting of 

12 blocks of alternating 12 s of rest and 12 s of visual stimulation. The stimuli were 

checkerboard patterns flashing at 8 Hz and were presented using the e-prime software 

(Psychology Software Tools, Inc., Sharpsburg, PA, USA) at full contrast. Each participant 

underwent 2 separate fMRI scans, where 2 visual field regions [(1) upper versus lower 

hemifields, or (2) vertical versus horizontal meridians] were stimulated and compared during 

each scan by alternating the stimulus pattern between odd and even blocks. Blood-

oxygenation-level-dependent (BOLD) images were collected using a single-shot gradient-

echo echo-planar-imaging pulse sequence with the following parameters: repetition time = 2 

s, echo time = 26 ms, field of view = 24×24 cm2, 96×96 imaging matrix, 2.5×2.5 mm2 in-

plane resolution and 28 contiguous 2.5 mm thick axial slices. The slices were arranged to 

cover most of the cerebrum while ensuring the entire occipital lobe was covered.

For DKI, data were collected in the same subjects after fMRI scans using a single-shot spin-

echo echo-planar-imaging pulse sequence with the following parameters: repetition time = 

5400 s, echo time = 112 ms, field of view = 24×24 cm2, 96×96 imaging matrix, 2.5×2.5 

mm2 in-plane resolution and 36 contiguous 2.5 mm thick axial slices. Five non-diffusion-

weighted images (b0) and 50 diffusion-weighted images at 50 gradient directions were 

acquired at diffusion weighting factor (b) = 500, 1000, 1500, 2000 and 2500 s/mm2 each.

Data Analysis

FMRI data processing was carried out using FEAT (FMRI Expert Analysis Tool) v.5.98 in 

FSL software14. The following pre-processing procedures were applied: motion correction 

using MCFLIRT15, non-brain removal using BET16, grand-mean intensity normalization of 

the entire 4D dataset by a single multiplicative factor, and high-pass temporal filtering using 

Gaussian-weighted least-squares straight line fitting with sigma = 24.0 s. Time-series 

statistical analysis was carried out using FILM with local autocorrelation correction17. Z 
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(Gaussianised T/F) statistic images were thresholded using clusters determined by Z>2.3 

and a corrected cluster significance threshold of p=0.0518. Mean BOLD % change and 

BOLD activation volume were calculated for each participant and were compared between 

upper and lower hemifields, or between vertical and horizontal meridians using Wilcoxon 

matched-paired signed rank tests with significance set at p<0.05 (GraphPad Prism v.6.00, 

GraphPad Software, La Jolla California USA).

For DKI, co-registration between non-diffusion-weighted b0 images and diffusion-weighted 

images at different b-values was performed using SPM8 (Wellcome Department of Imaging 

Neuroscience, University College, London, UK). To evaluate the sensitivity of DKI and DTI 

in detecting brain structural differences across visual fields, both diffusion tensors and 

kurtosis tensors were fitted on a pixel-by-pixel basis from the non-diffusion-weighted b0 

images and the diffusion-weighted images using a Levenberg–Marquart non-linear fitting 

algorithm12. The eigenvectors and eigenvalues of the diffusion tensors and kurtosis tensors 

were derived to compute the DTI and DKI parametric maps including the fractional 

anisotropy, mean diffusivity and mean kurtosis maps. These diffusion-based MRI parametric 

values were extracted from the regions of interest given by the fMRI brain activation maps 

for each of the four visual stimulus locations (upper and lower visual fields, and the 

horizontal and vertical meridians). Wilcoxon matched-paired signed rank tests were 

performed comparing the DTI and DKI measures of all participants between the upper and 

lower hemifields, or between the vertical and horizontal meridians with significance set at 

p<0.05. Lastly, to explore the relationships between fMRI and DKI or DTI, Pearson’s 

correlation coefficient was calculated between each of the diffusion-based MRI parametric 

values and BOLD % change with statistical significance set at 0.05 (GraphPad Prism v.6.00, 

GraphPad Software, La Jolla California USA).

Results

Figure 1 shows the visual presentation patterns and the representative brain activation maps 

in response to visual stimulation to the upper and lower hemifields (top 2 rows) and the 

vertical and horizontal meridians (bottom 2 rows). Upper and lower hemifield stimulation 

predominantly activated the ventral and dorsal regions of the occipital cortex, respectively 

including but not limited to the visual areas V1, V2 and V3. On the other hand, the brain 

regions activated by vertical and horizontal meridian stimulation were mainly localized at 

the V1–V2 and V2–V3 borders, respectively. Quantitative analyses in Figure 2 show that 

both the average BOLD % change and the BOLD volume in the activated brain regions were 

significantly greater for lower hemifield stimulation than upper hemifield stimulation. No 

apparent difference in the average BOLD % change was observed between vertical and 

horizontal meridian visual stimulation. However, visual presentation to the horizontal 

meridian appeared to activate slightly larger brain volumes than visual presentation to the 

vertical meridian (p=0.11).

Figure 3 depicts the representative diffusion-based MRI parametric maps in the ventral and 

dorsal slices of the brain. The brain regions mapping to the lower visual field by fMRI 

exhibited significantly greater mean kurtosis than the upper visual field (Fig. 4), whereas the 

T2-weighted signal intensity (bo)(p=0.08) and mean diffusivity (p=0.07) showed a trend 
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toward being greater with the upper field brain representations than the lower field (Fig. 4). 

There was no significant difference in fractional anisotropy between hemifield presentations 

in the brain (p>0.1). Comparing the brain regions mapped by horizontal and vertical 

meridian stimulation in fMRI, no apparent difference in any of the diffusion-based MRI 

measures was observed, although there was a trend towards greater mean kurtosis in the 

brain regions activated by the vertical meridian relative to the horizontal meridian (p=0.08)

(Fig. 5).

The Pearson correlation coefficients between functional BOLD % change and diffusion-

based MRI measures are presented in Table 1. Significant positive relationships were 

observed between BOLD % change and mean kurtosis for the lower field brain 

representation only.

Discussion

The present results corroborate recent psychophysical1–3 and neurophysiological 

studies6–9,19 that showed asymmetries between upper and lower field visual information 

processing. Specifically, lower hemifield visual stimulation produced stronger brain 

responses than upper hemifield stimulation in fMRI8,9, visual evoked potentials7 and 

magnetoencephalography6, suggesting that the human brain is more sensitive to certain 

environmental changes in the lower visual field than the upper visual field. In DKI, the brain 

regions represented by the lower visual field showed generally greater mean kurtosis than 

the upper visual field. This suggests the presence of neuroanatomical differentiation across 

visual field brain regions. For example, recent literature suggested a larger number of 

cortical neurons corresponding to stimuli in the lower than upper visual field9. Significant 

differences in receptor densities were also observed between dorsal and ventral visual 

cortices in the human brains20. Such neuronal and molecular distributions may restrict water 

diffusion to different extents between lower and upper field brain representations leading to 

the different mean kurtosis as observed in the current study. Both structural and functional 

brain differences between hemifields may also arise due to the fact that there is more cortical 

area designated to the lower field observed in both humans and non-human primates19,21. 

Only kurtosis, and not tensor measures showed a significant difference between hemifield 

brain presentations in diffusion-based MRI, possibly because DKI is more sensitive than 

DTI in detecting brain microstructural differences in neural tissues, particularly in the gray 

matter12.

There was a trend approaching significance toward greater BOLD activation volumes and 

lower mean kurtosis for the horizontal meridian presentation than the vertical meridian in 

the brain. The vertical and horizontal meridians are known to retinotopically map to the V1–

V2 and V2–V3 borders, respectively, and may possess horizontal-vertical anisotropy 

perceptually in humans4,5. Although visual stimulation to the horizontal meridian activated 

slightly larger brain areas than the vertical meridian, the lack of difference between the 

strengths of functional brain responses to the vertical and horizontal meridian visual 

stimulation suggests that the asymmetry in visual brain processing between upper and lower 

visual fields is more pronounced than the anisotropy between vertical and horizontal 

meridians using current testing visual presentation paradigms. However, it should be noted 
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that this disparity could also be partly attributed to the smaller size of the meridian stimuli 

than the hemifield stimuli. More precise experiments with different types and sizes of 

stimuli are expected to further examine the causes of such observations in the future.

Diffusion-based MRI and fMRI had been combined to evaluate the structure-function 

relationships in the human visual system22. In this study, the comparisons between fMRI 

and diffusion-based MRI measures in different parts of the visual field indicated that there is 

a strong positive correlation between functional activation and diffusion kurtosis in brain 

regions represented by the lower visual field. DKI may also be more sensitive than DTI at 

probing gray matter microstructural differences that may be the basis of variations in 

functional brain responses and behavioral performance.

There are several limitations to the present study, the first being a small sample size of only 

young adults. Future studies should include a larger population and encompass a greater age 

range to determine any age-dependent effects on visual field asymmetry in the brain. This 

may also provide clinical relevance because of the increasing aging population and age-

related diseases that are susceptible to regional visual field loss in the brain such as 

glaucoma23. Additionally, the quantitative fMRI and DKI comparisons were based on the 

global average across activated brain regions for each type of visual field stimulations. It has 

been shown that the sizes of visual areas V1, V2 and V3 may vary by more than a factor of 2 

across individuals19. The microstructural organization may also vary across visual areas and 

between dorsal and ventral brain regions in humans20. Although there was no apparent 

correlation between BOLD activation volume and DKI measures in each visual field 

stimulation presented to our subjects (data not shown), global averaging might have 

smoothened out any varying local differences between visual areas leading to the relatively 

small DKI or DTI differences across visual field brain representations. In addition to 

comparing activation strength, size and microstructural complexities globally between 

hemifield brain representations, future studies may utilize more precise retinotopic mapping 

to account for individual variability and to determine which localized regions of the occipital 

cortex are more susceptible to visual field asymmetry, and whether there is any top-down or 

bottom-up modulation of neural asymmetry across lower- and higher-order visual brain 

areas using different experimental tasks24,25.

In conclusion, using DKI and fMRI, significant structural and functional brain involvements 

were found in visual vertical asymmetry in healthy adults, whereas some evidence of brain 

involvement might be observed toward horizontal-vertical meridian anisotropy. The brain 

regions corresponding to the lower visual field showed greater functional activation and 

diffusion kurtosis compared to the upper visual field. Further, there was a significant positive 

correlation between functional activation and diffusion kurtosis in the lower visual field 

brain representations, suggestive of a strong structural-functional relationship in the human 

brain that processes visual information from the lower field. The identified structural and 

functional brain differences across visual fields in this study can be important in providing 

insights into the neurophysiological and psychological bases of human visual information 

processing in health and disease.
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Figure 1. 
Sample checkerboard flickering visual stimuli to 4 different regions in the visual fields (left 

column) and the corresponding fMRI activation maps (right column) represented by z-scores 

at the ventral and dorsal levels of the occipital cortex from a representative participant using 

gradient-echo echo planar imaging.
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Figure 2. 
(Top row) Average BOLD amplitude in activated brain regions and (bottom row) average 

brain activation volume in response to visual stimulation to the upper and lower hemifields 

(left column) and the vertical and horizontal meridians (right column) among 15 healthy 

adult subjects. (Mean ± SEM; Wilcoxon matched-pairs signed rank tests, *p<0.05; 

**p<0.01)
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Figure 3. 
Sample diffusion-based MRI parametric maps of a representative participant at the ventral 

and dorsal levels of the occipital cortex. [Max = 1000 a.u. (bo); 1.0 (fractional anisotropy); 

6.0 μm2/ms (mean diffusivity); 4.0 (mean kurtosis)]
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Figure 4. 
Quantitative comparisons of diffusion-based MRI parameters measured from overlays of 

fMRI activation maps of hemifield stimulation in Figure 1 onto the brain structures. (Mean ± 

SEM; Wilcoxon matched-pairs signed rank tests, *p<0.05)
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Figure 5. 
Quantitative comparisons of diffusion-based MRI parameters measured from overlays of 

fMRI activation maps of meridian stimulation in Figure 1 onto the brain structures. (Mean ± 

SEM; Wilcoxon matched-pairs signed rank tests, *p<0.05)
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Table 1

Pearson correlations between fMRI BOLD % change and diffusion-based MRI parameters in the lower and 

upper visual field brain regions. (*p<0.05) (T2WI: T2-weighted MRI; FA: fractional anisotropy; MD: mean 

diffusivity; and MK: mean kurtosis)

Upper field BOLD% change vs T2WI FA MD MK

r −0.42 0.25 0.15 0.39

p 0.12 0.37 0.61 0.15

Lower field BOLD% change vs T2WI FA MD MK

r −0.08 0.23 −0.37 0.57

p 0.78 0.42 0.17 *0.03
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