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Abstract

The success of molecular modeling and computational chemistry efforts are, by definition, 

dependent on quality software applications. Open source software development provides many 

advantages to users of modeling applications, not the least of which is that the software is free and 

completely extendable. In this review we categorize, enumerate, and describe available open 

source software packages for molecular modeling and computational chemistry.

1. Introduction

What is Open Source?

Free and open source software (FOSS) is software that is both considered “free software,” as 

defined by the Free Software Foundation (http://fsf.org) and “open source,” as defined by 

the Open Source Initiative (http://opensource.org). The distinctions between free and open 

source software are largely philosophical - the free software movement is primary motivated 

by user freedoms (“free as in speech, not free as in beer”) while the open source movement 

is more concerned with promoting an open development model to enhance software quality. 

However, as a practical matter, especially with regards to scientific software, such 

distinctions remain philosophical rather than practical as the most popular software licenses 

are both free and open source.

The unifying theme of open source software licenses is that they allow users to use, modify, 

and distribute software without significant restrictions. This is achieved by making the full 

source code of the software available to users. Broadly speaking, open source licenses fall 

into two categories: permissive and copyleft. Permissive licenses, such as the Apache, BSD, 

MIT, and Python licenses, place minimal restrictions on how modified code may be 

distributed, such as requiring attribution and limiting liability. They specifically do not 

require that redistributions of modified source code be licensed under the same license as the 

original source code. This enables source code licensed under a permissive license to be 

incorporated into commercial, proprietary programs that are not open source. In contrast, 

copyleft licenses, such as the different versions of the GNU Public License (GPL), require 

that public redistributions of licensed software remain licensed under a GPL license. That is, 
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the source code must remain publicly and freely available. The GNU Lesser General Public 

License (LGPL) is slightly less restrictive version of the GPL used primarily for libraries as 

it does not require software that uses LGPL licensed software as a library to be licensed 

under the LGPL. Although copyleft licenses do not prohibit selling software, since the full 

source code must remain freely available, in practice vendors of copylefted software must 

commercialize the support of the product, rather than the product itself. Finally, we note 

there are other software licenses that make source code available, but are not open source 

licenses. These licenses typically prohibit the redistribution of the source code. Such 

licenses, which we will refer to as “source-available” licenses, have some popularity in 

academia as they allow source code to be distributed to other researchers in non-profit 

institutions, but allow the code to be sold to commercial entities.

Advantages and Disadvantages of Open Source

The value of open source software in cheminformatics and molecular modeling is somewhat 

controversial. Unsurprisingly, those affiliated with commercial scientific software argue that 

traditional commercial development, with its associated support and continuous 

development, provides a superior value [1], while open source advocates feel the benefits 

outweigh the burdens [2, 3]. Our goal is not to revisit these arguments. Instead, we assert 

that open source scientific software is a de facto part of the scientific community, and so in 

this review we catalog those open source packages that fall within the domain of 

cheminformatics and molecular modeling.

There are a few aspects of the open source software debate that we find particularly relevant. 

First, opponents are right to point out that free software is not free - users of open source 

software generally take on a much greater burden in supporting the software than with 

commercial software. This is one reason why it is important, when possible, to seek open 

source software that is under active development and supported by a broad community. 

Therefore, in this review we attempt to quantify the current level of development and usage 

of each package as an indirect measure of quality and usability. Second, the primary 

advantage of open source software is the ability to redistribute code without restriction. This 

inherently enables reproducibility and lets scientists “stand on the shoulders of giants” 

instead of reinventing the wheel. Consequently, in this review we limit ourselves to a survey 

of true open source software and exclude source-available software that may place 

restrictions on the publication of reproducible research results.

2. Methods

We organize software packages into seven categories: cheminformatics, visualization, QSAR 

(quantitative structure–activity relationship) and ADMET modeling, quantum chemistry, 

ligand dynamics and free energy calculations, and virtual screening (including ligand 

design). We identified open source software packages by browsing the relevant categories 

(Molecular Science, Chemistry, Bio-Informatics, Medical Science) on the popular Source-

Forge (http://sourceforge.net) repository, searching for categories on GitHub (http://

github.com), searching for categories on OpenHub (https://www.openhub.net), searching for 

categories together with “open source software” on Google, and browsing the Click2Drug 
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(http://click2drug.org) and VLS3D [4] directories. Finally, a draft document was tweeted 

(@david_koes) to solicit suggestions for additional packages from the community.

For every identified software package, we report its primary URL and software license and 

assign it an activity code. For simplicity, BSD-like licenses (e.g. NCSA) are reported as 

BSD. Activity codes consist of a development activity level (alphabetical) and usage activity 

level (numerical). Activity codes were assigned as follows:

Development Activity

A. Substantial development (e.g. a new major release, the addition of new 

features, or substantial refinements of existing features) within the last 18 

months. Note this includes all projects that were created in the last 18 

months.

B. Evidence of some development within the last 18 months such as a minor 

release or bug fixes to a development branch.

C. No evidence of development (changes to the source code or 

documentation) within the last 18 months. Note that in cases where a 

package does not follow an open development model (i.e., source is only 

released with official releases) the estimate of development activity will be 

overly conservative.

Usage Activity

1. Substantial user usage within the last 18 months (more than 20 downloads 

a month on average from SourceForge, more than 20 stars or forks on 

GitHub, more than 10 citations a year, and/or a clearly active user 

community as indicated by traffic on mailing lists or discussion boards).

2. Moderate user usage within the last 18 months.

3. Minimal or no identifiable user usage within the last 18 months (fewer 

than 50 downloads total on SourceForge, three or fewer stars and/or forks 

on GitHub, or fewer than one citation a year).

We omit some packages with extended periods of inactivity (e.g. more than 10 years) where 

there is little evidence of any usage or packages that are referenced in the literature but for 

which we could not find a extant source code repository. We also omit packages that provide 

common and/or trivial functionality (e.g. molecular weight calculators) and those that 

require non-open source packages in order to function.

3. Cheminformatics

Cheminformatics involves the representation, manipulation and analysis of molecular data 

[5, 6]. Cheminformatic toolkits, although they may contain standalone utility programs, are 

primarily designed to function as libraries for other programs so that common functions, 

such as parsing molecular data, need not be reimplemented. As libraries, the native 

programming language of a toolkit is particularly relevant as it influences the language 
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programs that integrate with the toolkit can be written in. In some cases, alternative language 

bindings, which essentially translate between programming languages, may be available, but 

due to the use of different idioms by different languages (e.g. object-oriented vs. functional, 

manual vs. automatic memory management) use of these non-native bindings may be 

cumbersome. In addition to toolkits, we catalog standalone programs, including conformer 

generators for converted 2D information into 3D molecular structures (some of which have 

been critically evaluated [7]), and graphical environments for creating and managing 

workflows.

Toolkits (Table 1)

The Biochemical Algorithms Library (BALL) [8] provides an object-oriented C++ library 

for structural bioinformatics, and its capabilities include molecular mechanics, support for 

reading and writing a variety of file formats, protein-ligand scoring, docking, and QSAR 

modeling.

The Chemistry Development Kit (CDK) [9] is a cheminformatics toolkit written in Java. Its 

capabilities include support for reading and writing a variety of chemical formats, descriptor 

and fingerprint calculation, force field calculations, substructure search, and structure 

generation.

Chemf [10] is a minimal cheminformatics toolkit written in the functional language Scala.

chemfp [11] is a high-performance library with a Python interface for generating and 

searching for molecular fingerprints.

chemkit is a C++ cheminformatics toolkit that includes support for visualization with the Qt 

framework and molecular modeling.

ChemmineR [12] is a cheminformatics package for the R statistical programming language 

that is built using Open Babel. Its capabilities include property calculations, similarity 

search, and classification and clustering of compounds.

Cinfony [13] provides a single, simple standardized interface to other cheminformatics 

toolkits, including Open Babel, RDKit, the CDK, Indigo, JChem, OPSIN, and several web 

services.

CurlySMILES [14] provides parsing functionality for an extension of the SMILES format 

that supports the description of complex molecular systems.

DisCuS (Database System for Compound Selection) [15] provides support for analyzing the 

results of a high-throughput screen.

Fafoom (flexible algorithm for optimization of molecules) [16] is a Python library for 

identifying low energy conformers using a genetic algorithm.

fmcsR [41] is an R package that efficiently performs flexible maximum common 

substructure matching that allows minor mismatches between atoms and bonds in the 

common substructure.
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Frowns is a cheminformatics toolkit mostly written in Python that provides basic support for 

SMILES and SD files, SMARTS search, fingerprint generation, and property perception.

Helium is a cheminformatics toolkit written using modern C++ idioms that provides support 

for SMILES files, fingerprints generation, and SMARTS and SMIRKS.

Indigo [18] is a cheminformatics toolkit written in C++ with C, Python, Java (including a 

KNIME node), and C# bindings. Its capabilities include general support for manipulating 

molecules, property calculation, combinatorial chemistry, scaffold detection and R-group 

decomposition, reaction processing, substructure matching and similarity search.

JOELib is a cheminformatics toolkit written in Java. Its capabilities include SMARTS 

substructure search, descriptor calculation, and processing/filtering pipes.

LICSS [19] integrates with the CDK to provide representations and analysis of chemical 

data embedded within Microsoft Excel.

MayChemTools is a collection of Perl scripts for manipulating chemical data, interfacing 

with databases, generating fingerprints, performing similarity search, and computing 

molecular properties.

Mychem is built using OpenBabel and provides an extension to the MySQL database 

package that adds the ability to search, analyze, and convert chemical data within a MySQL 

database.

The Open Drug Discovery Toolkit (ODDT) [21] is entirely written in Python, is built on top 

of RDKit and Open Babel, and is focused on providing enhanced functionality for managing 

and implementing drug discovery workflows, such as making it easy to implement a docking 

pipeline.

Open Babel [22] is substantial cheminformatics toolkit written in C++ with Python, Perl, 

Java, Ruby, R, PHP, and Scala bindings. Its capabilities include support for more than 100 

chemical file formats, fingerprint generation, property determination, similarity and 

substructure search, structure generation, and molecular force fields. It has absorbed the 

Confab [47] conformer generator which produces 3D structures through the systematic 

enumeration of torsions and energy minimization.

OPSIN [23], the Open Parser for Systematic IUPAC nomenclature, converts plain-text 

chemical nomenclature to machine readable CML or InChi formats.

OrChem is built using the CDK and provides an extension to Oracle databases that adds the 

ability to incorporate and search chemical data.

OSRA [25] provides optical structure recognition. It takes as input an image and generates a 

SMILES string.

Ouch (Ouch Uses Chemical Haskell) is a minimal cheminformatics toolkit written in the 

functional language Haskell.
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Pybel [26] provides the full functionality of Open Babel, but common routines are provided 

in a simplified, more ‘pythonic’ interface.

rcdk [27] provides an R interface to the CDK and working with fingerprints.

RDKit is a substantial cheminformatics toolkit written in C++ with Python, Java and C# 

bindings. Its capabilities include file handling, manipulation of molecular data, chemical 

reactions, substantial support for fingerprinting, substructure and similarity search, 3D 

conformer generation, property determination, force field support, shape-based alignment 

and screening, and integration with PyMOL, KNIME, and PostgreSQL.

RInChI provides tools for creating and manipulating reaction InChIs, a unique string for 

describing a reaction.

rpubchem is an R package for interfacing with the PubChem database.

rubabel [28] is similar to Pybel in that it provides a native Ruby interface to Open Babel.

The Small Molecule Subgraph Detector (SMSD) [29] is a Java library for calculating the 

maximum common subgraph between small molecules.

Som-it™ is an R package for creating and visualizing self-organizing maps from large 

datasets.

webchem is an R package for interfacing with a dozen different on-line resources for 

chemical data.

Standalone Programs (Table 2)

cApp [30] is a Java application that provides tools for evaluating physico-chemical 

properties, performing similarity searches, and querying the PubChem database.

The utilities checkmol and matchmol [31] decompose and compare functional groups of 

input molecules.

ConvertMAS is a utility for converting between formats and merging and splitting multi- 

molecule files.

Filter-it™ filters a set of molecules based on their properties such as physicochemical 

parameters and graph-based properties.

Frog2 [32] uses a two stage Monte Carlo approach coupled with energy minimization to 

rapidly generate 3D conformers.

The Lilly MedChem Rules (LMR) [33] apply filters to avoid reactive and promiscuous 

compounds.

Molpher [34] generates a virtual chemical library that represents the chemical space between 

two input molecules as it consists of the path found by morphing one molecule to another.
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MoSS (Molecular Subsstructure miner) [35] finds common molecular substructures and 

discriminative fragments within a compound library.

The Open Molecule Generator (OMG) [36] enumerates all possible chemical structures 

given constraints on their composition.

sdf2xyz2sdf [37] converts between SDF and TINKER XYZ files.

sdsorter provides convenient routines for manipulating, sorting, and filtering the contents of 

sdf molecular data files based on the embedded sd data tags.

Shape [38] employs a genetic algorithm to generate conformations of carbohydrates.

Strip-it™ is built using Open Babel and extracts molecular scaffolds.

Graphical Development Environments (Table 3)

Ambit [39] integrates with the CDK to provide web-based applications for chemical search 

and analysis and includes a tautomer generation algorithm [48].

Bioclipse [40] is a workbench, based on the Eclipse framework, for manipulating and 

analyzing biochemical data and databases. It integrates with the CDK and Jmol to provide 

cheminformatic functionality and also has modules for bioinformatics (primarly sequence 

analysis) and QSAR modeling.

Galaxy [41] is a web platform for exploring biomedical data and includes as a component a 

Chemical Toolbox that integrates a number of other cheminformatics tools to offer an array 

of molecular search, property calculation, clustering, and manipulation capabilities.

The Konstanz Information Miner (KNIME) is a general workflow environment that includes 

a number of plugins for cheminformatics, such as CDK [49] and RDKit modules, as well as 

bioinformatics and machine learning modules.

Orange [43] is a graphical interface for construction interactive workflows and performing 

data analysis and visualization.

Screening Assistant 2 (SA2) [44] is a GUI written in Java that integrates with other toolkits 

to help manage, analyze, and visualize libraries of compounds.

Taverna [45] is a graphical workflow editor that includes support for integrating with web 

services and the CDK [50].

Weka [46] is a platform for data mining and machine learning that can be adapted for 

cheminformatics.

4. Visualization

An essential component of any molecular modeling exercise is the ability to visualize and, 

sometimes, edit molecular data. Visualization software usually either deals with exclusively 

2D or 3D molecular data and may be primarily intended for desktop usage (native ‘fat’ 
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clients) or as a component embedded in a web browser. Packages designed for visualizing 

entire datasets are cataloged in the QSAR section (Table 10) and those with a particular 

emphasize on visualizing the output of quantum chemistry packages are in the Quantum 

Chemistry section (Table 13).

2D Desktop Applications (Table 4)

BKChem is a 2D molecular editor written in python that uses the Tk GUI toolkit.

chemfig is a tool for embedding chemical drawings in LaTeX documents.

Chemtool is a 2D molecular editor for Linux systems that uses the GTK toolkit.

JChemPaint [51] is a Java-based 2D molecular editor built using the CDK toolkit.

LeView [52] generates 2D representations of ligand-protein interactions that highlight 

features such as hydrogen bonds.

mol2chemfig [53] converts SMILES files into LaTeX source code.

Molsketch is a 2D molecular editor written in C++ with the Qt toolkit that includes support 

for the Windows and Android operating systems.

SketchEl is a Java-based 2D molecular editor that includes support for a datasheet view for 

handling multi-molecule files.

3D Desktop Applications (Table 5)

Avogadro [54] is a 3D molecular viewer and editor with a modular plugin architecture with 

both Python and C++ bindings that includes interactive structure optimization for real-time 

editing.

BALLView [55] provides interactive 3D visualizations as part of the BALL [8] 

cheminformatics toolkit.

gMol provides basic interactive 3D visualizations of molecular data readable by Open Babel.

Jamberoo provides a basic Java-based 3D molecular viewer and editor.

LP Molecular Viewer is an ActiveX/ATL control for embedding interactive 3D 

representations of molecular data in Microsoft products.

Luscus [56] is a 3D viewer and editor that is designed with a focus on electronic structure 

information.

Molecular Rift [57] integrates with the Oculus Rift virtual reality headset to provide 

immersive visualization of 3D molecular data.

OpenStructure [58] is a computational structural biology framework that provides a 3D 

viewer for manipulating structural information and includes an interactive Python shell.

Pirhadi et al. Page 8

J Mol Graph Model. Author manuscript; available in PMC 2016 October 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



PLIP (Protein-Ligand Interaction Profiler) [59] runs as a web application and analyzes and 

visualizes protein-ligand interactions in 3D.

PyMOL is a substantial 3D molecular viewer that includes a full Python interface to support 

scripting and plugin development.

RasTop and OpenRasMol are based off the venerable RasMol software and provide basic 3D 

visualization.

SPADE (Structural Proteomics Application Development Environment) [60] is a graphical 

Python interface for structural informatics.

QuteMol [61] provides high-quality, visually engaging renderings of 3D molecular data.

Web-Based Visualization (Table 6)

3Dmol.js [62] is a JavaScript library that provides WebGL-accelerated interactive 3D 

visualizations of molecular structures and surfaces.

CH5M3D [63] uses JavaScript and HTML5 to provide visualization and editing of 3D 

structures of small molecules.

Chemozart [64] is a WebGL-based web application for 3D editing of small molecules.

CWC (ChemDoodle Web Components) [65] provides a suite of web-based visualizers and 

editors for 2D and 3D molecular data.

JSME [66] is a pure JavaScript 2D molecular editor that can export and import SMILES 

data.

Jmol [67] is a Java applet for interactive 3D visualization that provides significant 

cheminformatics support and a custom scripting language.

JSmol [68] is the JavaScript port of Jmol and does not require the Java plugin to run.

NGL [69] is a WebGL-accelerated viewer and JavaScript library for interactive 3D 

visualization of macromolecules.

PV (Protein Viewer) [70] is a WebGL-accelerated viewer for interactive 3D visualization of 

macromolecules with a functional-style API.

5. QSAR/ADMET Modeling

Quantitative Structure-Activity Relationship (QSAR) approaches find relationships between 

the chemical structures of a series of compounds (or structural-related properties) and a 

biological activity [71], including ADMET properties (absorption, distribution, metabolism, 

excretion, and toxicity). QSAR methods calculate relevant molecular descriptors, build 

informative models using these descriptors and then apply the models. Models and datasets 

may also be visualized to aid in model development and understanding of compound 
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libraries. Note that most of the cheminformatics toolkits shown in Table 1 also are capable 

of generating descriptors (and are often used as libraries by QSAR modeling software).

Descriptor Calculators (Table 7)

4D Flexible Atom-Pair Kernel (4D FAP) computes a ‘4D’ similarity measure from the 

molecular graphs of an ensemble of conformations which can be incorporated into QSAR 

models.

The BlueDesc descriptor calculator is a command-line tool that converts an MDL SD file 

into ARFF and LIBSVM format using CDK and JOELib2 for machine learning and data 

mining purposes. It computes 174 descriptors taken from both libraries.

MolSig [73] computes molecular graph descriptors that include stereochemistry information.

PaDEL-Descriptor [74] calculates molecular descriptors and fingerprints. It computes 1875 

descriptors (1444 1D, 2D descriptors and 431 3D descriptors) and 12 types of finger-prints.

Topological maximum cross correlation descriptors (TMACC) [75] generates 2D 

autocorrelation descriptors that are low dimensional and interpretable and appropriate for 

QSAR modeling.

Model Building (Table 8)

AZOrange [76] is a machine learning package that supports QSAR model building in a full 

work flow from descriptor computation to automated model building, validation and 

selection. It promotes model accuracy by using several high performance machine learning 

algorithms for efficient data set specific selection of the statistical approach.

Bioalerts [77] uses RDKit fingerprints to create models from discrete (e.g., toxic/non-toxic) 

and continuous data. It includes the capability to visualize problematic functional groups.

Chemistry aware model builder (camb) [78] is an R package for the generation of 

quantitative models. Its capabilities include descriptor calculation (including 905 two-

dimensional and 14 fingerprint type descriptors for small molecules, 13 whole protein 

sequence descriptors, and 8 types of amino acid descriptors), model generation, ensemble 

modeling, and visualization.

eTOXLab [79] provides a portable modeling framework embedded in a self-contained 

virtual machine for easy deployment.

Open3DGrid and Open3DQSAR [80] are a suite of related tools that build 3D QSAR 

models. Open3DGrid generates molecular interaction fields (MIFs) in a variety of formats, 

and Open3DQSAR builds predictive models from the MIFs of aligned molecules. 

Calculations can be visualized in real time in PyMOL.

QSAR-tools is a set of Python scripts that use RDKit to build linear QSAR models from 2D 

chemical data.
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Model Application (Table 9)

SMARTCyp [92] is a QSAR model that predicts the sites of cytochrome P450-mediated 

metabolism of drug-like molecules directly from the 2D structure of a molecule using 

fragment-based energy rules.

Toxtree [82] is a Java GUI application for estimating the “toxic hazard” of molecules using a 

variety of toxicity prediction modules, such as oral toxicity, skin and eye irritation 

prediction, covalent protein binding and DNA binding, Cytochrome P450-mediated drug 

metabolism (using SMARTCyp) and more.

UG-RNN/AquaSol [83] is an undirected graph recursive neural network that has been 

trained to predict aqueous solubility from molecular graphs.

Visualization (Table 10)

CheS-Mapper (chemical space mapper) [93, 84]. is a 3D-viewer for small compounds in 

chemical datasets. It embeds a dataset into 3D space by performing dimensionality reduction 

on the properties of the compounds.

DataWarrior [85] is a data visualization and analysis tool for chemical data with a rich set of 

available property calculations, similarity metrics, modeling capabilities, and data set 

representations.

DecoyFinder [86] provides a GUI for selecting a set of decoy compounds from a large 

library that are appropriate matches to a given set of actives.

Scaffold Hunter [87] provides a Java-based GUI for visualizing the relationship between 

compounds in a dataset.

Synergy Maps [88] visualizes synergistic activity extracted from screens of drug 

combinations.

VIDEAN (visual and interactive descriptor analysis) [89] is a visual tool for iteratively 

choosing a subset of descriptors appropriate for predicting a target property with the aid of 

statistical methods.

WCSE (Wikipedia chemical structure explorer) [90] runs as a web application and provides 

a 2D interface for visualizing and searching for 2D molecules.

WebChemViewer [91] is an online viewer for viewing and interacting with lists of 

compounds and their associated data.

6. Quantum Chemistry

Quantum mechanics (QM) is increasingly accessible and relevant to molecular modeling and 

in silico drug design [94]. Quantum chemistry models molecules at the level of their wave 

function and offers enhanced accuracy and detail compared to classical models at a 

substantial increase in computation time. Corresponding to the large diversity of solution 
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methods for Schrödinger’s equation, there are many software packages for ab initio quantum 

chemistry, as well as programs for interpreting and visualizing the results of these 

calculations.

Ab initio Calcuation (Table 11)

ABINIT [95] can calculate the total energy, charge density and electronic structure of 

molecules and periodic solids with density functional theory (DFT) and Many-Body 

Perturbation Theory (MBPT), using pseudopotentials and a planewave or wavelet basis. 

ABINIT also can optimize the geometry, perform molecular dynamics simulations, or 

generate dynamical matrices, Born effective charges, and dielectric tensors and many more 

properties.

ACES [96] performs calculations such as single point energy calculations, analytical 

gradients, and analytical Hessians, and is highly parallelized, including support for GPU 

computing. A focus of ACES is the use of MBPT and the coupled-cluster approximation to 

reliable treat electron correlation.

BigDFT [119, 120, 97] performs ab initio calculations using Daubechies wavelets and has 

the capability to use a linear scaling method. Periodic systems, surfaces and isolated systems 

can be simulated with the proper boundary conditions. It is included as part of ABINIT.

CP2K [98] performs simulations of solid state, liquid, molecular and biological systems. Its 

particular focus is massively parallel and linear scaling electronic structure methods and 

state-of-the-art ab-initio molecular dynamics (AIMD) simulations. It is optimized for the 

mixed Gaussian and Plane-Waves method using pseudopotentials and can run on parallel 

and on GPUs.

Dacapo is a total energy program that uses density functional theory. It can do molecular 

dynamics/structural relaxation while solving the Schrödinger equations. It has support for 

parallel execution and is used through the Atomic Simulation Environment (ASE) [99]

ErgoSCM [100] is a quantum chemistry program for large-scale self-consistent field 

calculations. It performs electronic structure calculations using Hartree-Fock and Kohn-

Sham density functional theory and achieves linear scaling for both CPU usage and memory 

utilization.

ERKALE [101] is designed to compute X-ray properties, such as ground-state electron 

momentum densities and Compton profiles, and core (x-ray absorption and x-ray Raman 

scattering) and valence electron excitation spectra of atoms and molecules.

GPAW [102] is a DFT code that uses the projector-augmented wave (PAW) technique [121, 

122] and integrates with the atomic simulation environment (ASE) [99].

HORTON (Helpful Open-source Research TOol for N-fermion systems) has as a primary 

design goal ease of extensibility for researching new methods in ab initio electronic structure 

theory.
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JANPA [103] computes natural atomic orbitals from a reduced one-particle density matrix.

MPQC (massively parallel quantum chemistry program) [104] offers many features 

including closed shell, unrestricted and general restricted open shell Hartree-Fock energies 

and gradients, closed shell, unrestricted and general restricted open shell density functional 

theory energies and gradients, second order open shell perturbation theory and Z-averaged 

perturbation theory energies.

NWChem [105] provides a full suite of methods for modeling both classical and QM 

systems. Its capabilities include molecular electronic structure, QM/MM, pseudopotential 

plane-wave electronic structure, and molecular dynamics and is designed to scale across 

hundreds of processors.

Octopus pervorms ab initio calculations using time-dependent DFT (TDDFT) and 

pseudopotentials. Included in the project is libxc [123] which is a standalone library of 

exchange-correlation functionals for DFT (released under the LGPL).

OpenMX (Open source package for material eXplorer) [107] is designed for nano-scale 

material simulations based on DFT, norm-conserving pseudopotentials, and pseudo-atomic 

localized basis functions. OpenMX is capable of performing calculations of physical 

properties such as magnetic, dielectric, and electric transport properties and is optimized for 

large-scale parallelism.

Psi4 [108] is a suite of ab initio quantum chemistry programs that supports a wide range of 

computations (e.g., Hartree–Fock, MP2, coupled-cluster) and general procedures such as 

geometry optimization and vibrational frequency analysis with more than 2500 basis 

functions.

PyQuante is a collection of modules, mostly written in Python, for performing Hartree-Fock 

and DFT calculations with a focus on providing a well-engineered set of tools. A new 

version is under development (https://github.com/rpmuller/pyquante2).

PySCF is also written primarily in Python and supports several popular methods such as 

Hartree-Fock, DFT, and MP2. It also has easy of use and extension as primary design goals.

QMCPACK [109] is a many-body ab initio quantum Monte Carlo implementation for 

computing electronic structure properties of molecular, quasi-2D and solid-state systems. 

The standard file formats utilized for input and output are in XML and HDF5.

QUANTUM ESPRESSO [110] is designed for modeling at the nanoscale using DFT, plane 

waves, and pseudopotentials and its capabilities include ground-state calculations, structural 

optimization, transition states and minimum energy paths, ab initio molecular dynamics, 

DFT perturbation theory, spectroscopic properties, and quantum transport.

RMG [111] is a DFT code that uses real space grids to provide high scalability across 

thousands of processors and GPU acceleration for both structural relaxation and molecular 

dynamics.
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Siam Quantum (SQ) is optimized for parallel computation and its capabilities include the 

calculation of Hartree-Fock and MP2 energies, minimum energy crossing point calculations, 

geometry optimization, population analysis, and quantum molecular dynamics.

Helper Applications (Table 12)

FragIt [112] generates fragments of large molecules to use as input files in quantum 

chemistry programs that support fragment based methods.

cclib [113] provides a consistent interface for parsing and interpreting the results of a 

number of quantum chemistry packages.

GaussSum [113] uses cclib to extract useful information from the results of quantum 

chemistry programs (ADF, GAMESS, Gaussian, Jaguar) including monitoring the progress 

of geometry optimization, the UV/IR/Raman spectra, molecular orbital (MO) levels and MO 

contributions.

Geac (Gaussian ESI Automated Creator) extracts data from Gaussian log files.

Nancy_EX [114] post-processes Gaussian output and analyzes excited states including 

natural transition orbitals, detachment and attachment density matrices, and charge-transfer 

descriptors.

orbkit [115] is a post-processing tool for the results of quantum chemistry programs. It has 

native support for a number of programs (MOLPRO, TURBOMOLE, GAMESS-US, 

PROAIMS/AIMPAC, Gaussian) and additionally interfaces with cclib for additional file 

format support. It can extract grid-based quantities such as molecular orbitals and electron 

density, as well as Muliken population charges and other properties.

Visualization (Table 13)

CCP1GUI provides a graphical user interface to various computational chemistry codes with 

an emphasis on integration with the GAMESS-UK quantum chemistry program.

ccwatcher provides a graphical interface for the monitoring of computational chemistry 

programs.

Gabedit [116] is a graphical user interface to a large number of quantum chemistry 

packages. It can create input files and graphically visualize calculation results.

J-ICE [117] is a Jmol-based viewer for crystallographic and electronic properties that can be 

deployed as a Java applet embedded in a web browser.

QMForge provides a graphical user interface for analyzing and visualizing results of 

quantum chemistry DFT calculations (Gaussian, ADF, GAMESS, Jaguar, NWChem, 

ORCA, QChem). Analyses include a number of population analyses, Mayer’s bond order, 

charge decomposition, and fragment analysis.

wxMacMolPlt [118] is a multi-platform GUI for setting up and visualizing input and output 

files for the GAMESS quantum chemistry software.
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7. Ligand Dynamics and Free Energy Calculations

Simulation based approaches for analyzing ligand-protein interactions have the potential to 

fully account for the dynamics of the ligand, protein, and water system. Molecular dynamics 

simulation is a powerful tool for computing free energies as long as the system can be 

properly parameterized and the simulation code adapted and analyzed to implement the 

desired free energy method.

Simulation Software (Table 14)

Campari [124] conducts flexible Monte Carlo sampling of biopolymers in internal 

coordinate space, with built-in analysis routines to estimate structural properties and support 

for replica exchange and Wang-Landau sampling.

DL_POLY Classic [125] is a general purpose molecular dynamics simulation package that 

can run in parallel and includes a Java graphical user interface.

GALAMOST (GPU accelerated large-scale molecular simulation toolkit) [126] uses GPU 

computing to perform traditional molecular dynamics with a special focus on polymeric 

systems at mesoscopic scales.

Gromacs [127] is a complete and well-established package for molecular dynamics 

simulations that provides high performance on both CPUs and GPUs. It can be used for free 

energy and QM/MM calculations and includes a comprehensive set of analysis tools.

Iphigenie [128] is a molecular mechanics program that features polarizable force fields, the 

HADES reaction field, and QM/(P)MM hybrid simulations.

LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) [129] is a highly 

modular classical molecular dynamics simulator that includes a diverse array of energy 

potentials and integrators.

MDynaMix [130] is a basic general purpose molecular dynamics package.

MMTK (Molecular Modelling Toolkit) [131] is a library written in Python (with some time 

critical parts written in C) for constructing and simulating molecular systems. Its capabilities 

include molecular dynamics, energy minimization, and normal mode analysis and it is well-

suited for methods development.

OpenMM [132] is a substantial toolkit for high performance molecular dynamics 

simulations that includes support for GPU acceleration.

ProtoMol [133], and the associated MDLab Python bindings [151], provides an object-

oriented framework for prototyping algorithms for molecular dynamics simulations and 

includes an interface to OpenMM.

ProtoMS [134] is a Monte Carlo biomolecular simulation program which can be used to 

calculate relative and absolute free energies and water placement with the GCMC and JAWS 

methodologies.
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Sire is a collection of modular libraries intended to facilitate fast prototyping and the 

development of new algorithms for molecular simulation and molecular design. It has apps 

for system setup, simulation, and analysis.

WESTPA (The Weighted Ensemble Simulation Toolkit with Parallelization and Analysis) 

[135] is a library for performing weighted ensemble simulations to sample rare events and 

compute rigorous kinetics.

yank is built off of OpenMM and provides a Python interface for performing alchemical free 

energy calculations.

Simulation Setup and Analysis (Table 15)

AmberTools [136] is an open source component of the non-open source Amber package and 

provides a large suite of analysis programs. As of Amber15, AmberTools includes the lower 

performance, but readily extendable, sander molecular dynamics code.

LOOS (Lightweight Object-Oriented Structure library) [137] is a C++ library (with Python 

bindings) for reading and analyzing molecular dynamics trajectories that also includes a 

number of standalone programs.

lsfitpar [138] derives bonded parameters for Class I force fields by performing a robust fit to 

potential energy scans provided by the user.

MDAnalysis [139] is a Python library for reading and analyzing molecular dynamics 

simulations with some time critical sections written in C.

MDTraj [140] provides high-performance reading, writing, and analysis of molecular 

dynamics trajectories in a diversity of formats from a Python interface.

MEMBPLUGIN [141] analyzes molecular dynamics simulations of lipid bilayers and is 

most commonly used as a VMD plugin.

MEPSA (Minimum Energy Pathway Analysis) [142] provides tools for analyzing energy 

landscapes and pathways.

MSMBuilder [143] is an application and Python library for building Markov models of 

high-dimensional trajectory data.

packmol [144] is a utility for setting molecular systems by realistically packing molecules to 

obey a variety of constraints and can create solvent mixtures and lipid bilayers.

PDB2PQR [145] prepares structures for electrostatics calculations by adding hydrogens, 

calculating sidechain pKa, adding missing heavy atoms, and assigning force field-dependent 

parameters; users can specify an ambient pH.

PLUMED [146] interfaces with an assortment of molecular dynamics software packages to 

provide a unified interface for performing free energy calculations using methods such as 

metadynamics, umbrella sampling and steered MD (Jarzynski).
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ProDy [147] is a Python toolkit for analyzing proteins and includes facilities for trajectory 

analysis and druggability predictions using simulations of molecular probes [152].

Pteros [148] is a C++ library (with Python bindings) for reading and analyzing molecular 

dynamics trajectories.

PyEMMA [149] is a Python library for performing kinetic and thermodynamic analyses of 

molecular dynamics simulations using Markov models.

PyRED [150] generates RESP and ESP charges for the AMBER, CHARMM, OPLS, and 

Glycam and force fields.

PYTRAJ is a Python interface to the cpptraj tool of AmberTools.

simpletraj is a lightweight Python library for parsing molecular dynamics trajectories.

WHAM (Weighted Histogram Analysis Method) calculates the potential of mean force 

(PMF) from umbrella sampling simulations.

8. Virtual Screening and Ligand Design

The goal of virtual, or in silico, screening is to computationally identify small molecules in a 

compound library that are active against a given target. Virtual screening methods usually 

adopt either a ligand-based approach, where properties of known active compounds are used 

to identify additional compounds, or a structure-based approach, where the interactions 

between putative ligands and the receptor structure are used. Tools for chemical similarity, 

which can be used for ligand-based screening, are cataloged in the Cheminformatics section.

In contrast to virtual screening, which evaluates predetermined compounds, de novo ligand 

design attempts to create a molecule ‘from scratch’ that binds to a protein. Methods differ in 

how they specify the objective to optimize (e.g., docking score to a protein) and how 

candidate molecules are created, where a key challenge is maintaining synthetic 

accessibility.

Ligand-Based (Table 16)

ACPC (AutoCorrelation of Partial Charges) [153] computes ligand similarity based on a 

rotation and translation invariant electrostatic descriptor.

Align-it™ is a successor of Pharao [158] and aligns and scores 3D representations of 

molecules based on their pharmacophore features. It includes a plugin for integration with 

PyMOL.

Open3DALIGN [37] performs unsupervised rigid-body molecular alignment.

PAPER [154] performs GPU accelerated alignment of molecular shapes using Gaussian 

overlays.
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Pharmer [155] uses efficient data structures to rapidly screen large libraries for ligand 

conformations that match a pharmacophore.

Pharmit [156] is a successor of Pharmer that also incorporates shape matching and energy 

minimization (if a receptor structure is available) as part of the screen. It is primarily 

intended to be used as a backend to a web service.

Shape-it™ uses Gaussian volumes to align and score molecular shapes.

USRCAT [157] performs “ultra-fast shape recognition” with the addition of pharmacophoric 

information to rapidly screen compound libraries for similar molecules.

Docking and Scoring (Table 17)

ADplugin is a plugin for PyMOL for interfacing with AutoDock and AutoDock Vina.

APBS [159] performs solvation free energy calculations using the Poisson-Boltzmann 

implicit solvent method.

AutoDock [160] is an automated docking program that uses a physics-based semiempirical 

scoring function [182] mapped to atom type grids to evaluate poses and a genetic algorithm 

to explore the conformational space. It includes the ability to incorporate sidechain 

flexibility and covalent docking.

AutoDock Vina [161] is an entirely separate code base and approach from Autodock that 

was developed with a focus on runtime performance and ease of system setup. It uses a fully 

empirical scoring function and an iterated local search global optimizer to produce docked 

poses. It includes support for multi-threading and flexible sidechains.

Clusterizer-DockAccessor [162] are tools for accessing the quality of docking protocols. It 

interfaces with a number of open source and free tools.

DockoMatic [163] provides a graphical user interface for setting up and analyzing 

AutoDock and AutoDock Vina docking jobs, including when run on a cluster. It also 

includes the ability to run inverse virtual screens (find proteins that bind a given ligand) and 

support for homology model construction.

DOVIS [164] is an extension of AutoDock 4.0 that provides more efficient parallelization of 

large virtual screening jobs.

idock [165] is a multi-threaded docking program that includes support for the AutoDock 

Vina scoring function and a random forest scoring function. I can output per-atom free 

energy information for hotspot detection.

MOLA [166] is a pre-packaged distribution of AutoDock and AutoDock Vina for 

deployment on multi-platform computing clusters.

NNScore [167] uses a neural network model to score protein-ligand poses.
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Paradocks [168] is a parallelized docking program that includes a number of population-

based metaheuristics, such as particle swarm optimization, for exploring the space of 

potential poses.

PyRx [169] is a visual interface for AutoDock and AutoDock Vina that simplifies setting up 

and analyzing docking workflows. Its future as an open-source solution is in doubt due to a 

recent shift to commercialization.

rDock [170] is designed for docking against proteins or nucleic acids and can incorporate 

user-specified constraints. It uses an empirical scoring function that includes solvent 

accessible surface area terms. A combination of genetic algorithms, Monte Carlo, and 

simplex minimization is used to explore the conformational space. Distinct scoring functions 

are provided for docking to proteins and nucleic acids.

RF-Score [171, 183] uses a random forest classifier to score protein-ligand poses.

smina [172] is a fork of AutoDock Vina designed to better support energy minimization and 

custom scoring function development (scoring function terms and atom type properties can 

be specified using a run-time configuration file). It also simplifies the process of setting up a 

docking run with flexible sidechains.

VHELIBS (Validation HElper for LIgands and Binding Sites) [173] assists the non-

crystallographer in validating ligand geometries with respect to electron density maps.

VinaLC [174] is a fork of AutoDock Vina designed to run on a cluster of multiprocessor 

machines.

VinaMPI [175] is a wrapper for AutoDock Vina that uses OpenMPI to run large-scale virtual 

screens on a computing cluster.

Zodiac [176] is a visual interface for structure-based drug design that includes support for 

haptic feedback.

Pocket Detection (Table 18)

eFindSite [177] using homology modeling and machine learning predicts ligand binding 

sites in a protein structure.

fpocket [178] detects and delineates protein cavities using Voronoi tessellation and is able to 

process molecular dynamics simulations.

KVFinder [179] is a PyMOL plugin for identifying and characterizing pockets.

mcvol [180] calculates protein volumes and identifying cavities using a Monte Carlo 

algorithm.

PAPCA (PocketAnalyzerPCA) is a pocket detection utility designed to analyze ensembles of 

protein conformations.

Pirhadi et al. Page 19

J Mol Graph Model. Author manuscript; available in PMC 2016 October 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



PCS (Pocket Cavity Search) measures the volume of internal cavities and evaluates the 

environment of ionizable residues.

PocketPicker [181] is a PyMOL plugin that automatically identifies potential ligand binding 

sites using a grid-based shape descriptor.

POVME (POcket Volume MEasurer) [91] is a tool for measuring and characterizing pocket 

volumes that includes a graphical user interface.

Ligand Design

AutoClickChem [184] performs in silico click chemistry to generate large libraries of 

synthetically accessible compounds.

AutoGrow [185] uses a genetic algorithm to explore the space of reactants and reactions 

accessible via AutoClickChem and identifies compounds that dock well using AutoDock 

Vina.

igrow, like AutoGrow, uses a genetic algorithm but transforms ligands using branch 

exchange and uses idock as the underlying docking evaluation protocol.

OpenGrowth [186] assembles candidate ligands by connecting small organic fragments in 

the active site of proteins. It includes a graphical user interface.

9. Discussion

We have cataloged 208 open-source packages for molecular modeling that provide a wide 

range of capabilities. As shown in Figure 1, the most popular license (55%) is some variant 

of the copyleft GNU Public License, which ensures that derivative works remain open 

source. Interestingly 78% of the packages cataloged have a corresponding citeable 

publication which suggests that much of the software originates from academia. The 

distribution of average citations generated a year (as reported by Google Scholar) for the 

citeable publications is shown in Figure 3. A significant majority (84%) of publications 

generate at least one citation a year, a quarter generate at least 10 citations, and 8% generate 

more than 100 citations a year on average.

A substantial portion of the packages cataloged are under active development and see 

significant usage, as shown in Figure 2. We rated 56% of the packages as ‘A’ level 

development, meaning major features or releases were made within the last 18 months, and 

51% see substantial usage (rank 1). There are a number of projects (30%) where 

development has apparently ceased (no changes within the last 18 months). Note that our 

methodology for identifying packages ignores cases where software is no longer available, 

this is an underestimate. However, although we did find instances where an open source 

package was referenced in a paper but was no longer available, we did not find this to be a 

common occurrence. Most packages, even those that have remained unchanged for a decade, 

see some usage. In fact, a number of packages (23), still see significant usage despite having 

received no development for the past 18 months. This underlies the importance of releasing 
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source code through a third-party site such as SourceForge or GitHub as it ensures the 

continued existence of a project.

A major advantage of open source is that in cases where a popular project is not being 

actively developed (e.g. AutoDock Vina [161]) new projects can fork the source code and 

continue development (e.g. smina [172]). However, a potential problem area with open 

source development is the lack of central coordination and efficient pooling of resources. For 

example, there are several forks of AutoDock Vina that improve it’s performance on 

computing clusters and there are an array of tools in several categories that effiectively 

perform the same task. This underscores the importance of efforts like Blue Obelisk [187, 

188] and Open Chemistry (http://www.openchemistry.org) which foster collaboration among 

open source cheminformatics projects.

It is clear that open source software plays an important role in the scientific community and 

is a vibrant sub-community of its own with a wide assortment of projects under development 

and in widespread use. The open source software packages cataloged here provide launching 

points for the development of new tools for enabling further scientific discovery.
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Figure 1. 
Distribution of open source licenses used in cataloged software packages.
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Figure 2. 
Activity distributions of cataloged software packages. (a) Distribution of development 

activity. (b) Distribution of user activity.
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Figure 3. 
Distribution of citations as reported by Google Scholar generated on average every year by 

those software packages with citeable publications.
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Table 1

Open source cheminformatics toolkits.

Name URL License Activity Citation

BALL http://www.ball-project.org/ LGPL A2 [8]

CDK https://sourceforge.net/projects/cdk LGPL A1 [9]

Chemf https://github.com/stefan-hoeck/chemf GPL C2 [10]

chemfp http://chemfp.com MIT C3 [11]

chemkit https://github.com/kylelutz/chemkit BSD B1

ChemmineR https://www.bioconductor.org/packages/release/bioc/html/ChemmineR.html Artistic A1 [12]

Cinfony https://github.com/cinfony/cinfony BSD/GPL B1 [13]

CurlySMILES http://www.axeleratio.com/csm/proj/main.htm GPL C2 [14]

DisCuS https://github.com/mwojcikowski/discus GPL B3 [15]

Fafoom https://github.com/adrianasupady/fafoom LGPL A2 [16]

fmcsR http://www.bioconductor.org/packages/fmcsR Artistic A1 [17]

frowns http://frowns.sourceforge.net Python C2

Helium http://www.moldb.net/helium.html BSD B2

Indigo http://lifescience.opensource.epam.com/indigo GPL A1 [18]

JoeLib http://sourceforge.net/projects/joelib GPL C1

LICSS https://github.com/KevinLawson/excel-cdk GPL A2 [19]

MayaChemTools http://www.mayachemtools.org LGPL A2 [20]

Mychem http://mychem.sourceforge.net GPL B2

ODDT https://github.com/oddt/oddt BSD A2 [21]

Open Babel http://openbabel.org GPL A1 [22]

OPSIN http://opsin.ch.cam.ac.uk Artistic A1 [23]

OrChem http://orchem.sourceforge.net LGPL C2 [24]

osra http://sourceforge.net/projects/osra GPL A1 [25]

OUCH https://github.com/odj/Ouch GPL C2

pybel http://openbabel.org/docs/dev/UseTheLibrary/Python_Pybel.html GPL A1 [26]

rcdk https://cran.r-project.org/web/packages/rcdk LGPL B2 [27]

RDKit http://www.rdkit.org BSD A1

RInChI http://www-rinchi.ch.cam.ac.uk Apache A3

rpubchem https://r-forge.r-project.org/projects/rpubchem GPL C3

rubabel https://github.com/princelab/rubabel MIT C2 [28]

SMSD http://www.ebi.ac.uk/thornton-srv/software/SMSD CCAL B2 [29]

Som-it™ http://silicos-it.be LGPL C3

webchem https://github.com/ropensci/webchem MIT A2
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Table 2

Standalone open source cheminformatics software.

Name URL License Activity Citation

cApp http://www.structuralchemistry.org/pcsb GPL A3 [30]

checkmol/matchmol http://merian.pch.univie.ac.at/~nhaider/cheminf/cmmm.html GPL C3 [31]

ConvertMAS http://sourceforge.net/projects/convertmas GPL A3

Filter-it™ http://silicos-it.be LGPL C3

Frog2 https://github.com/tuffery/Frog2 GPL B2 [32]

LMR https://github.com/IanAWatson/Lilly-Medchem-Rules GPL B2 [33]

Molpher https://www.assembla.com/spaces/molpher/wiki GPL C2 [34]

MoSS http://www.borgelt.net/moss.html MIT A2 [35]

OMG http://sourceforge.net/projects/openmg GPL C1 [36]

sdf2xyz2sdf http://sdf2xyz2sdf.sourceforge.net GPL C2 [37]

sdsorter https://sourceforge.net/projects/sdsorter GPL B3

Shape http://sourceforge.net/projects/shapega GPL C3 [38]

Strip-it™ http://silicos-it.be LGPL C3
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Table 3

Open source graphical development environments for cheminformatics.

Name URL License Activity Citation

AMBIT http://ambit.sourceforge.net GPL A1 [39]

Bioclipse http://www.bioclipse.net Eclipse B1 [40]

Galaxy Tool https://github.com/bgruening/galaxytools Academic A1 [41]

KNIME https://www.knime.org GPL A1 [42]

Orange orange.biolab.si BSD A1 [43]

SA2 http://sa2.sourceforge.net GPL A1 [44]

Taverna http://www.taverna.org.uk LGPL A1 [45]

Weka https://sourceforge.net/projects/weka GPL A1 [46]
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Table 4

Open source tools for 2D molecular visualization and editing on the desktop.

Name URL License Activity Citation

BKchem http://bkchem.zirael.org GPL C3

chemfig https://www.ctan.org/pkg/chemfig LaTeX A2

Chemtool http://ruby.chemie.uni-freiburg.de/~martin/chemtool GPL B3

JChemPaint http://jchempaint.github.io LGPL B1 [51]

LeView http://www.pegase-biosciences.com/leview-ligand-environment-viewer GPL B3 [52]

mol2chemfig http://chimpsky.uwaterloo.ca/mol2chemfig LaTeX C3 [53]

Molsketch http://sourceforge.net/projects/molsketch GPL A1

SketchEl http://sketchel.sourceforge.net GPL A1
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Table 5

Open source tools for 3D molecular visualization and editing on the desktop.

Name URL License Activity Citation

Avogadro http://avogadro.cc GPL A1 [54]

BALLView http://www.ball-project.org/ballview LPGL A2 [55]

gMol https://github.com/tjod/gMol/wiki GPL A3

Jamberoo https://sourceforge.net/projects/jbonzer LGPL A3

LPMV https://sourceforge.net/projects/lpmolecularviewer LGPL B3

Luscus https://sourceforge.net/projects/luscus Academic A1 [56]

Molecular Rift https://github.com/Magnusnorrby/MolecularRift GPL A3 [57]

OpenStructure http://www.openstructure.org LGPL A2 [58]

PLIP https://github.com/ssalentin/plip Apache A2 [59]

PyMOL https://sourceforge.net/projects/pymol Python A1

RasTop https://sourceforge.net/projects/rastop GPL C1

OpenRasMol https://sourceforge.net/projects/openrasmol GPL C1

SPADE http://www.spadeweb.org BSD C3 [60]

QuteMol http://qutemol.sourceforge.net GPL C1 [61]
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Table 6

Open source tools for web-based molecular visualization.

Name URL License Activity Citation

3Dmol.js 3dmol.csb.pitt.edu BSD A1 [62]

CH5M3D https://sourceforge.net/projects/ch5m3d GPL C1 [63]

Chemozart https://chemozart.com Apache A1 [64]

CWC https://web.chemdoodle.com GPL A1 [65]

JSME http://peter-ertl.com/jsme BSD A1 [66]

Jmol http://jmol.sourceforge.net LGPL A1 [67]

JSmol https://sourceforge.net/projects/jsmol LGPL A1 [68]

NGL http://proteinformatics.charite.de/ngl MIT A1 [69]

PV https://biasmv.github.io/pv MIT A1 [70]
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Table 7

Open source software for computing molecular descriptors.

Name URL License Activity Citation

4D-FAP http://www.ra.cs.uni-tuebingen.de/software/4DFAP LGPL C2 [72]

BlueDesc http://www.ra.cs.uni-tuebingen.de/software/bluedesc GPL C3

MolSig http://molsig.sourceforge.net GPL C2 [73]

PaDEL-descriptor http://www.yapcwsoft.com/dd/padeldescriptor Public Domain C1 [74]

TMACC http://comp.chem.nottingham.ac.uk/download/tmacc GPL C2 [75]
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Table 8

Open source software for building QSAR models.

Name URL License Activity Citation

AZOrange https://github.com/AZCompTox/AZOrange LGPL C2 [76]

Bioalerts https://github.com/isidroc/bioalerts GPL A3 [77]

camb https://github.com/cambDI GPL B2 [78]

eTOXlab https://github.com/manuelpastor/eTOXlab GPL B3 [79]

Open3DGRID http://open3dgrid.sourceforge.net GPL B1

Open3DQSAR http://open3dqsar.sourceforge.net GPL B1 [80]

QSAR-tools https://github.com/dkoes/qsar-tools BSD A3
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Table 9

Open source software that applies a QSAR model.

Name URL License Activity Citation

SMARTCyp http://www.farma.ku.dk/smartcyp LGPL C1 [81]

Toxtree http://toxtree.sourceforge.net GPL A1 [82]

UG-RNN http://cdb.ics.uci.edu/cgibin/tools/AquaSolWeb.py Apache C1 [83]
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Table 10

Open source software for visualizing QSAR models and compound datasets.

Name URL License Activity Citation

CheS-Mapper http://ches-mapper.org GPL A2 [84]

DataWarrior http://www.openmolecules.org/datawarrior GPL A1 [85]

DecoyFinder http://urvnutrigenomica-ctns.github.io/DecoyFinder GPL A1 [86]

Scaffold Hunter http://scaffoldhunter.sf.net GPL A1 [87]

Synergy Maps https://github.com/richlewis42/synergy-maps MIT A2 [88]

VIDEAN https://github.com/jimenamartinez/VIDEAN BSD A3 [89]

WCSE http://www.cheminfo.org/wikipedia BSD A2 [90]

WebChemViewer http://sourceforge.net/projects/webchemviewer BSD C3 [91]
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Table 11

Open source quantum chemistry software for performing ab initio calculations.

Name URL License Activity Citation

ABINIT http://www.abinit.org GPL A1 [95]

ACES http://www.qtp.ufl.edu/aces GPL A1 [96]

BigDFT http://bigdft.org GPL A1 [97]

CP2K http://www.cp2k.org GPL A1 [98]

DACAPO https://wiki.fysik.dtu.dk/dacapo GPL C1 [99]

ErgoSCF http://www.ergoscf.org GPL C2 [100]

ERKALE https://github.com/susilehtola/erkale GPL B2 [101]

GPAW https://wiki.fysik.dtu.dk/gpaw GPL A1 [102]

HORTON http://theochem.github.io/horton GPL A1

JANPA http://janpa.sourceforge.net BSD A1 [103]

MPQC http://www.mpqc.org LGPL B1 [104]

NWChem http://www.nwchem-sw.org ECL A1 [105]

Octopus http://www.tddft.org/programs/octopus GPL A1 [106]

OpenMX http://www.openmx-square.org GPL A1 [107]

Psi4 http://www.psicode.org GPL A1 [108]

pyquante http://sourceforge.net/projects/pyquante BSD A1

PySCF https://github.com/sunqm/pyscf BSD A1

QMCPACK http://qmcpack.org BSD A2 [109]

Quantum espresso http://www.quantum-espresso.org GPL A1 [110]

RMG http://rmgdft.sourceforge.net BSD/GPL A1 [111]

SQ https://sites.google.com/site/siamquantum GPL A2
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Table 12

Open source software for analyzing the results of quantum chemistry calculations.

Name URL License Activity Citation

FragIt https://github.com/FragIt GPL A2 [112]

cclib https://github.com/cclib/cclib LGPL A1 [113]

GaussSum http://sourceforge.net/projects/gausssum GPL A1 [113]

Geac https://github.com/LaTruelle/Geac GPL A3

Nancy_EX http://sourceforge.net/projects/nancyex GPL A2 [114]

orbkit http://orbkit.sourceforge.net GPL A2 [115]
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Table 13

Open source software for quantum chemistry visualization.

Name URL License Activity Citation

CCP1GUI http://www.scd.stfc.ac.uk/research/app/40501.aspx GPL C3

ccwatcher http://sourceforge.net/projects/ccwatcher GPL B2

Gabedit http://gabedit.sourceforge.net BSD C1 [116]

J-ICE http://j-ice.sourceforge.net GPL A1 [117]

QMForge http://qmforge.sourceforge.net GPL A1

wxMacMolPlt http://brettbode.github.io/wxmacmolplt GPL A1 [118]
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Table 14

Open source software for performing molecular simulations.

Name URL License Activity Citation

Campari http://campari.sourceforge.net GPL B1 [124]

DL POLY Classic http://www.ccp5.ac.uk/DL_POLY_CLASSIC/ BSD C3 [125]

GALAMOST http://galamost.ciac.jl.cn GPL A2 [126]

Gromacs http://www.gromacs.org LGPL A1 [127]

Iphigenie https://sourceforge.net/projects/iphigenie GPL A2 [128]

LAMMPS http://lammps.sandia.gov GPL A1 [129]

MDynaMix http://www.fos.su.se/~sasha/mdynamix GPL A1 [130]

MMTK http://dirac.cnrs-orleans.fr/MMTK CeCILL C1 [131]

OpenMM https://simtk.org/home/openmm GPL/MIT A1 [132]

ProtoMol http://protomol.sourceforge.net GPL C1 [133]

ProtoMS http://www.essexgroup.soton.ac.uk/ProtoMS GPL A2 [134]

Sire http://siremol.org GPL C2

WESTPA https://westpa.github.io/westpa GPL A2 [135]

yank http://getyank.org LGPL A2
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Table 15

Open source software for setting up and analyzing molecular simulations.

Name URL License Activity Citation

AmberTools http://ambermd.org GPL A1 [136]

LOOS http://loos.sourceforge.net GPL A1 [137]

lsfitpar http://mackerell.umaryland.edu/~kenno/lsfitpar GPL A2 [138]

MDAnalysis http://mdanalysis.org GPL A1 [139]

MDTraj mdtraj.org LGPL A1 [140]

MEMBPLUGIN https://sourceforge.net/projects/membplugin GPL C1 [141]

MEPSA http://bioweb.cbm.uam.es/software/MEPSA GPL A3 [142]

MSMBuilder http://msmbuilder.org LGPL A1 [143]

packmol http://www.ime.unicamp.br/~martinez/packmol GPL A1 [144]

PDB2PQR http://www.poissonboltzmann.org BSD A1 [145]

PLUMED http://www.plumed.org LGPL A1 [146]

ProDy http://prody.csb.pitt.edu MIT A1 [147]

Pteros http://pteros.sourceforge.net Artistic B2 [148]

PyEMMA http://www.emma-project.org LGPL A1 [149]

PyRED http://upjv.q4md-forcefieldtools.org GPL C1 [150]

PYTRAJ https://github.com/Amber-MD/pytraj GPL A1

simpletraj https://github.com/arose/simpletraj GPL A2

WHAM http://membrane.urmc.rochester.edu/content/wham BSD C1
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Table 16

Open source software for ligand-based virtual screening.

Name URL License Activity Citation

ACPC https://github.com/UnixJunkie/ACPC BSD B2 [153]

Align-it http://silicos-it.be LGPL C3

Open3DALIGN http://open3dalign.sourceforge.net GPL B2 [37]

PAPER https://simtk.org/home/paper GPL C2 [154]

Pharmer http://pharmer.sf.net GPL B1 [155]

Pharmit http://pharmit.sf.net GPL A3 [156]

Shape-it http://silicos-it.be LGPL C3

USRCAT https://bitbucket.org/aschreyer/usrcat MIT C2 [157]
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Table 17

Open source software for molecular docking and scoring.

Name URL License Activity Citation

ADplugin https://github.com/ADplugin LGPL A2

APBS http://www.poissonboltzmann.org BSD A1 [159]

AutoDock http://autodock.scripps.edu GPL C1 [160]

AutoDock Vina http://vina.scripps.edu Apache C1 [161]

Clusterizer-DockAccessor http://cheminf.com/software/clusterizer_dockaccessor GPL A3 [162]

DockoMatic https://sourceforge.net/projects/dockomatic LGPL B1 [163]

DOVIS http://bhsai.org/software GPL C2 [164]

idock https://github.com/HongjianLi/idock Apache A2 [165]

MOLA http://www.esa.ipb.pt/~ruiabreu/mola GPL C2 [166]

NNScore http://nbcr.ucsd.edu/data/sw/hosted/nnscore GPL C1 [167]

Paradocks https://github.com/cbaldauf/paradocks GPL A2 [168]

PyRx http://pyrx.sourceforge.net BSD A1 [169]

rDock http://rdock.sourceforge.net LGPL C1 [170]

RF-Score https://github.com/HongjianLi/RF-Score Apache A2 [171]

smina https://sourceforge.net/projects/smina GPL A1 [172]

VHELIBS http://urvnutrigenomica-ctns.github.io/VHELIBS GPL A2 [173]

VinaLC http://mvirdb1.llnl.gov/static_catsid/vina Apache C2 [174]

VinaMPI http://cmb.ornl.gov/~sek Apache C2 [175]

Zodiac https://sourceforge.net/projects/zodiac-zeden GPL C1 [176]
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Table 18

Open source software for pocket detection.

Name URL License Activity Citation

eFindSite http://brylinski.cct.lsu.edu/efindsite GPL C2 [177]

fpocket http://fpocket.sourceforge.net GPL C1 [178]

KVFinder http://lnbio.cnpem.br/facilities/bioinformatics/software-2 GPL B1 [179]

mcvol http://www.bisb.uni-bayreuth.de/data/mcvol/mcvol.html GPL C2 [180]

PAPCA https://sourceforge.net/projects/papca BSD C2

PCS https://sourceforge.net/projects/cavity-search GPL C2

PocketPicker http://gecco.org.chemie.uni-frankfurt.de/pocketpicker BSD C1 [181]

POVME https://sourceforge.net/projects/povme GPL C1 [91]
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Table 19

Open source software for ligand design.

Name URL License Activity Citation

AutoClickChem https://sourceforge.net/projects/autoclickchem GPL C2 [184]

AutoGrow http://autogrow.ucsd.edu GPL A1 [185]

igrow https://github.com/HongjianLi/igrow Apache A3

OpenGrowth http://opengrowth.sf.net GPL A1 [186]
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