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Human vision research aims at understanding the brain processes
that enable us to see the world as a structured whole consisting of
separate objects. To explain how humans organize a visual pattern,
structural information theory starts from the idea that our visual
system prefers the organization with the simplest descriptive code,
that is, the code that captures a maximum of visual regularity.
Empirically, structural information theory gained support from
psychological data on a wide variety of perceptual phenomena,
but theoretically, the computation of guaranteed simplest codes
remained a troubling problem. Here, the graph-theoretical concept
of ‘‘hyperstrings’’ is presented as a key to the solution of this
problem. A hyperstring is a distributed data structure that allows
a search for regularity in O(2N) strings as if only one string of length
N were concerned. Thereby, hyperstrings enable transparallel
processing, a previously uncharacterized form of processing that
might also be a form of cognitive processing.

In the 1960s, Leeuwenberg (1) initiated structural information
theory (SIT), which is a theory that aims at explaining how

humans perceive visual patterns. A visual pattern can always be
interpreted in many different ways, and SIT starts from the idea
that the human visual system has a preference for the interpre-
tation with the simplest descriptive code. In the 1950s, this idea
had been proposed by Hochberg and McAlister (2), with an eye
on Shannon’s work (3) as well as on early 20th century Gestalt
psychology (ref. 4; see also ref. 5). To this idea, SIT adds a
concrete visual coding language (see below), thus specifying the
search space within which the simplest codes are to be found.

In interaction with empirical research, SIT developed into a
competitive theory of visual structure. Leeuwenberg et al. (6–18)
applied SIT to explain a variety of perceptual phenomena such
as judged pattern complexity, pattern classification, neon effects,
judged temporal order, assimilation and contrast, figure-ground
organization, beauty, embeddedness, hierarchy, serial pattern
segmentation and completion, and handedness. SIT started with
a classification model, but nowadays it also contains compre-
hensive models of amodal completion (19, 20) and symmetry
perception (21–24).

For object perception, SIT proposes an integration of view-
point-independent and viewpoint-dependent factors quantified
in terms of object complexities (19). A Bayesian translation of
this integration, using precisals (i.e., probabilities p � 2�c derived
from complexities c), suggests that fairly veridical vision in many
worlds is a side effect of the preference for simplest interpre-
tations (25). This idea, which challenges the traditional Helm-
holtzian idea that vision is highly veridical in only the one world
in which we happen to live, is sustained by findings in the domain
of algorithmic information theory (AIT), also known as the
domain of Kolmogorov complexity or the domain of the minimal
description-length (MDL) principle.

During the past 40 years, SIT and AIT showed similar
developments. These developments, however, occurred in a
different order, and until recently, SIT and AIT developed
independently (see ref. 26 for an overview of AIT and ref. 25 for
a comparison of SIT and AIT). Currently, noteworthy are the
following two differences between SIT and AIT.

One difference applies to the complexity measurement. Un-
like AIT, SIT takes account of the perceptually relevant distinc-
tion between structural and metrical information (27). For

example, the simplest codes of metrically different squares may
have different algorithmic complexities in AIT but have the
same structural complexity in SIT. By the same token, an AIT
object class consists of objects with the same algorithmic com-
plexity (ignoring structural differences), whereas an SIT object
class consists of objects with the same structure (and hence with
the same structural complexity) (25, 28). This might be a
temporary difference, by the way. Since recently, AIT also seems
to recognize the relevance of structures (29).

The other difference applies to the search space within which
simplest codes are to be found. In both SIT and AIT, the simplest
code of an object is to be obtained by ‘‘squeezing out’’ a
maximum amount of regularity in a symbol string that represents
a reconstruction recipe for the object; one might think of
computer programs (binary strings) that produce certain output
(an object). To formalize this idea, AIT did not focus on concrete
coding languages that squeeze out specific regularities but
instead provided (incomputable) definitions of randomness (30)
to specify the result of squeezing out regularity. SIT, conversely,
focused on a (computable) definition of ‘‘visual regularity,’’
which yielded a concrete coding language that squeezes out only
transparent holographic regularities (for details, see ref. 31).

The transparent holographic character of these regularities
has shown to be relevant in human symmetry perception (21–24).
It also gave rise to the concept of ‘‘hyperstrings’’ that, in this
article, is presented as a key to the computation of guaranteed
simplest SIT codes. I begin by specifying the coding language of
SIT and the related minimal-encoding problem.

SIT Coding Language
Basically, there are only three transparent holographic regular-
ities, namely, iterations, symmetries, and alternations, which are
described by, respectively, I-forms, S-forms, and A-forms (for
short, ISA-forms), as given in the following definition of SIT’s
coding language.

Definition 1: An SIT code X� of a string X is a string t1t2…tm such
that X � D(t1)…D(tm), where the decoding function D:t3 D(t)
takes one of the following forms:

I-form: n��y��3 yyy. . .y �n times y; n � 2�

S-form: S��x1��x2�. . .�xn�, �p���3 x1x2. . . xn p xn. . . x2x1 �n � 1�

A-form: ��y������x1��x2�. . .�xn��3 yx1 yx2. . .yxn �n � 2�

A-form: ��x1��x2�. . .�xn�����y���3 x1y x2y. . . xny �n � 2�

Otherwise: D�t� � t [1]

for strings y, p, and xi (i � 1, 2, …, n). The code parts (y�), (p� ),
and (xi) are called ‘‘chunks’’; the chunk (y�) in an I-form or
A-form is called a ‘‘repeat’’; the chunk (p� ) in an S-form is called
a ‘‘pivot,’’ which, as a limit case, may be empty; the chunk string
(x1)(x2)…(xn) in an S-form is called an ‘‘S-argument’’ consisting
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of ‘‘S-chunks’’ (xi); and the chunk string (x1)(x2)…(xn) in an A-form
is called an ‘‘A-argument’’ consisting of ‘‘A-chunks’’ (xi).

Hence, an SIT code may involve not only encodings of
strings inside chunks [that is, from (y) into (y�)] but also
hierarchically recursive encodings of S-arguments or A-argu-
ments (x1)(x2)…(xn) into �x1��x2�. . .�xn�. As I specify in the next
section, this hierarchically recursive search for regularity creates
the problem that, to compute simplest SIT codes, a superexpo-
nential amount of time seems to be required (see also ref. 32).
The following sample of SIT codes of one and the same symbol
string may give a gist of this problem.

String: X � abacdacdababacdacdab
Code 1: X� � a b 2��acd� S��a��b�, �a�� 2��cda� b
Code 2: X� � ��aba�����cdacd��bacdacdab��
Code 3: X� � ��S��a�, �b�������S��cd�, �a����S��b��a��cd�, �a����
Code 4: X� � S��ab��acd��acd��ab��
Code 5: X� � S�S���ab����acd����
Code 6: X� � 2����a�����b��cd��cd��b���
Code 7: X� � 2����a����S���b����cd�����

[2]

Code 1 is a code with six code terms, namely, one S-form, two
I-forms, and three symbols. Code 2 is an A-form with chunks
containing strings that may be encoded as given in code 3. Code
4 is an S-form with an empty pivot and illustrates that, in general,
S-forms describe broken symmetry (33); mirror symmetry then
is the limit case in which every S-chunk contains only one symbol.
Code 5 gives a hierarchically recursive encoding of the S-
argument in code 4. Code 6 is an I-form with a repeat that has
been encoded into an A-form with an A-argument that, in code
7, has been encoded hierarchically recursively into an S-form.

SIT’s Minimal-Encoding Problem
As said, the coding language of SIT specifies the search space
within which simplest codes are to be found. To search this space
for simplest codes, one of course needs a measure of code
complexity, but this is a subordinate problem in this article. SIT
has known complexity measures that were either empirically
supported or theoretically plausible (28), but since about 1990,
SIT uses a measure that is both (ref. 15; see also ref. 25). For any
complexity measure, however, the question is whether one can
ever be sure that a given code is indeed a simplest code. In other
words, the fundamental problem of computing guaranteed sim-
plest codes is to take account of all possible codes of a given
string.

It is expedient to note that the SIT minimal-encoding problem
differs from context-free grammar (CFG) problems such as
finding the smallest CFG for any given string, for which fast
approximation algorithms exist (e.g., see refs. 34 and 35). SIT
starts from a particular CFG, namely, the coding language given
in Definition 1, which was designed specifically to capture
perceptually relevant structures in strings. The minimal-
encoding problem of SIT then is to compute, for any given string,
a guaranteed simplest code (i.e., no approximation) by means of
the specific coding rules supplied by this perceptual coding
language.

A part of SIT’s minimal-encoding problem can be solved as
follows by means of Dijkstra’s (36) shortest-path method (SPM).
Suppose that for every substring of a string of length N, one
already has computed a simplest covering ISA-form, that is, a
simplest substring code among those that consist of only one
ISA-form. Then, Dijkstra’s O(N2) SPM can be applied to select
a simplest code for the entire string from among the O(2N) codes
that then still are possible (see Fig. 1; see ref. 37 for details on
this application).

This, however, leaves open the much harder part of computing
simplest covering ISA-forms for every substring. In general, as
one may infer from Definition 1, a substring of length k can be
encoded into O(2k) covering S-forms and O(k2k) covering
A-forms. To pinpoint a simplest covering S-form or A-form, a
simplest code for every one of the O(2k) S-arguments and O(k2k)
A-arguments has to be computed as well, and so on, with
O(logN) recursion steps. Hence, an algorithm that would process
each and every S-argument and A-argument separately would
require a superexponential O(2N logN) amount of computing
time.

In the next sections, I show that the concept of hyperstrings
provides a key to the solution of this daunting problem. First, I
define and illustrate hyperstrings in a graph-theoretical setting
(for an extensive course on graph theory, see ref. 38; for a brief
course, see Appendix 1, which is published as supporting infor-
mation on the PNAS web site). Then, I show that A-arguments
and S-arguments group by nature into hyperstrings. Finally, I
evaluate the fact that hyperstrings allow for what I call ‘‘transpar-
allel processing,’’ that is, they allow a search for regularity in
O(2N) A-arguments or S-arguments as if only one A-argument or
S-argument of length N were concerned.

Hyperstrings
The concept of hyperstrings is a generalization of the concept of
strings. To identify context-free string structures, the only usable
property is the identity of substrings. As I specify next, a
generalization of this property holds for the hypersubstrings of
a hyperstring.

Definition 2: A hyperstring is a simple semi-Hamiltonian
directed acyclic graph (V, E) with a labeling of the edges in E
such that for all vertices i, j, p, q � V:

either ��i, j� � ��p, q� or ��i, j� � ��p, q� � �, [3]

where a substring set �(v1, v2) is the set of label strings
represented by the paths (v1, …, v2) in an edge-labeled directed
acyclic graph. In a hyperstring, the subgraph formed by the
vertices and edges in these paths (v1, …, v2) is called a ‘‘hyper-
substring.’’

It can easily be verified that a hyperstring is an st-digraph (i.e.,
a directed acyclic graph with only one source and only one sink)
with only one Hamiltonian path from source to sink (i.e., a path
that visits every vertex only once). The label string represented
by this Hamiltonian path is what I call the ‘‘kernel’’ of the
hyperstring.

Fig. 1. Suppose for the string P � ababfabab that the regularity search has
yielded simplest covering ISA-forms for the substrings of P (only a few of these
ISA-forms are shown). Then, the SPM yields S[(2*(ab)), ( f)] as the simplest code
of P. (Note: the number of string symbols in a code is taken to quantify its
structural complexity.)
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For example, the graph in Fig. 2 is a simple semi-Hamiltonian
directed acyclic graph with 13 source-to-sink paths that each
represent some string consisting of some number of symbols. For
instance, the path (1,2,4,5,7,8,9) represents the string ayfxcg, and
the path (1,3,4,5,9) represents the string xcfw. Furthermore, the
substring sets �(1, 4) and �(5, 8) are identical: The paths (1,…,4)
and the paths (5,…,8) represent the same set of substrings,
namely, abc, ay, and xc. In fact, for this graph, all substring sets
are pairwise either identical or disjunct, so that this graph is a
hyperstring. The kernel of this hyperstring is the string abcfabcg,
which is represented by the unique Hamiltonian path
(1,2,3,4,5,6,7,8,9).

In general, as in Fig. 2, a hyperstring represents a collection of
strings that have a common structure but that, for the rest, may
be unrelated. In other words, the common structure of the strings
is the crucial property that allows the strings to be seen as one
hyperstring, and depending on particular applications, the strings
may or may not have further things in common. In this article,
I focus on hyperstrings representing strings that are related
further in that they are derived from one underlying string.

For example, in Fig. 3, the graph from Fig. 2 has been given
an edge-labeling such that, this time, the source-to-sink paths
represent ‘‘chunkings’’ of the string abcfabcg, that is, partition-
ings into successive substrings. For instance, in Fig. 3, the path
(1,3,4,5,9) represents the chunking (ab)(c)( f )(abcg), that is, it
represents a string consisting of four chunks. A string of length
N can be chunked in 2N�1 different ways, which is also the
maximum number of source-to-sink paths (i.e., represented
strings) in a hyperstring with kernel length N. Not all collections
of chunkings of a string form hyperstrings, but as I show next,
A-arguments and S-arguments are chunkings that group by
nature into hyperstrings.

Alternation Hyperstrings
A full account of alternation hyperstrings would involve code-
technical details that are beyond the scope of this article. For
instance, one would have to distinguish between A-forms �(y)��

�(x1)(x2)…(xn)� and �(x1)(x2)…(xn)���(y)�, and in both cases one
would have to distinguish further between repeats y of different
lengths. The role of hyperstrings for all these cases, however, is
essentially the same as for A-forms �(y)���(x1)(x2)…(xn)� with
repeat y consisting of just one element. Therefore, I consider the
latter case only here.

There are two ways to verbalize the encoding of a string
yx1yx2…yxn into the A-form �(y)���(x1)(x2)…(xn)�. First, be-
cause the xi are substrings of arbitrary lengths, the A-form can
be said to specify repeats y at arbitrary positions in the string.
Second, however, the A-form can also be said to specify the
string as consisting of substrings yxi, that is, substrings with
identical prefixes y. The latter verbalization triggered the
following definition.

Definition 3: For a string T � s1s2…sN, the A-graph A(T) is a
simple directed acyclic graph (V, E) with V � {1, 2, …, N 	 1}
and, for all 1 � i 
 j � N, edges (i, j) and (j, N 	 1) labeled with,
respectively, the chunks (si…sj�1) and (sj…sN) if and only if si � sj.

Fig. 4 illustrates that an A-graph A(T) contains a correspond-
ing path for every A-form �(y)���(x1)(x2)…(xn)� that covers a
suffix of T. For example, in Fig. 4, the path (3,7,9,11) represents
the chunk string (agak)(ak)(ag). After extraction of the first
symbol from each chunk, this chunk string corresponds to the
A-argument in the A-form �(a)���(gak)(k)(g)�, which covers the
suffix agakakag of T � akagakakag.

Furthermore, an A-graph may contain edges [like edge (10,
11) in Fig. 4] that represent a repeat only, that is, edges that do
not correspond to an A-chunk in some A-form. (In the case of
repeats of more than one element, edges may even represent only
a part of a repeat.) During the computation of simplest SIT
codes, such ‘‘pseudo A-chunk’’ edges are excluded from ending
up in codes (see later in the article), but until then, they are
needed to maintain the integrity of the hyperstrings of which, as
I establish next, an A-graph is composed.

Theorem 1. The A-graph A(T) for a string T � s1s2…sN consists of
at most N 	 1 disconnected vertices and at most  N�2 independent
subgraphs (i.e., subgraphs that share only the sink vertex N 	 1)
each of which is a hyperstring.

Proof: See Appendix 2, which is published as supporting
information on the PNAS web site.

For instance, the A-graph in Fig. 4 consists of three indepen-
dent hyperstrings. Before I elaborate on the relevance of The-
orem 1, I show that a similar finding holds for S-arguments.

Symmetry Hyperstrings
By Definition 1, a string T � x1…xnpxn…x1 can be covered by an
S-form S[(x1)…(xn), (p)]. By the same token, for 1 � i � j � n,

Fig. 2. A hyperstring. The paths from vertex 1 to vertex 4 represent the same
substrings as those represented by the paths from vertex 5 to vertex 8; that is,
the substring sets �(1, 4) and �(5, 8) are identical.

Fig. 3. A hyperstring that represents 13 chunkings of the string abcfabcg.
Just as in Fig. 2, the substring sets �(1, 4) and �(5, 8) are identical.

Fig. 4. The A-graph A(T) for the string T � akagakakag, with three inde-
pendent hyperstrings and with, among others, identical substring sets �(1, 5)
and �(7, 11).

10864 � www.pnas.org�cgi�doi�10.1073�pnas.0403402101 van der Helm



every substring xi…xnpxn…xi of T can be covered by an S-form
S[(xi)…(xj�1), (xj…xnpxn…xj)]. The substrings xi…xnpxn…xi are
all centered around the midpoint of T and form what I next
define to be ‘‘diafixes.’’ The notion of diafixes is convenient in the
subsequent elaboration of how S-arguments group into hyper-
strings.

Definition 4: A diafix of a string T � s1s2…sN is a substring
si	1…sN�i (0 � i 
 N�2).

Definition 5: For a string T � s1s2…sN, the S-graph S(T) is a
simple directed acyclic graph (V, E) with V � {1, 2, …,  N�2 	
2} and, for all 1 � i 
 j 
  N�2 	 2, edges (i, j) and (j,  N�2
	 2) labeled with, respectively, the chunk (si…sj�1) and the
possibly empty chunk (sj…sN�j	1) if and only if si…sj�1 �
sN�j	2…sN�i	1.

Fig. 5 illustrates that an S-graph S(T) may contain several
independent subgraphs and that every S-form covering a diafix
of T is represented by a path in S(T). For instance, the path
(2,5,10,11) represents the S-form S[(bab)( fdedg), (p)] covering
the diafix babfdedgpfdedgbab. Thus, in Definition 5, the edges (j,
 N�2 	 2) represent all possible pivots in such S-forms, and the
edges (i, j) represent all possible S-chunks in such S-forms.

Hence, without its pivot edges, an S-graph S(T) represents the
S-arguments of all S-forms covering diafixes of T. As I establish
next, these S-arguments group into hyperstrings.

Theorem 2. The S-graph S(T) for a string T � s1s2…sN consists of
at most  N�2 	 2 disconnected vertices and at most  N�4
independent subgraphs that, without the sink vertex  N�2 	 2 and
its incoming pivot edges, form one disconnected hyperstring each.

Proof: See Appendix 2.

For instance, Fig. 6 shows two S-graphs S(T1) and S(T2), which
each consist of one independent subgraph that, without the pivot
edges, forms a hyperstring. Although in Fig. 6 the two strings T1
and T2 are near identical, the substring sets �(1, 5) and �(6, 10)
are identical for T1 but disjunct for T2. This illustrates the crucial
hyperstring property that substring sets are either completely
identical or completely disjunct (see Definition 2).

The Computability of Simplest SIT Codes
Within AIT, guaranteed minimal encoding is not feasible,
because without a definition of regularity, one can never be sure
that one has extracted a maximum of regularity. Within SIT,
regularity is defined as being constituted by transparent holo-
graphic configurations, but even then, guaranteed minimal
encoding did not seem feasible: The required hierarchically
recursive search for regularity seemed to imply that every

S-argument and A-argument has to be processed separately,
which would consume superexponential computing time.

The previous two sections, however, show that S-arguments
and A-arguments group by nature into hyperstrings. More
specifically, A-arguments group into independent hyperstrings,
and S-arguments group into disconnected hyperstrings. As I
discuss next, this paves the way for an encoding algorithm that
determines guaranteed simplest SIT codes.

My quest for such an algorithm started in the mid-1980s, by
developing an approximation algorithm (37). In the mid-1990s,
I completed an algorithm that already used S-graphs and A-
graphs without pseudo A-chunk edges (31). This algorithm is
available on request; it determines guaranteed simplest SIT
codes under the restriction that pseudo A-chunks do not occur
(at the time, the need to include pseudo A-chunks was not yet
evident). The upcoming upgrade (see below) removes this
restriction by using hyperstrings as defined in this article. For the
rest, the available algorithm deals with the hierarchically recur-
sive search for regularity in A-arguments and S-arguments as
outlined in the next overview of the upgrade.

Step 1: The search for simplest covering ISA-forms for the
substrings of a string P of length N can be embedded in an O(N3)
all-pairs SPM (see ref. 39) that selects a simplest SIT code for
every substring of P, proceeding from small to large substrings,
the largest substring being the entire string P. That is, a simplest
covering ISA-form for some substring of P has to be computed
only once all smaller substrings of P have already been assigned
a simplest code. This implies that the search for simplest covering

Fig. 5. The S-graph S(T) for the string T � ababfdedgpfdedgbaba, with two
independent subgraphs. Dashed edges and bold edges represent pivots and
S-chunks, respectively, in S-forms covering diafixes of T.

Fig. 6. (a) The S-graph for the string T1 � ababfababgbabafbaba, with,
among others, identical substring sets �(1, 5) and �(6, 10). (b) The S-graph for
the nearly identical string T2 � ababfababgbabafabab, in which the substring
sets �(1, 5) and �(6, 10) are disjunct.
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I-forms is ‘‘peanuts,’’ and that the hierarchically recursive search
for regularity in A-arguments and S-arguments can start from
A-forms �(y�)���(x1)(x2)…(xm)� and S-forms S[(x1)(x2)…(xm),
(p� )] with simplest codes y�, p� , and xi for the smaller substrings
inside the chunks.

Step 2: An A-graph A(T) or an S-graph S(T) for a substring
T � s1s2…sM of P represents O(2M) individual chunk strings, but
it can be constructed in only O(M2) computing steps. For A(T),
one only has to check for every substring of T whether this
substring and the subsequent suffix have identical prefixes (see
Definition 3). [In an O(N2) preprocess, every substring of P can
be assigned an integer that is the same for all and only all
identical substrings.] Similarly, for S(T), one only has to check for
every substring si…sj�1 in the left-hand half of T whether it is
identical to its symmetrical counterpart sM�j	2…sM�i	1 in the
right-hand half of T (see Definition 5). Every edge in A(T) and
S(T) can be given a complexity on the basis of the already
processed content of the represented A-chunk, S-chunk, or pivot
(see Step 1). At this point, pseudo A-chunks can be given an
‘‘infinite’’ complexity to prevent them from ending up as real
A-chunks.

Step 3: Hierarchically recursively, the hypersubstrings in A(T)
and S(T) can be processed starting with Step 1. That is, by
Definition 2, a hyperstring with kernel length n can be conceived
of as one string H � h1h2…hn in which a substring hi…hj stands
for the substring set �(i, j 	 1) in the hyperstring. For instance,
the hyperstring in Fig. 2 can be conceived of as a string H �
h1h2…h8 in which, among others, substrings h1…h3 and h5…h7
are identical. This identity stands for the identity of the substring
sets �(1, 4) and �(5, 8), which in one go captures the abc, ay, and
xc identities in strings represented in the hyperstring. Inversely,
one such substring identity already implies that the substring sets
are identical. Hence, the ISA-forms in this single string H
account for all ISA-forms in all strings represented in the
hyperstring, so this single string H can be taken as the input of
Step 1. In other words, Step 1 can take the hyperstring as if it were
only one string (namely, the hyperstring kernel) with, for various
substrings, various a priori given alternatives that all but one will
be dismissed during the all-pairs SPM (see Fig. 7).

Step 4: The argument of an A-form or S-form in a substring T
of P contains at most  N�2 chunks, so the recursion depth is at
most log2N. The recursion ends when Step 2 yields A-graphs and
S-graphs without identical substring sets. For these graphs and,
backtracking, eventually for A(T) and S(T), the all-pairs SPM
selects a simplest code for every hypersubstring, and by including
repeats and pivots, respectively, it selects simplest covering
A-forms and S-forms for, eventually, all suffixes and diafixes of
T. These A-forms and S-forms are used in the all-pairs SPM that
eventually selects a simplest code for P.

As indicated in Step 4, the all-pairs SPM yields eventually
simplest covering A-forms and S-forms for all suffixes and
diafixes of T. Therefore, each pass, Step 2 has to yield only O(N)
A-graph and S-graphs. Hence, Step 2 yields O(Nlog N) such
graphs during the entire hierarchically recursive search for
regularity. Furthermore, because of the all-pairs SPM, the
algorithm requires O(N3) computing steps per A-graph or
S-graph. Hence, in total, it requires O(N3	logN) steps to compute
a simplest SIT code for a string of length N.

It is true that this still implies a weakly exponential computing
time, but it contrasts, in any case, very favorably with the
uncomputability of a simplest AIT code and with the superex-
ponential computing time that beforehand seemed to be re-
quired to compute a simplest SIT code. Furthermore, the weakly
exponential factor logN is due to the number of hierarchical
recursion steps in the worst case. Only few strings have a deep
hierarchical structure, so in the average case, this weakly expo-
nential factor hardly seems a problem.

Be that as it may, the central issue in this article is not this
algorithm as a whole but rather the role of hyperstrings in it. As
outlined in Step 3, hyperstrings imply that O(2N) S-arguments or
A-arguments do not have to be searched serially or in parallel for
regularity but can be processed as if only one S-argument or
A-argument were concerned. I propose to call this a form of
transparallel processing, which may be qualified as follows.

Transparallel Processing
To be clear, I do not use the term ‘‘transparallel’’ in the sense that
Nelson (40) proposed it in the 1960s following Bush’s idea (41)
to display related items in correspondence with the way humans
think. Nelson used it in ‘‘transparallel displays,’’ which means so
much as that connected items are shown together with their
connections. Nowadays, such data structures are better known as
‘‘distributed representations,’’ and this is the term I use here as
a leg up to what I call transparallel processing. To Nelson, a
typical example of a distributed representation is a display
showing two related stories side by side, with visible links
between the corresponding parts. A more everyday example is a
road map in which routes between places are not displayed
separately but such that common parts are effectively displayed
as common parts. Likewise, hyperstrings are distributed repre-
sentations of strings.

A process that effectively exploits a distributed representation
of items can be said to perform ‘‘distributed processing.’’ This is
often taken to mean that the process is distributed over many
processors, but here I take it to mean primarily that the items are
processed simultaneously in the sense that every common part
is processed only once. Different common parts can then be
processed serially by one processor or in parallel by many
processors. A classical example of serial distributed processing is
Dijkstra‘s SPM (ref. 36; see also Fig. 1). Generally, such a
one-processor implementation can be converted into a many-
processors implementation performing parallel distributed pro-
cessing (see Appendix 3, which is published as supporting infor-
mation on the PNAS web site).

Fig. 7. For the hyperstring in the S-graph S(T1) from Fig. 6a, with T1 �
ababfababgbabafbaba, the hierarchically recursive regularity search yields
simplest covering ISA-forms for the hypersubstrings (only a few of these
ISA-forms are shown). By including the pivots, the all-pairs SPM then yields
simplest covering S-forms for the diafixes of T1 (only a few of these S-forms are
shown). Note that the number of string symbols in a code is taken to quantify
its structural complexity, and for clarity the substrings aba and bab inside
chunks are shown uncoded but should be read as S[(a), (b)] and S[(b), (a)],
respectively.
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Nowadays, distributed processing is a standard in many ap-
plications in computer science and in many models in cognitive
science. For instance, in computer science, a deterministic finite
automaton (DFA) is a distributed representation of the sen-
tences in a regular language, which enables a quick serial
distributed processing check on whether a given string is a
sentence in this language (42). Furthermore, in cognitive sci-
ence, distributed representations called networks are used in
parallel distributed processing models of cognitive processes
that, given certain input, select quickly a best matching item from
among the items represented in the network (43). The items in
the network could be words to be recognized in written or
spoken language, for instance.

In the minimal-encoding algorithm outlined in the previous
section, hyperstrings are subjected to all-pairs SPMs and,
thereby, to distributed processing. In this respect, hyperstrings do
not differ from deterministic finite automatons and networks:
These data structures all allow stored items to be processed
simultaneously in the sense that every common part is processed
only once. Hyperstrings, however, allow in addition for what I
call transparallel processing, which, as I specify next, goes one
step beyond distributed processing.

First, as said, in distributed processing, different common
parts still have to be processed serially by one processor or in
parallel by many processors. Second, in the minimal-encoding

algorithm, a hyperstring is subjected not only to an all-pairs SPM
but also to a search for regularity in the strings represented in the
hyperstring. During this regularity search, different common
parts do not have to be processed serially by one processor or in
parallel by many processors but can, by one processor, be
processed as if only one part were concerned. As outlined in Step
3 in the previous section, this form of processing is due to the
hyperstring property that substring sets are either completely
identical or completely disjunct (see Definition 2), and this is the
form of processing I call transparallel processing.

Conclusions
In cognitive science, our brain is typically supposed to be attuned
to relevant regularities in the world. Symmetry, for instance, is
doubtlessly relevant: It is a regularity that is visible in the shape
of virtually every living organism. In this article I showed that
such visually relevant regularities lend themselves for transpar-
allel processing. Hence, if our brain is indeed attuned to relevant
regularities, then, just as distributed processing, transparallel
processing might well be a form of cognitive processing.

I thank Emanuel Leeuwenberg, Kees Hoede, Hans Mellink, and Peter
Desain for valuable discussions on the minimal-encoding problem and
the indigenous Orang Asli people around Lake Chini, Malaysia, for the
perfect setting to think about hyperstrings.
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