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Membrane fatty acid desaturases are a diverse superfamily of enzymes that catalyze the introduction of double
bonds into fatty acids. They are essential in a range of metabolic processes, such as the production of omega-3
fatty acids. However, our structure–function understanding of this superfamily is still developing and their
range of activities and substrate specificities are broad, and often overlapping, which has made their systematic
characterization challenging. A central issue with characterizing these proteins has been the lack of a structural
model, which has been overcome with the recent publication of the crystal structures of two mammalian fatty
acid desaturases. In this work, we have used sequence similarity networks to investigate the similarity among
over 5000 relatedmembrane fatty acid desaturase sequences, leading to a detailed classification of the superfam-
ily, families and subfamilies with regard to their function and substrate head-group specificity. This work will
facilitate rapid prediction of the function and specificity of new and existing sequences, as well as forming a
basis for future efforts to manipulate the substrate specificity of these proteins for biotechnology applications.
Crown Copyright © 2016 Li et al.. Published by Elsevier B.V. on behalf of the Research Network of Computational

and Structural Biotechnology. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

In contrast to soluble fatty acid desaturases (FADs), which are acyl–
acyl carrier protein (acyl-ACP) specific [1,2], membrane FADs are a
diverse family of proteins that display a range of lipid substrate prefer-
ences including acyl-CoAs, sphingolipids (SP), phospholipids (PL) and
galactolipids (GL) [3,4]. The acyl chains of these substrates can, in gen-
eral, be quite similar, but the “head-groups” of these lipids differ and
contribute to the different physiological roles (Fig. 1). For example,
acyl-ACPs are important intermediates for a number of different meta-
bolic pathways, including lipid biosynthesis [5], whereas PL and GL are
not only important structural lipids, but also play essential roles in dif-
ferent cellular signalling pathways [6]. Monogalactosyl diacylglycerol
(MGDG) is a type of non-phosphorous structural glycerolipid that is
abundant in the cellular membranes of photosynthetic organisms
[7–9]. Similarly, SP is also a class of structural lipids, although its roles
in the regulation of cellular processes, such as apoptosis, cell migration
and cold tolerance, makes this class of lipid particularly important
[10–13]. Acyl-CoA substrates are frequently acted uponby lipid-modify-
ing enzymes such as desaturases, acyltransferases and elongases
[14–19]. Therefore, acyl-CoA substrates are especially important for
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the production of unusual lipids such as docosahexaenoic acid and
eicosapentaenoic acid [14,20].

The substrate specificity and regioselectivity (double bond position-
ing) of membrane FADs is largely determined by the interaction be-
tween the enzyme and the lipid head-group. The recently published
human and mouse steaoryl-CoA desaturase structures reveal the inter-
action between the lipid substrate and themembrane FADs [21,22]. The
hydrophilic CoA head-group of the substrate forms electrostatic interac-
tions and hydrogen bonds with residues in the cytoplasmic domain and
transmembrane helix (TM) 1 of the desaturase, and orients the acyl
group into the long hydrophobic tunnel with the target carbon present-
ed at di-metal active site [22]. The acyl group is surrounded by hydro-
phobic residues in the substrate binding cavity including W262 on
TM4, which holds the substrate in place for Δ9 desaturation [22]. How-
ever, the substrate binding mechanisms of the desaturases that are not
specific to acyl-CoA are still poorly understood. A domain-swapping
study between the acyl-phosphatidylcholine (acyl-PC) specific Δ6
desaturase and the sphingolipid specific Δ8 desaturase from Borage
officinalis discovered that TM helices, as well as the cytosolic loops, of
the desaturases play essential roles in differentiating between head-
groups [23]. However, there is not enough structural data to either iden-
tify specific roles for the functionally important residues in substrate
binding, or to describe an accuratemechanism for the substrate binding
of the acyl-PC-specific and sphingolipid-specific FADs. Moreover, there
is currently no established sequence-based classification available that
search Network of Computational and Structural Biotechnology. This is an open access
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Fig. 1. The chemical structures of glycerophospholipid (A), acyl-Coenzyme A
(B), sphingolipid (SP), phosphatidycholine as a major phospholipid (PC) and
monogalactosyldiacylglycerol (MGDG). The acyl groups are coloured red. The X head-
group on the glycerophospholipid backbone varies between different classes with the
structure of PC given as an example.
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accurately predicts head-group specificity and regioselectivity of
uncharacterized sequences.

Based on their regiospecificity and sequence homology, the mem-
brane desaturase superfamily has been further divided into families
[3,24,25]. Front-end (FE) desaturases are capable of introducing car-
bon–carbon double bonds into unsaturated lipid substrates at positions
between an existing double bond and the terminal carboxyl group [4].
It was found that the varied substrate preference of the front-end
desaturases is the root cause of the substrate dichotomy bottleneck in
the ω3-LCPUFAs biosynthesis pathway [20,63,64]. This is because
some Δ6 desaturases utilize acyl-PC substrates, whereas the elongases
at the next steputilize acyl-CoA substrates [20]. Thus, for acyl-PC-specif-
ic Δ6 desaturases, the product of the Δ6 desaturation has to be convert-
ed into an acyl-CoA molecule by an acyltransferase, which limits the
metabolic flux in the recombinant ω3-LCPUFA biosynthesis pathway
in plants [20]. Second, first desaturases (FDs), typically catalyze the for-
mation of the first C=C bond at the Δ9 position of an acyl group. It has
been postulated that the Δ9 desaturases are the most ancient
desaturases among the three groups because of their universal distribu-
tion in organisms [24]. The FDs utilize acyl-CoA as substrates except for
the FDs of plant plastids [8]. Third, themethyl-end (ME) desaturases are
responsible for introducing a C_C between a pre-existing C_C and the
methyl end of the acyl group [26]. ME desaturases are known to utilize
PL substrates [27,28]. Finally, the Δ4 sphingolipid desaturases (Δ4-SPs)
are particularly important for cellular signalling [29]. This classification
was based on a previous limited phylogenetic analysis of eukaryotic
membrane-bound desaturases [25].

For a very diverse protein family, such as the membrane FADs, con-
structing a high-quality multiple sequence alignment can be challeng-
ing [30], which limits our ability to obtain evolutionary information
from phylogenetic analysis and to annotate the possible functions for
identified genes with confidence [30]. Protein sequence similarity net-
works (SSNs) were developed in 2009 by Babbitt and co-workers to fa-
cilitate functional annotation based on known sequence data [31]. SSNs
can illustrate the global sequence–structure–function diversity of pro-
tein superfamilies [32–34], because they are based on many pairwise
alignments of proteins instead of the entire alignment of a large protein
datasets, so that the inaccuracy of a large protein alignment is largely
eliminated. A SSN presents the level of similarity between members in
a protein family in a graphical way in which proteins sharing high se-
quence identities are clustered. In the SSNs, the edges represent all-vs-
all BLAST E-values and each node represents a protein or a group of
highly similar proteins. The information about their organism of origin
and structural understanding can be mapped and visualized in the net-
work manually or automatically [35]. This method can be combined
with other computational or biochemical techniques to annotate and
characterize the function–structure relationships of protein subfamilies.
Two example applications of the use of SSNs are the re-classifications of
the cytosolic glutathione transferases superfamily [36], and an oxidore-
ductase superfamily [30], where biochemical characterization is incor-
porated to provide a more in-depth analysis of the functional and
structural diversity of protein subfamilies. Thus, SSNs can serve as the
foundation for the characterization of protein superfamilies by provid-
ing information about the sequence–structure–function divergence
[37].

In this work, membrane FADs were analysed using SSNs to deter-
mine the distinctions in sequence and structure to provide a clearer pic-
ture of the differences in the possible mechanisms of substrate binding.
Because of the high commercial value of the FE desaturases in the pro-
duction of poly-unsaturated fatty acids, such as ω3-LCPUFAs [14], a
more in-depth analysis of this family was performed. These results
provide new directions for the future engineering membrane FADs.

2. Results and discussion

2.1. The sequence–structure–function relationships of all known
membrane-bound desaturases

In order to characterize the sequence and functional diversity in the
membrane FADs, particularly the substrate head-group specificity, 5245
sequences were collected using the PFAM fatty acid desaturase family
PF00487 as seed sequence clusters within the length range of 350 aa
to 550 aa. This length range was chosen to limit the search to the single
domain desaturases and the desaturases with a fused cytochrome b5
domain. The free cytochrome b5 proteins and the unrelated long
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cytochrome b5 domain containing fusion proteins are eliminated with
this filter. The collected sequences were analysed by generating a SSN
using EFI-EST [35], where an initial network containing 2878 represen-
tative nodes (clusters of protein sequences with N60% amino acid
identity) was produced. The edges represent all-vs-all BLAST E-values
between the clusters. The cytochrome b5 domain was only included in
the E-value calculations when all of the protein members in the
connecting nodes also contained cytochrome b5 domains. Otherwise,
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Fig. 2. Overview of the sequence similarity relationships in the membrane-bound desaturase f
the membrane-bound desaturase family, in the Pfam database (pfam.xfam.org) (the list of th
Table S1). The clusters with functionally characterized member sequences are labelled, in
ketolases clusters. There are three major fatty acid desaturase families (first desaturases, FDs;
(SDs) are also shown. Larger squares represent nodes with at least one functionally characte
score between the sequences of representative nodes is lower than the threshold of Log BLAS
identity of 30% over 275 residues. A and B are identical networks with different colour codin
the kingdom of the organism of origin. B. The nodes in this overview network are coloured by
only the fatty acid desaturase sequences were used to calculate the E-
values. A literature review was performed to collect the known lipid
head-group preferences of the characterized desaturases and their or-
ganism distributions. This data was mapped onto the networks (Fig. 2).

The SSNs in Fig. 2 are presented with different colour coding of the
nodes to identify the kingdom in which the respective membrane
FADs are found and the substrate head-group preference. It is apparent
that there are a large number of uncharacterized prokaryotic
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amily. These representative networks show 2878 nodes representing the 5245 proteins in
e UniProt IDs of the sequences included in this network are provided in Supplementary
cluding the functionally dissimilar alkane monooxygenases cluster and beta-carotene
methyl-end desaturases, MEs; front-end desaturases, FEs). Δ4 sphingolipid desaturases
rized member. Edges or lines connecting the nodes are shown if the pairwise similarity
T E-value of −13. The 366,864 edges in the overview network have a median sequence
g as explained in the figure keys. A. The nodes in this overview network are coloured by
the substrate head-group specificity of the characterized members.
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desaturase-like proteins in the database. The functionally distinct beta-
carotene ketolases and alkane monooxygenases are also present in the
network, because they all carry the three conserved and functionally
important histidine-rich motifs, which coordinate the catalytic di-iron
centres of these enzymes [38–40]. However, they are sufficiently differ-
ent in terms of sequence identity and function to be excluded from this
membrane FAD-focussed study. Four major clusters of desaturases with
characterized members are visualized in the SSNs. By examining the
characterizedmembers in eachmajor cluster, the four clusters are iden-
tified as the first desaturases (FDs) [41,42], methyl-end desaturases
(MEs) [43], front-end desaturases (FEs) [4] and Δ4 sphingolipid
desaturases (Δ4SPs) [44]. The different clusters include multiple se-
quences from different evolutionary kingdoms as well as a range of dif-
ferent substrate preferences (Fig. 2). This coarse separation of the
clusters is consistentwith the previously proposedmembrane FAD clas-
sification, which was based on the phylogenetic analysis of eukaryotic
membrane-bound desaturases [25]. The Δ4 sphingolipid desaturases
catalyze the Δ4 desaturation of important signalling molecules such as
(E)-sphing-4-enine-1-phosphate, which is the messenger for the epi-
dermal growth factor (EGF) receptor family [29]. As Δ4s are not
known to be specific for substrates other than sphingolipids, they
were not subjected to further detailed analysis in this study.

2.2. Substrate specificity in the first desaturase family is determined by the
presence of charged residues within the substrate binding site

The three main families within themembrane FAD superfamily (FD,
ME, FE) can be further resolved by reducing the LogE filter to remove
weak associations. The FD family contains the structurally characterized
mammalianΔ9 stearoyl-CoA desaturases (SCD1s) [41], which share ap-
proximately 32% amino acid identitywith othermembers of the FD sub-
family. They are responsible for introducing the first C_C bond into a
saturated hydrocarbon chain [21]. At a logE value of −56, eight major
Fig. 3.The representative networks of the FDs showmoredetailed subgroupings. A and B are the
Eight major clusters (clusters with more than 50 member sequences in each) formed. The nod
clusters are formed (Fig. 3). The largest cluster consists of acyl-CoA spe-
cific Δ9 FDs (FD-A). The only other cluster that contains experimentally
characterized desaturases is the FD-C cluster, which contain the charac-
terized bi-functional acyl-lipid-specific Arabidopsis thaliana Δ7/Δ9
desaturases (ADS1) [8].

The FD-A cluster consists of the acyl-CoA Δ9 single domain FADs,
predominantly from animals, and fusion desaturases that have a cyto-
chrome b5 domain fused at the C-terminus of the desaturase, predom-
inantly from fungi (Fig. 3). Two crystal structures of single-domain
animal desaturases have been published and have defined the geometry
of the acyl-CoA as bound in the desaturase [21,22]. However, there is no
crystal structure of the fused fungal desaturases to date for structural
comparison. Given that there is significant amino acid sequence identity
(higher than 30%) in the desaturase domain between the fused and un-
fused proteins, the formermost likely exhibit similar binding character-
istics as the single domain desaturases.

The FD-C cluster is composed of plant plastid FADs and prokaryotic
FADs, including the bi-functional ADS1 protein, which revealed an in-
triguing subcellular-specific substrate-specificity and regioselectivity
[8]. This desaturase is capable of catalysing Δ9 desaturation of acyl-PC,
when targeted to endoplasmic reticulum (ER) membrane [8]. It can
also catalyze Δ7 desaturation of acyl-groups presented on MGDG
when targeted to the plastid membrane [8]. However, because most
ADS enzymes (with the exception of the plastid-localized ADS3) are lo-
calized to the ER, their native function is likely to involve desaturation of
acyl-PC. As the structures of MGDG and acyl-PC are only different by the
hydrophilic functional head-groups at the sn3 position of the glycerol
backbone (Fig. 1), overlapping substrate specificity is not entirely
surprising.

Although both FD-A and FD-C clusters belong to the FD family, they
have diverged in terms of head-group specificity. When the sequence
differences between the FD-A human SCD1 and the FD-C ADS1 and
are compared, a number of non-conservative substitutions are evident
samenetworks generated from the FDs cluster in Fig. 2 at a higher stringency, LogEb−56.
es are coloured by organism kingdom information (A) or their substrate specificities (B).



Fig. 4. The alignment of ADS1 and SCD1. The substrate head-group binding residues of the crystal structure of SCD1 [22] are denoted by asterisks.
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(Fig. 4). Specifically, a number of charged or polar residues that are re-
sponsible for CoA binding in SCD1 are replaced by uncharged amino
acids in ADS1, which result in significant changes in the surface charge
distribution in the substrate binding cavity (Fig. 5). The loss of positive
charge, which is complementary to the extensive negative charge on
coenzyme-A but is not required for binding of the glycerol-sugarmoiety
of MGDG, is consistent with the change in specificity.

2.3. Methyl-end desaturases specific for phospholipid substrates

The methyl-end desaturase subfamily can be separated into two
groups at the LogE filter of −30: a prokaryotic Δ5 phospholipid FAD
group (Δ5 PLs) and the canonical MEs including Δ12-specific [45],
Δ15-specific [46] and bifunctional (Δ12 and Δ15) FADs [47] (Fig. 6).
The Δ5 PL desaturase from Bacillus subtilis (UniProt ID: O34653) has
been experimentally proven to have a six-transmembrane (TM) helix
topology [27,28]. Functionally, the Δ5 PL cluster is similar to the first
desaturases, although it shares higher sequence similarity with the ME
family. Given the high amino acid sequence identity between these
clusters (higher than 21%), the 6-TM-helix topology is likely to be the
common topology of theMEs cluster andmakes this subfamily structur-
ally distinct from the FDs. Even though the bacterial B. subtilis Δ5
desaturase is suggested to be specific for phospholipid, this study did
not specify the class of phospholipid that is the primary substrate [27,
28]. Several enzymes from the ME cluster have been shown to catalyze
ADS1SCD1

BA

Fig. 5. The surface charge distribution comparison between an acyl-CoA-specific FD-A and
an MGDG-specific FD-C. The difference in surface charge distributions visualized on the
surface of the crystal structure of human steaoryl-CoA Δ9 desaturase (SCD1, PDB ID:
4ZYO) and the homology model of ADS1 inside and around the substrate-binding cavity.
the desaturation of phosphatidylcholine including the plant FAD2 FAD3,
FAD6, FAD7 and FAD8 desaturases (Fig. 6) [48–51]. Thus, it is likely that
both clusters utilize phospholipid substrates. It is notable that the Δ5
phospholipid FAD group consists almost entirely of prokaryotic and
cyanobacterial sequences (with a handful of sequences from plants
and protists), whereas the canonical ME cluster consists of sequences
from fungi, animals, plants, cyanobacteria and other prokaryotes.

2.4. Front-end desaturases have diverse substrate specificity

The FE desaturases are responsible for introducing carbon–carbon
double bonds into unsaturated acyl chains between the pre-existing
double bonds and the carboxyl group of lipid substrates [52]. There is
currently no crystal structure of any member of the FE desaturase fam-
ily. Thus, our understanding of their mechanism and regioselectivity is
primarily based on mutagenesis studies, which have been reviewed by
Meesapyodsuk and Qiu [4]. A range of FEs with Δ4, Δ5, Δ6 desaturases
activity and specificity for acyl-CoA or acyl-PC substrates have been
identified [4,20,53–57]. This level of diversity is not seen in the other
FAD families, making FE desaturases distinct from MEs and FDs. With
a LogE b −20 filter, the broad FE desaturase family separated into
four clusters. For ease of explanation, the clades are named as FE1–4
(Fig. 7). The fusion-FADs, which have a cytochrome b5 domain fused
at the N-terminus of the desaturase domain, are only found in the
FE1–3 clusters.

Clusters 1 and 2 of the FE desaturases are the largest and both in-
clude sequences from prokaryotes and eukaryotes, although only the
eukaryotic proteins have fused cytochrome b5 domains at the N-
termini. This observation suggests that the gene fusion event likely
took place after the evolution of eukaryotes. The FE1 cluster includes
the Δ6 desaturases from M. pusilla and O. tauri, which have been
shown to function as desaturases with omega-3 and omega-6 fatty
acids [14,58]. A single prokaryotic fusion desaturase from the cyanobac-
terium Leptolyngbya sp. PCC 7375 (UniProt ID: K9ESI7) falls within
those found in the FE2 cluster. It is unclear if K9ESI7 is the result of a hor-
izontal gene transfer event between eukaryotes and prokaryotes, or if it
is the descendent of an ancient gene fusion that was the evolutionary
origin of the eukaryotic fusion proteins. The smallest cluster (FE3) in-
cludes proteins that are predominantly found in insects,with the excep-
tion of a few proteins from algae (Nannochloropsis gaditana) and simple
eukaryotes and are believed to be housekeeping genes involved in lipid
metabolism [59]. Finally, the FE4 cluster is primarily composed of single
domain (non-fused) desaturases from prokaryotic species, but also
includes some genes from eukaryotes that encode single domain
proteins. The only characterized protein in this family is the NADPH
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oxidoreductase-dependent C16:0/C18:0-CoAΔ9 desaturase fromMyco-
bacterium (UniProt ID: P9WNZ3) [60]. Its function mimics the role of
FDs as this enzyme is responsible for introducing the first double bond
into fatty acid chains.

Increasing the LogE filter to b−65 can further differentiate the FE1
cluster, revealing the presence of clusters with distinct lipid head-
LogE <-20
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group preferences including a sphingolipids/acyl-PC-specific cluster
(FE1-S), a predominantly acyl-PC-specific cluster (FE1-PC) and acyl-
CoA-specific proteins (FE1-AC) (Fig. 8). The separation of sequences
within the FE1 sub-cluster is supported by a phylogenetic analysis of
the functionally characterized FE desaturases (Fig. 9). The FE1-AC sub-
cluster includes the animal Δ5 and Δ6 acyl-CoA desaturases, as well as
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the algal and fungal acyl-CoA desaturases. The FE1-PC sub-cluster in-
cludes genes from C. elegans, moss and liverworts. Within this sub-
cluster, Marchantia polymorpha Δ6 desaturase (UniProt ID: Q696V8)
has been shown to have some promiscuous activity with acyl-CoA
Fig. 9. Phylogenetic analysis of the FE1 sub-cluster. The tree was constructed using MEGA v.7.
bootstrap values of 100 replicates are denoted at the major nodes. The green branches ind
branches indicate acyl-CoA specificity.
substrates in addition to acyl-PC substrates [61]. The FE1-S sub-cluster
is complex and difficult to resolve at a LogE b −65 filter, and includes
both acyl-PC and acyl-SP desaturases. Within the FE1-S sub-cluster,
higher plant FE desaturases cluster with a group of fungal proteins.
FE1-AC

FE1-S

FE1-PC

A list of the included desaturase proteins is detailed in the Supplementary Materials. The
icate acyl-PC specificity. The black branches indicate sphingolipid specificity. The blue

uniprotkb:Q696V8
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The topology of the FE cluster has not been experimentally con-
firmed, which makes it difficult to determine the specific substrate-
bindingmode of these desaturases. It is possible that themodes of inter-
action between the proteins of the FE cluster and the different types of
lipid substrates could also be distinctive from the observed binding
mechanism in SCD1 [22]. The recently published structure of the yeast
integral membrane fatty acid α-hydroxylase (scScs7p) [62] could indi-
cate an alternative lipid–substrate binding mechanism that might be
relevant to these enzymes. However, given that it only shares very
low (~14%) amino acid sequence identity with members of the FE clus-
ter, we think that the structures are likely to be too different to allow the
inference of alternative substrate-binding modes.

3. Conclusion

This broad sequence–structure survey of the membrane FAD
superfamily provides several notable observations. First, there are a
large number of uncharacterized FADs that are essentially distinct
from all known clusters and these proteins are abundant in prokary-
otes. Further work to characterize these abundant proteins will be
necessary to identify their evidently important physiological roles.
Second, the membrane FAD superfamily is diverse, with the diver-
gence of FE, ME, FD families, as well as a number of smaller and
more specialized families, such as the Δ4 sphingolipid desaturases.
This evolutionary separation of proteins on the basis of their function
and regioselectivity (first, methyl end, or front end) produces a num-
ber of sub-clusters in the FD and FE families that have specificity for
fatty acids with different head-groups. The FE desaturases, for exam-
ple, have evolved to become specific for acyl-CoA, acyl-PC and
sphingolipid substrates. In this work, we have classified this diverse
superfamily for the first time in detail. This figure also highlights the
gaps in our current understanding—for instance, what are the func-
tions of the FD2 and FD4 groups?

4. Materials and methods

4.1. Sequence similarity networks (SSNs)

SSNs were generated by EFI-EFT using sequences belonging to the
PF00478 fatty acid desaturase superfamily in PFAM database, in which
the BLAST all-vs-all LogE valueswere used as the edges and a LogE cutoff
of −5 was applied to the initial network generation [35,63]. The net-
work consists of the nodes representing protein clusters with 60% se-
quence identity which were visualized using Cytoscape v.3.2.1 [64].
The sequences shorter than 250 aa or longer than 550 aa were excluded
to avoid partial proteins or proteins with more than two domains. The
networkwas curated to remove unrelated sequences. The subgroupings
in each major cluster were visualized by gradually increasing the
stringency of the LogE filter of the networks. The published functional
data was used to determine the consensus function and substrate
preference of each subfamily.

4.2. Phylogenetic analysis

The FE desaturaseswith experimentally proven functional datawere
collected from the literature. A total of 38 sequences (Supplementary
Table S2) belonging to FE1 clusterwere aligned byMolecular Evolution-
ary Genetics Analysis program Version 7 (MEGA7) using MUSCLE
algorithm [65,66]. A phylogenetic tree was constructed using the
maximum-likelihood method and LG matrix in (MEGA7) [65].

4.3. Structural modelling

The protein sequence of the Arabidopsis thaliana Δ9 desaturase
(ADS1, UniProt ID: O65797) was submitted to the Phyre2 modelling
server [67] using the default settings of the "normal" modelling mode,
with human stearoyl-CoA desaturase (PDB: 4ZYO) as template.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.csbj.2016.08.003.
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