
Modeling a synthetic multicellular clock:
Repressilators coupled by quorum sensing
Jordi Garcia-Ojalvo*†, Michael B. Elowitz‡, and Steven H. Strogatz*§¶

*Center for Applied Mathematics and §Department of Theoretical and Applied Mechanics, Cornell University, Ithaca, NY 14853; †Departament de Fisica i
Enginyeria Nuclear, Universitat Politecnica de Catalunya, Colom 11, 08222 Terrassa, Spain; and ‡Departments of Biology and Applied Physics, California
Institute of Technology, Pasadena, CA 91125

Edited by Charles S. Peskin, New York University, New York, NY, and approved June 7, 2004 (received for review October 31, 2003)

Diverse biochemical rhythms are generated by thousands of cel-
lular oscillators that somehow manage to operate synchronously.
In fields ranging from circadian biology to endocrinology, it re-
mains an exciting challenge to understand how collective rhythms
emerge in multicellular structures. Using mathematical and com-
putational modeling, we study the effect of coupling through
intercell signaling in a population of Escherichia coli cells express-
ing a synthetic biological clock. Our results predict that a diverse
and noisy community of such genetic oscillators interacting
through a quorum-sensing mechanism should self-synchronize in a
robust way, leading to a substantially improved global rhythmicity
in the system. As such, the particular system of coupled genetic
oscillators considered here might be a good candidate to provide
the first quantitative example of a synchronization transition in a
population of biological oscillators.

Organisms are biochemically dynamic. They are continuously
subjected to time-varying conditions in the form of both

extrinsic driving from the environment and intrinsic rhythms
generated by specialized cellular clocks within the organism
itself. Relevant examples of the latter are the cardiac pacemaker
located at the sinoatrial node in mammalian hearts (1) and the
circadian clock residing at the suprachiasmatic nuclei in mam-
malian brains (2). These rhythm generators are composed of
thousands of clock cells that are intrinsically diverse but never-
theless manage to function in a coherent oscillatory state. This
is the case, for instance, of the circadian oscillations exhibited by
the suprachiasmatic nuclei, the period of which is known to be
determined by the mean period of the individual neurons making
up the circadian clock (3–7). The mechanisms by which this
collective behavior arises remain to be understood.

Individual clock cells are known to operate through biochem-
ical networks comprising multiple regulatory feedback loops (8).
The complexity of these systems has hindered a complete
understanding of natural genetic oscillators. Synthetic genetic
networks, on the other hand, offer an alternative approach
aimed at providing a relatively well controlled test bed in which
the functions of natural gene networks can be isolated and
characterized in detail (9). In this direction, a synthetic biological
oscillator, termed the ‘‘repressilator,’’ was developed recently in
Escherichia coli from a network of three transcriptional repres-
sors that inhibit one another in a cyclic way (10). Spontaneous
oscillations were observed in individual cells within a growing
culture, although substantial variability and noise was present
among the different cells. Recently, another synthetic genetic
circuit was designed and built, exhibiting damped oscillatory
responses to perturbations in culture (11).

A natural next step in this design effort would be to include a
mechanism of intercell coupling that would globally enhance the
oscillating response of the system. However, coupling among
oscillators is not, in general, sufficient to achieve synchroniza-
tion, and many ensembles of coupled oscillators exhibit phase
dispersion rather than a synchronized state [because either the
oscillators actively resist synchronizing (12) or coupling is too
small or nonexistent (13)]. Therefore, the collective behavior of

a population of coupled oscillators must be analyzed carefully.
Here we propose a potential means of achieving such a collective
response on the basis of cell-to-cell communication through
quorum sensing (14).

Quorum sensing has lead recently to programmed population
control in a bacterial population (15). In another recent study,
McMillen et al. (16) have demonstrated theoretically that quo-
rum sensing can lead to synchronization in an ensemble of
identical genetic oscillators. The oscillators considered there
were assumed to be of a relaxational type (that is, with spike-like
waveforms), analogous to neural oscillators. The repressilator,
on the other hand, is sinusoidal rather than relaxational. Fur-
thermore, in the experimental implementation of the repressi-
lator (10), individual cells were found to oscillate in a ‘‘noisy’’
fashion, exhibiting cell–cell variation in period length, as well as
variation from period to period within a single cell.

Accordingly, it seems natural to consider the effect of intercell
signaling on a population of nonidentical and noisy repressilators
coupled by quorum sensing. Using computational modeling, we
show here that a diverse population of such oscillators is able to
self-synchronize, even if the periods of the individual cells are
broadly distributed. The onset of synchronization is sudden, not
gradual, as a function of varying cell density. In other words, the
system exhibits a phase transition to mutual synchrony. Although
the existence of this phase transition was predicted and studied
theoretically several decades ago in general models of coupled
phase oscillators (12, 17), only recently has it been confirmed
experimentally by using an electrochemical system (18). No
corresponding confirmations exist in biological systems (19). We
believe that the system proposed here could provide a favorable
arena for such a test.

Our results indicate that coupling also has a second beneficial
effect: it reduces the noisiness of the system, effectively trans-
forming an ensemble of ‘‘sloppy’’ clocks into a very reliable
collective oscillator (20–22). Noise dominates biochemical sys-
tems with a small number of molecules (as is the case in
transcriptional regulation systems) because of the intrinsically
stochastic nature of the reactions involved. In that context, the
robustness of genetic oscillators to noise is a topic of current
interest (23–25). Our findings suggest that the constraints that
local cell oscillators have to face to be noise-resistant could be
relaxed in the presence of intercell coupling, because coupling
itself provides a powerful mechanism of noise resistance.

Model
The repressilator is a network of three genes, the products of
which inhibit the transcription of each other in a cyclic way (10).
Specifically (see Fig. 1), the gene lacI (from E. coli) expresses
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protein LacI, which inhibits transcription of the gene tetR (from
the tetracycline-resistant transposon Tn10). The product of the
latter, TetR, inhibits transcription of the gene cI (from � phage),
the protein product CI of which in turn inhibits expression of
lacI, completing the cycle. We propose a modular addition to this
design, with the aim of coupling a population of cells containing
this network. To that end, we make use of the quorum-sensing
system of the bacterium Vibrio fischeri, a bioluminescent organ-
ism that lives in symbiosis with certain marine hosts forming part
of specialized light organs (14). These bacteria exhibit cell-to-cell
communication through a mechanism that makes use of two
proteins, the first one of which (LuxI) synthesizes a small
molecule known as an autoinducer (AI), which can diffuse freely
through the cell membrane. When a second protein (LuxR)
binds to this molecule, the resulting complex activates transcrip-
tion of various genes, including some coding for light-producing
enzymes.

In the spirit of ref. 16, we propose to incorporate this intercell
signaling apparatus into the repressilator by placing the gene that
encodes LuxI under the control of the repressilator protein LacI,
as shown in Fig. 1. Additionally, a second copy of another
repressilator gene (such as lacI) is inserted into the genetic
machinery of the E. coli cell in such a way that its expression is
induced by the complex LuxR–AI. The result is the appearance
of a feedback loop in the repressilator, which is reinforced the
more similar the levels of LacI are among neighboring cells.
(Simulations indicate that this scheme, in which the gene acti-
vated by the AI is the same one that represses LuxI, provides the
best synchronization of the three possible arrangements of the
feedback loop within the repressilator.)

To model the dynamics of gene expression in the cell popu-
lation, one must keep track of the temporal evolution of all
mRNA and protein concentrations from every cell in the
network. To describe the behavior of the system, we formulate
differential equations in the standard way. However, it is not
clear yet whether this formalism is appropriate for the intracel-
lular environment, nor is it clear what the effective biochemical
constants are.

The mRNA dynamics is governed by degradation and repress-
ible transcription for all three genes of the repressilator plus
(according to the coupling mechanism explained above) tran-
scriptional activation of the additional copy of the lacI gene:

dai

dt
� �ai �

�

1 � Ci
n ,

dbi

dt
� �bi �

�

1 � Ai
n ,

dci

dt
� �ci �

�

1 � Bi
n �

�Si

1 � Si
. [1]

Here ai, bi, and ci are the concentrations in cell i of mRNA
transcribed from tetR, cI, and lacI, respectively, and the concen-
tration of the corresponding proteins are represented by Ai, Bi,
and Ci (note that the two lacI transcripts are assumed to be
identical). The concentration of AI inside each cell is denoted by
Si. A certain amount of cooperativity is assumed in the repres-
sion mechanisms by the Hill coefficient n, whereas the AI
activation is chosen to follow a standard Michaelis–Menten
kinetics. The model is rendered dimensionless by measuring time
in units of the mRNA lifetime (assumed equal for all genes) and
the protein levels in units of their Michaelis constant, i.e., the
concentration at which the transcription rate is half its maximal
value (also assumed to be equal between all three genes). The AI
concentration Si is also scaled by its Michaelis constant. � is the
dimensionless transcription rate in the absence of repressor, and
� is the maximal contribution to lacI transcription in the
presence of saturating amounts of AI.

The protein dynamics is given by

dAi

dt
� ��ai � Ai�, [2]

and is given similarly for Bi (with bi) and Ci (with ci). The
parameter � is the ratio between the mRNA and protein
lifetimes, and the mRNA concentrations have been rescaled by
their translation efficiency (proteins produced per mRNA, as-
sumed equal for the three genes).

Finally, the dynamical evolution of the intracellular AI con-
centration is affected by degradation, synthesis, and diffusion
toward�from the intercellular medium. Assuming equal lifetimes
of the TetR and LuxI proteins, their dynamics are identical, and
hence we will use the same variable to describe both protein
concentrations. Consequently, the synthesis term of the AI rate
equation will be proportional to Ai:

dSi

dt
� �ks0Si � ks1Ai � ��Si � Se�, [3]

where � � 	A�Vc � 
�Vc measures the diffusion rate of AI
across the cell membrane, with 	 representing the membrane
permeability, A its surface area, and Vc the cell volume. The
parameters ks0, ks1, and � have been made dimensionless by the
time rescaling. Se represents the extracellular concentration of
AI, the dynamics of which is given by

dSe

dt
� �kseSe � �ext �

j�1

N

�Sj � Se�

� �kseSe � kdiff�S� � Se�,

[4]

where �ext � 
�Vext, with Vext being the total extracellular
volume, and …� indicates average over all cells. The diffusion rate
is given by kdiff � �extN and the degradation rate is given by kse.

The modeling approach described above ignores variations in
cell density (caused by cell growth and division, for example) and
assumes a uniform AI concentration throughout the cell culture.
These approximations are standard in quorum-sensing modeling
(16, 26) and describe reasonably well the situation encountered
in a well controlled chemostat.

In the quasi-steady-state approximation (16, 26), the extra-
cellular AI concentration can be approximated by

Se �
kdiff

kse � kdiff
S� � QS� . [5]

Fig. 1. Scheme of the repressilator network coupled to a quorum-sensing
mechanism. The original repressilator module is located at the left of the
vertical dashed line, and the new coupling module appears at the right. The
letters A, B, and C correspond to the notation used in the text. The coupling
module can be added to existing repressilator strains.
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From the definition of kdiff given above, we note that Q depends
on the cell density N�(Vext � Vc) � N�Vext according to�

Q �

N�Vext

kse � 
N�Vext
. [6]

In other words, Q is linearly proportional to the cell density
provided 
N�Vext is sufficiently smaller than the extracellular AI
degradation rate kse. In the following, we analyze the effect of
quorum-sensing coupling on the collective behavior of the model in
Eqs. 1–3, with Se defined by Eqs. 5 and 6, considering Q (and hence
the cell density) as a control parameter.

Transition to Synchronization
In the hypothetical case of infinite cell dilution (Q 3 0), the
system consists of a population of uncoupled limit-cycle oscil-
lators. Each individual cell clock is an extension of the original
repressilator (10), where a new degree of freedom has been
added to the original six-dimensional phase space to represent
the intracellular AI dynamics defined by Eq. 3. The resulting
dynamical system exhibits limit-cycle oscillations in a wide region
of parameter space. The characteristic oscillations of the re-
pressilator (10) do not change qualitatively in the presence of the
AI dynamics. In particular, the shape of the waveform does not
vary; only its amplitude is modified, but by �20% for the
parameters chosen here (see also Fig. 2b).

The oscillator population will likely contain substantial dif-
ferences from cell to cell [e.g., extrinsic noise (27)], giving rise to
a relatively broad distribution in the frequencies of the individual
clocks at any given time. In the case of Eqs. 1–3, the parameter

�The model of quorum sensing presented here differs somewhat from the model of Dockery
and Keener (26) in that in our case the diffusion rates appearing in the dynamical equations
of the extracellular and intracellular AI are not equal, which results from the fact that we
describe the dynamics of each one of the cells individually.

Fig. 2. Frequency histogram (a, c, and e) and time evolution of bi(t) (b, d, and f ) for 10 cells and increasing cell density. (a and b) Q � 0.4. (c and d) Q � 0.63.
(e and f ) Q � 0.8. Other parameters are n � 104, � � 216, � � 20, n � 2.0, ks0 � 1, � � 2.0, and ks1 � 0.01. The lifetime ratio � in the different cells is chosen from
a random Gaussian distribution of mean �� � 1.0 and standard deviation 	� � 0.05. In the plots (b, d, and f ), the oscillators are allowed to evolve from an initially
synchronous state. We note, however, that synchronization also arises from initially unsynchronized cultures. arb., Arbitrary.
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that affects most markedly the oscillation frequency is the
lifetime ratio �. Accordingly, we model the variability in the cell
population by considering that � is nonuniformly distributed
among the repressilators following a Gaussian law with standard
deviation 	�. The corresponding frequency distribution of a
group of 104 uncoupled cells for 	��� � 0.05 is shown in Fig. 2a.
The temporal evolution of the cI mRNA concentration in 10 of
those cells is plotted in Fig. 2b, showing how the global operation
of the system is completely disorganized such that no collective
rhythm can exist under these conditions.

As the cell density increases, diffusion of extracellular AI
molecules into the cells provides a mechanism of intercell
coupling, which leads to partial frequency locking of the cells
(Fig. 2 c and d). Finally, when the cell density is large enough
(Fig. 2 e and f ), perfect locking and synchronized oscillations are
observed. In that case the system behaves as a macroscopic clock
with well defined period, although it is composed of a widely
varied collection of oscillators. The parameters used in these
simulations (given in the Fig. 2 legend) generally match those in
ref. 10. Experimental attempts to achieve � � 1, corresponding
to equal decay times of mRNA and protein, were made in ref. 10,
although actual values of � remain unknown. Furthermore, we
have chosen the parameters of all three genes identical for
mathematical and computational convenience, but the same
results are obtained for the more realistic case of nonidentical
genes (including differences in the Hill coefficient n). As for the
value of Q, earlier experimental work has reported (29) that the
equilibration time between extracellular and intracellular AI
(1�kdiff in Eq. 4) is clearly �20 s. Assuming that kdiff � 1 s�1 and
kse � 10 min�1, we can estimate Q to be �0.8.

The results shown in Fig. 2 indicate that a transition from an
unsynchronized to a synchronized regime exists as the strength
of coupling increases (caused by an increase in cell density).
This transition was predicted theoretically in the mid-1960s
(12), but no quantitative experimental realization of this
phenomenon has been reported thus far in coupled biological
oscillators (19). To characterize quantitatively the transition to
synchronization in this system, it is convenient to define a
quantity (an ‘‘order parameter’’) with value that changes
abruptly at the transition point as a certain ‘‘control param-
eter’’ (in this case the cell density) varies. To that end, we
compute the average signal M(t) � (1�N) ¥i�0

N bi(t), the
temporal behavior of which in the synchronized case (Fig. 2f )
will be similar to each one of the local signals bi(t), i.e., it will
display large-amplitude oscillations corresponding to the limit-
cycle repressilator dynamics. On the other hand, in the un-
synchronized situation (Fig. 2b), the individual signals bi(t) are
completely out of step with respect to each other, and their
sum will be averaged out to an approximately constant value
at all times (identically constant in the limit of an infinite
number of cells). Accordingly, we define the order parameter
R as the ratio of the standard deviation of the time series of
M(t) to the standard deviation of bi averaged over i,

R �

M2� � 
M�2


bi
2� � 
bi�

2
,

where 
•� denotes time average, and …� indicates average over all
cells. In this way, in the unsynchronized regime, R � 0, whereas
R � 1 in the synchronized case. A sudden change between these
two limiting values indicates that a phase transition has occurred.
Such a signature is shown in Fig. 3a, which plots the dependence
of R on the coupling strength Q for two different values of the
parameter distribution width 	�.

Fig. 3a shows that the more similar the individual repressila-
tors are, the smaller the threshold coupling for synchronization
is. Furthermore, the maximum level of coherence in the syn-

chronized regime (as measured by the plateau in R for large
coupling) decreases as the difference between the oscillators
increases. In fact, the diversity of the repressilators can be used
as a control parameter of the transition as well, similar to what
happens in general models of coupled oscillators (30). Fig. 3b
shows how the system loses synchronization as 	� increases. For
Q � 0.8, the cutoff value of 	�c for which synchronization is lost
(�0.07, for which R � 0.5) corresponds to a range of periods of
�3.5%. This period range increases above 10% for larger
coupling strength Q and AI diffusion �, as shown by the open
diamonds in Fig. 3b, where 	�c � 0.2 for Q � 1 and � � 10, which
are realistic parameter values.

The behavior shown in Fig. 3 is similar to that found in general
models of coupled phase oscillators such as the Kuramoto model
(30). In particular, the order parameter R of the transition
displays a characteristic scaling as the transition point is ap-
proached. Whether the corresponding scaling form is the same
as in Kuramoto’s case is still an open question.

Coherence Enhancement Caused by Coupling
Previous experimental implementations of the repressilator have
shown that there is not only substantial variability between cells
in the growing population but also a noticeable irregularity in the
oscillatory behavior of each individual cell (10). This irregularity
may be caused by noise intrinsic or extrinsic to gene expression
(27, 28), plasmid copy-number variability (31), or other extrinsic
effects. Although its origin is not clear yet, systematic simulations
of Eqs. 1–3 show that oscillatory behavior is most sensitive to
parameter �. Therefore, we study the effects of extrinsic noise by
substituting in Eq. 2 � by �i � ��i(t) for cell i (with � � a, b, c
representing each of the three genes of the repressilator). Many
types of extrinsic noise are expected to be correlated on a time
scale of one cell cycle (27). Hence, ��i(t) is taken to be a Gaussian
correlated noise of Ornstein–Uhlenbeck type, with zero mean
and correlation 
��i(t)�
j(t
)� � 
�

ij(D��) exp(� t � t
 ��).
Thus, the noise is considered to be uncorrelated between cells
(and between genes in each cell), its intensity is given by D, and
its autocorrelation time is given by �. The resulting stochastic
differential equation system has been numerically integrated by
means of the Heun algorithm (32).

The effect of fluctuations in � are shown in Fig. 4a, which
displays the power spectrum of the time series of the mRNA
concentration bi(t) averaged over 100 repressilators. In the
absence of coupling (curve 1), peaks corresponding to the main
oscillation frequency and its harmonics are clearly visible and are
substantially broadened because of noise. When the cell density
increases, coupling induces synchronization of the oscillators as
described in the previous section. In that situation, synchroni-
zation enhances the spectral peaks and reduces strongly the
irregularity in the oscillatory dynamics (see Fig. 4a, curve 2). In
other words, coupling improves the reliability of the synthetic

Fig. 3. Synchronization transition for increasing Q (a) and 	� (b). Parameters
are the same as those described for Fig. 2. The dashed lines are guides for
the eye.
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biochemical clocks. Synchronization, and hence coherence en-
hancement, disappears for strong noise, as shown in Fig. 4b. The
cutoff value of D for which R � 0.5 (D � 0.4, which incidentally
is the value of D used in Fig. 4a) corresponds to a period
dispersion similar to that given by the cutoff in 	� defined above.

The double role of coupling in reducing the diversity and
irregularity of the cell population is shown in Fig. 5, where the
power spectral density of 100 cells is simultaneously shown. For
small coupling (Fig. 5 Upper), the position of the spectral peaks
(and their harmonics) is scattered over a relatively large range,
and a sizeable amount of power is distributed between the peaks.
In the synchronized case (Fig. 5 Lower), on the other hand, the

peak location is the same for all oscillators (corresponding to the
result shown in Fig. 2e), and the spectral power is concentrated
at the peaks.

Discussion
Earlier experimental studies have shown that a large degree of
variability prevents the observation of macroscopic rhythms in a
population of synthetic genetic oscillators (10). On the other
hand, it is well known that natural multicellular clocks operate
on mean periods resulting from averaging over the diverse
individual cells (3–7). We have proposed a modular coupling
mechanism through quorum sensing that leads to synchroniza-
tion under realistic conditions in an ensemble of existing syn-
thetic repressilators (or optimized variants of them). By its
design, the communication module can be added directly to
existing repressilator strains. Earlier attempts to synchronize
repressilators in this way have been made by D. Endy and
coworkers (see http:��parts.mit.edu).

In a recent theoretical study, McMillen et al. (16) have shown
that this type of intercell signaling produces synchronized be-
havior in populations of identical genetic relaxation oscillators.
In contrast to the repressilators studied in the present article,
which only make use of negative feedback and in which all
biochemical species have similar decay rates, relaxation oscilla-
tors are based on both positive and negative feedback, and their
dynamics are governed by two (at least) widely different time
scales. These features lead to oscillations characterized by abrupt
changes in the chemical concentrations (dynamically similar to
the spiky behavior of neural oscillators). In our case, on the other
hand, oscillations are approximately sinusoidal, with no abrupt
jumps or decays of the dynamical variables, similar to what
happens in the phase oscillators that have long been used to
model biological rhythms (12, 19).

In the spiky relaxation oscillators, coupling occurs in the form
of so-called fast threshold modulation (21), which generally is
believed to lead to synchronization faster than phase oscillators.
McMillen et al. (16) found that perfect synchrony was achieved
within two oscillation periods, starting from an ensemble of
oscillators with randomly distributed phases. We examined
whether synchronization of repressilators requires much longer
time windows. Our results (not shown) indicate that synchroni-
zation can be achieved in a few cycles, i.e., in time windows of
the same order of magnitude as those required by fast threshold
modulation in relaxation oscillators. We checked that this rate is
relatively independent of the coupling strength by varying this
parameter over 2 orders of magnitude. These results may
indicate that the speed of synchronization is related more to the
type of coupling than to the nature of the individual oscillators.
A realistic description of intercell communication, such as the
one considered here through quorum sensing, can be expected
to lead to efficient synchronization even among phase oscillators.

Besides its efficiency, the synchronization reported here has
been seen to lead to the generation of a global rhythm in a highly
heterogeneous ensemble of genetic oscillators. The resulting
clock behavior is seen to be highly robust to random phase drifts
of the individual oscillators because of noise. In light of these
results, one might speculate whether natural biological clocks
have evolved in this same way, i.e., by using intercell communi-
cation to couple an assembly of originally independent sloppy
clocks. The positive effects of coupling are also relevant in
synthetic gene networks, given the experimental difficulties
usually encountered when dealing with populations of oscillating
repressilators (10). The present proposal adds just one small
communication module to an existing synthetic genetic circuit
(see Fig. 1); hence, the results reported here lead us to expect
that the experimental observation of a synchronizing transition
in biological phase oscillators (19) is within reach.

Fig. 4. Effects of colored noise on the power spectrum and coherence of a
population of coupled repressilators. (a) Power spectral density (PSD) aver-
aged over a population of 100 repressilators for the case of Q � 0 (curve 1) and
Q � 1 (curve 2), with D � 0.4. (b) Coherence parameter R vs. noise intensity D.
In both plots, the noise correlation time is � � 15 min, the AI diffusivity is � �
10, and 	� � 0. Other parameters are the same as those described for Fig. 2.
arb., Arbitrary.

Fig. 5. Spectrogram showing the power spectral density (in logarithmic
scale; decade indexes are shown on the right) of 100 coupled repressilators, for
Q � 0.2 (Upper) and Q � 1.0 (Lower). The noise intensity is D � 0.04, and the
standard deviation in � is 	� � 0.04. Here the noise is taken to be white,
namely � � 0. Other parameters are the same as those described for Fig. 2. arb.,
Arbitrary.
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Finally, we close with two remarks about the limitations of our
work, first with respect to its biological implications and then
with respect to its mathematical aspects.

Throughout this article, we have drawn inspiration from the
example of naturally occurring biological clocks. However, one
must not take the analogy too strictly, given the important
differences between the various multicellular clocks found in
vivo and the synthetic system studied here. For example, consider
the diversity of coupling mechanisms that nature uses to enforce
synchrony among cells. In the sinoatrial node of the heart, the
coupling is electrotonic and mediated by gap junctions. In the
suprachiasmatic nuclei of the mammalian circadian pacemaker,
the early evidence suggested that neither gap junctions (33) nor
synaptic communication (34) were essential for synchrony, lead-
ing to the proposal that the coupling was provided instead by
diffusion of the inhibitory neurotransmitter �-aminobutyric acid
(3, 35) or some other diffusible substance. More recent exper-
iments, however, seem to indicate a crucial role for action-
potential propagation and synaptic coupling in the suprachias-
matic nuclei (36). Thus, neither the cardiac nor the circadian
pacemaker are likely to be coupled by the sort of diffusive
mechanism assumed in our model. Perhaps the closest analog to
our system in nature is the metabolic synchrony observed in a

well mixed suspension of yeast cells, in which the glycolytic
oscillations of millions of cells are mutually synchronized by
diffusive exchange of acetaldehyde (37, 38).

On the mathematical side, the governing equations assumed
here provide interesting challenges for the analysis of collective
synchronization. Our simulation results suggest that this system
should undergo a phase transition to mutual synchronization of
the same sort seen in the Kuramoto model, but we have not
proven that analytically. Such a calculation may be possible,
perhaps by applying phase-reduction methods in the limit where
the individual repressilators are weakly coupled and close to a
Hopf bifurcation (39) or by adapting the methods recently
developed by Ott et al. (40) for globally coupled systems.
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