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Abrogation of immune complex glomerulonephritis
by native carboxypeptidase and pharmacological
antagonism of the C5a receptor

Jessy J. Alexander1, Lee D. Chaves1, Anthony Chang2, Shruti Dighe1, Alexander Jacob1

and Richard J. Quigg1

Activation of complement generates C5a which leads to signaling through C5aR1. This is tightly controlled, including by

the plasma proteins factor H (FH) and carboxypeptidase N. Here we studied a chronic serum sickness (CSS) model of

glomerulonephritis (GN) in which there is an active humoral immune response, formation of glomerular immune

complexes (ICs), and resulting glomerular inflammation. The antibody response, glomerular IC deposition, the degree of

GN, and consequent renal functional insufficiency in CSS were all worse in FH2/2 mice compared to wild-type FH1/1
animals. This was ameliorated in the former by giving a C5aR1 antagonist for the final 3 weeks of the 5-week protocol. In

contrast, blocking CP-mediated inactivation of C5a increased these disease measures. Thus, complement regulation by

both plasma FH and CP to limit the quantity of active C5a is important in conditions where the humoral immune response

is directed to a continuously present foreign antigen. Signaling through C5aR1 enhances the humoral immune response

as well as the inflammatory response to ICs that have formed in glomeruli. Both effects are relevant even after disease has

begun. Thus, pharmacological targeting of C5a in IC-mediated GN has potential clinical relevance.
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INTRODUCTION

The complement system provides a first line of defense against

some microorganisms and participates in innate and adaptive

immune responses to many others. More than 30 plasma and

cell-associated proteins in three activation pathways converge

on C3 and C5 to generate C3a, C3b, C5a, and C5b-9, each of

which has biological activity. The receptors (R) for C3a and C5a

are rhodopsin-like class A peptide G protein-coupled seven-

span transmembrane Rs. The three extracellular loops of C3aR

and C5aR1 confer ligand binding specificity while their activa-

tion is transduced through various abc G-proteins at the

internal portion of the plasma membrane1,2. While traditionally

considered pro-inflammatory on BM-derived cells, it is clear

that C3aR and C5aR1 have a more widespread distribution with

a variety of effects attributable to their activation3–5.

As it developed, the adaptive immune system incorporated

the complement system, conferring C3/C5-binding proteins

to lymphocytes and dendritic cells. For example, the B

lymphocyte signaling complex contains complement receptor

2, which can be activated by immune complexes (ICs) con-

taining natural antibody, foreign antigen, and activated C3,

which then facilitates adaptive humoral responses to that anti-

gen6. More recent evidence has shown an important role for

complement in cellular immunity. Here, it appears the T cell

and its antigen-presenting dendritic cell partner generate

complement activation products, with signals through C3aR

and/or C5aR1 affecting T cell proliferation and differentiation

in normal T cell responses, as well as in autoimmunity and

alloimmunity7–11.

Productive complement activation could be considered as

the successful generation of biologically active C3 and C5 pro-

ducts. For this to occur, the system must overcome several

obstacles, not the least of which is time and space; that is, many

of the biologically active intermediates have a very short period
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of time to find the next protein partner in sequence or suffer the

fate of inactivation. There are also a host of complement regu-

latory proteins acting throughout the pathways. Spontaneous

alternative pathway activation in the fluid phase is regulated

by complement factor H (FH). The zinc metalloproteinase, car-

boxypeptidase N (CPN), is released into serum as an active

enzyme, where it potently deactivates C3a and C5a by removing

their C-terminal arginine residues12. Carboxypeptidase B2 is

present in plasma as a thrombin-activatable proenzyme, which

can also cleave C3a and C5a13,14. The phosphatidylinositol-

linked CPM is present in the kidney among other organs15,16,

where it potentially could also deactivate C3a and C5a.

Induction of chronic serum sickness (CSS) leads to depos-

ition of ICs in glomeruli17. Despite the substantial accumula-

tion of ICs containing iC3b and IgG Fc (i.e., ligands for b2

integrins and FccRs) wild-type C57BL/6 mice have little glom-

erular inflammation in CSS18. In contrast, FH-deficient mice

with CSS uniformly develop diffuse proliferative glomerulone-

phritis (GN) within 5 weeks18–20. The GN in CSS is character-

ized by endocapillary inflammation, including with F4/801

macrophages around sites of ICs21. The relevance for

complement receptors in this model is C5aR12/2FH2/2 mice

with CSS do not develop GN21 while Cd11b2/2FH2/2 mice

have exacerbated features of GN22.

In studies using gene-targeted mice, the significant effects of

C5aR1 on the immune response could not be separated from

those in inflammation. Here we attempted to surmount this by

administering a cyclic peptide antagonist (ant) of C5aR1

(PMX53, (Ac)Phe-[Orn-Pro-DCha-Trp-Arg])23–25 beginning

2 weeks after the start of active immunization of FH2/2 mice.

Our hypothesis was effects of C5aR1 on the immune response

occur in the induction phase but become insignificant in main-

taining humoral immunity. We also evaluated the role for C5aR

inactivation by CP, through the use of the potent CP inhibitor

(inh), DL-2-mercaptomethyl-3-guanidinoethylthiopropanoic

acid (Ki , 2 3 1029 M)26,27. These data show the importance

of C5a in generating and perpetuating a humoral immune res-

ponse in CSS, and the resultant IC-mediated GN.

MATERIALS AND METHODS

Experimental animals

Normal wild-type C57BL/6 mice were from Jackson Laboratories.

The FH2/2 mouse strain was generated and kindly provided by

Drs Matthew Pickering and Marina Botto (Imperial College of

London)28 and continuously backcrossed onto the C57BL/6 strain

in our laboratory over 10 years. Genotyping within and around

FH alleles was performed using PCR-based approaches. All stud-

ies were approved by the University of Chicago and University at

Buffalo Institutional Animal Care and Use Committees.

CSS protocol

CSS was induced in male FH2/2 or wild-type mice between the

ages of 6–8 weeks with daily intraperitoneal administration of 4

mg horse spleen apoferritin (Calzyme Laboratories)17,18,29–31.

Littermate controls received intraperitoneal injections of saline

vehicle contemporaneously.

C5aR1ant (PMX53, (Ac)Phe-[Orn-Pro-DCha-Trp-Arg],

kindly provided by Dr John Lambris, University of

Pennsylvania) was delivered at a dose of 25 mg/day via a

mini-osmotic pump (Alzet) a regimen effective in our prior

studies in lupus mice25. This was started 2 weeks after immun-

ization with apoferritin had begun, at which time clinically

evident disease features were present (unpublished data).

The mini-osmotic pump was changed weekly. To control for

peptide administration delivered via mini-osmotic pumps, a

cohort of FH2/2 mice (n 5 4) immunized with apoferritin

received scrambled peptide on the same schedule. This did not

affect disease features (BUN, GN scores) compared to FH2/2

mice with CSS (n 5 13) not given peptide. As such, these data

were pooled. CPinh (Plummer’s reagent, DL-2-mercapto-

methyl-3-guanidinoethylthiopropanoic acid, Calbiochem)

was administered intraperitoneally at a dose of 1 mg every

12 hours27 starting 3 weeks after the start of daily apoferritin

administration. After 5 weeks, animals were euthanized, and

blood and tissues collected.

Measurements from serum

Blood urea nitrogen (BUN) concentrations were determined

with a Beckman Autoanalyzer. Anti-apoferritin IgG was mea-

sured by ELISA. Polystyrene plates were coated with 5 mg/ml of

apoferritin. After blocking with 1% (wt/vol) bovine serum

albumin, plates were incubated with serial dilutions of serum

samples or anti-horse ferritin (Jackson ImmunoResearch), fol-

lowed by horseradish peroxidase-conjugated anti-mouse IgG

(Kirkegaard and Perry Laboratories), and o-Phenylenediamine

peroxidase substrate (Sigma-Aldrich). The data were presented

as arbitrary units relative to a standard curve generated with

anti-horse ferritin.

Measurements from renal tissue

Tissues were fixed in 10% buffered formalin and embedded in

paraffin, from which 4 mm thick sections were cut and stained

with periodic acid-Schiff. Slides were scored in a blinded man-

ner by a renal pathologist (AC) for the extent of GN on a scale

of 0 to 4 (in increments of 0.5) according to the schema of

Passwell et al.32 as described previously18,19.

About 4 mm sections from frozen mouse kidneys were fixed

in ethanol:ether (1:1) for 10 minutes followed by 95% ethanol

for 20 minutes, washed with PBS and stained with fluorescein-

anti-mouse C3 and rhodamine-anti-mouse IgG (Cappel, MP

Biomedicals). Slides were viewed with an Olympus BX-60 IF

microscope. Representative photomicrographs were taken at

identical settings with a Hamamatsu EM-CCD camera. Merged

images were generated with NIH Image J software.

Statistics

Data were analyzed using Minitab statistical software (v. 16,

College Park, MD, USA). Data sets were first analyzed with the

Anderson-Darling normality test and considered parametric

with Ha . 0.05. Parametric and non-parametric data are pre-

sented as mean 6 SEM and median (Q1–Q3), respectively. All

data presented graphically are from individual animals.
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Parametric data were analyzed by one-way ANOVA with com-

parisons among groups using Tukey’s method. Non-paramet-

ric data sets were analyzed comparably by Kruskal–Wallis and

Mood’s Median testing. Potential correlations among variables

were first examined by calculating the Pearson product

moment; those significant were further examined using the

least-squares method.

RESULTS

Contrasting effects of inhibiting C5aR1 and CP on ICGN

We generated CSS by actively immunizing C57BL/6 FH2/2

mice with a daily intraperitoneal dose of 4 mg horse spleen

apoferritin (n 5 36). As controls, FH2/2 mice were treated

identically, except apoferritin was omitted from the injections

(n 5 13). After 2 weeks of apoferritin administration, some

mice received C5aR1ant (n 5 7), CPinh (n 5 8), or both (n 5 4)

until the conclusion of the study after 5 weeks of apoferritin or

saline administration.

As shown in Figure 1, control FH2/2 mice had normal renal

function at the end of the 5-week experimental protocol as

assessed by BUN levels of 27.9 6 1.1 mg/dl. In contrast,

FH2/2 mice with CSS induced by repetitive apoferritin

immunization had impaired renal function (BUN 5 37.0 6

2.2 mg/dl). This was also true of those mice receiving CPant

(BUN 5 39.7 6 2.8 mg/dl). Renal insufficiency was prevented

in FH2/2 mice receiving C5aR1ant for the final 3-week period,

whether or not CPinh was administered (BUN 5 26.0 6 0.6 and

27.2 6 2.1 mg/dl, respectively). Thus, functional renal insuf-

ficiency in the CSS model can be prevented after disease onset

by pharmacological blockade of C5aR1.

Histopathological features of ICGN were evaluated at the

end of the 5-week experimental protocol (Figure 2). As in past

studies18,21 a minority (4 of 13) of control FH2/2 mice (i.e.,

without CSS) had some glomerular inflammation with GN

scores between 0.5 and 1.5 (Figure 2A and B). All FH2/2 mice

with CSS developed GN with 13 of 17 mice having scores of 1.5

or 2.0 (Figure 2A). The primary histopathological feature was

of diffuse hypercellularity of the glomerular tufts (Figure 2C).

There was no evidence for thrombotic microangiopathy. As

with BUN measurements, mice that received C5aR1ant for

the final 3 weeks had significantly less GN (Figure 2D). Here,

CPinh worsened GN (Figure 2E), including in those mice also

receiving C5aR1ant. That the extent of GN was related to renal

functional impairment is supported by the significant correla-

tion between the two (BUN 5 25.3 1 (6.0 3 GN); r 5 0.63, P ,

0.001). Thus, endocapillary diffuse proliferative GN occurring

in this model relies upon C5aR1 signaling. These data illustrate

that physiological complement regulation by FH and CP lessen

the amount of C5a available to bind its receptor in states of IC

deposition in glomeruli.

Effects of inhibiting CP on ICGN in wild-type mice

It appears when plasma FH is absent in FH2/2 mice with CSS,

there is sufficient productive generation of C5a to signal

through C5aR119. Given the effects of CPinh on FH2/2 mice

with CSS, we investigated whether it would affect CSS in wild-

type (i.e., FH1/1) mice. All control wild-type mice given saline

instead of apoferritin (n 5 8) had normal BUN values

(,29.0 mg/dl) and no histopathological evidence of GN. Of

the mice with CSS, 3 of 5 developed mild GN (score 5 0.5)

which was reflected by elevated BUN values (31.5–33.5 mg/dl).

The mice with CSS also given CPinh had a small, but consistent

increase in GN, with all five animals having GN scores 0.5–1.0

and BUN values o33.5 mg/dl (Figure 3). As with FH2/2 mice

with CSS, GN scores and BUN values were strongly correlated

(BUN 5 26.7 1 (13.1 3 GN); r 5 0.75, P , 0.001), supporting

the relevance and interrelatedness of these two measures. These

data further support the importance of both FH and CP to limit

C5a generation in pathological states of IC deposition.

Contrasting effects of inhibiting C5aR1 and CP on

circulating and glomerular anti-apoferritin IgG

18, FH2/2 mice with CSS had higher sera titers of anti-apofer-

ritin IgG than wild-type FH1/1 mice (Figure 4). Interestingly,

inhibition of C5aR1 from 3–5 weeks of immunization led to

reduction of anti-apoferritin IgG to levels comparable to wild-

type mice. Moreover, inhibition of CP led to a significant

increase in anti-apoferritin IgG (Figure 4). Thus, production

of anti-apoferritin IgG in C57BL/6 mice appears to be fueled by

C5a-C5aR1 in FH2/2 mice even after the immune response has

begun, which can be further increased by inhibiting CP-

mediated inactivation of C5a.
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Figure 1 C5a-dependent renal functional impairment in FH2/2 mice
with CSS. CSS was induced in FH2/2 mice by daily immunization with
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C5aRant and/or CPinh after 2 and 3 weeks, respectively. Shown are
individual BUN values from all mice studied after 5 weeks. Data from
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Double-label immunofluorescence microscopy was performed

to evaluate glomerular IgG and C3 (Figure 5). As shown by the red

staining in Figure 5B, FH2/2 mice with CSS had IgG within

mesangial regions (asterisks) with some extension to peripheral

capillary walls (arrows). This was reduced in FH2/2 mice with

CSS given C5aRant (Figure 5C), and worsened in mice given CPinh

(Figure 5D). As anticipated, glomeruli from FH2/2 mice had

linear glomerular capillary wall staining for C3; this was not appre-

ciably affected by induction of CSS or either of the inhibitors

(stained green in Figure 5).

DISCUSSION

To model IC-mediated GN, we induced CSS through active

immunization with heterologous apoferritin as originally

described by Stilmant, Couser, and Cotran29 and modified by

Iskandar et al.31 In this model, there is formation of glomerular

ICs containing IgG and iC3b; these are ligands for inflammat-

ory cell FccRs and b2 integrins, respectively. Even in experi-

mental conditions resulting in a large burden of glomerular

ICs, C57BL/6 mice with plasma FH have little glomerular

inflammation19. In contrast, FH2/2 mice are uniformly sus-

ceptible to GN18. In the absence of plasma FH, enough C3b

escapes inactivation to form C5 convertases and generate

C5a19. This leads to C5aR1 signals that are required for inflam-

matory cells to react to glomerular-bound ICs21. Here we show

mice receiving C5aR1ant for the final 3 weeks of CSS failed to

develop GN and consequent azotemia.

Glomerular disease in CSS was indistinguishable between

FH2/2 mice treated with C5aR1ant and wild-type FH1/1 mice.

Thus, blocking C5aR1 signals ‘‘normalizes’’ FH2/2 mice. Our

data allow the conclusion plasma FH is sufficient to block C5a

production below that necessary for GN. Given the large bur-

den of ICs in glomeruli in wild-type mice, we hypothesized

some C3b escapes inactivation to facilitate generation of C5a;

yet, the efficiency and overlapping nature of normal

complement regulation was operative, with CP inactivating

what C5a was generated. We confirmed this by showing treat-

ment with CPinh exacerbated disease in wild-type mice. Even in

states of considerable C5a generation, such as FH2/2 mice with

CSS, CP inactivation of C5a appears to limit disease.

Our accumulated data in CSS illustrate the tight regulation

of both innate and adaptive immune systems18,21,22. Here we

concentrated on the roles of FH and CP, which show the

importance of signaling through C5aR1 in inflammatory dis-

ease. Downstream effects of C5aR1 include increasing FccRIII

quantities33 and aMb2 integrin (complement receptor 3) ligand

avidity34,35, allowing recognition of, and activation by IgG/

iC3b-bearing ICs in the glomerulus. An elegant paradigm
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advanced and supported experimentally by Gessner et al is

C5aR1 activation of Gai2 and phosphoinositide 3-kinase

p110c in mononuclear phagocytes leads to a transcriptional

increase in FccRIII and decrease in FccRIIB through respective

gene promoter ‘‘C5a-inductive’’ and ‘‘C5a-suppressive’’

regions36–38. This phenomenon is relevant in experimental

disease models of liver, lung, and kidney (i.e., mesangial

cells);38–40 clinically relevant is that blocking C5aR1 signals

may underlie the therapeutic efficacy of intravenous immuno-

globulin41. Thus, by altering the balance between activating and

inhibitory FccRs on monocytic cells, C5aR1 can have a con-

siderable impact on IC processing and its downstream effects.

We induce the CSS model through repetitive immunization

with apoferritin without adjuvant. Animals generate an active

anti-apoferritin IgG humoral immune response and deposit

IgG in glomeruli, each of which can be quantified. In our prior

studies, FH2/2 mice with CSS had increased serum levels of

anti-apoferritin IgG compared to wild-type controls, which we

attributed to C5aR1 signaling, given equivalent anti-apoferri-

tin IgG titers among wild-type and FH2/2C5aR12/2 mice21.

This relationship was true for glomerular IgG as well, which

was directly and positively correlated with anti-apoferritin IgG.

Interestingly, here we have found comparable findings with

pharmacological interventions in the final 3 weeks of the CSS

model. That is, inhibiting C5aR1 led to lower serum anti-apo-

ferritin IgG and glomerular IgG, while increasing intact C5a by

blocking its inactivation by CP increased these two. While these

data have been highly consistent relative to C5a/C5aR1 and FH,

we must emphasize they minimize the intervening steps of IC

processing involving plasma C4 and C3; erythrocytes bearing

CR1 (primates) or platelets bearing FH (rodents); and FccRIII

and CR3 on mononuclear phagocytes. These are highly

complex, as we have found in our studies with this CSS

model17,19,21,22,42,43. The role for C5aR1 signaling to affect

glomerular ICs was supported by studies by Falk and

Jennette, in which C5-deficient mice had less glomerular ICs

independent from the anti-apoferritin IgG response30 and by

Wenderfer et al. in which C5aR1-deficient MRL/Faslpr lupus

mice had lower quantities of glomerular ICs compared to

C5aR1-sufficient controls44.

Arguably even more complex than the steps behind IC pro-

cessing is the generation of a humoral immune response. It has
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become clear that C5aR1 signals are relevant to adaptive

immune responses in a variety of ways. From our circumstan-

tial data, there is an anti-inflammatory (M2) macrophage

population within the kidney that appears affected by

C5aR121. In the active humoral immune response, signals

through C5aR1 in both antigen-presenting cells and lympho-

cytes can promote Th1 and inhibit Treg responses9,10.

Perhaps because the glomerular capillary wall contains acellular

portions and is exposed to relatively large quantities of plasma

proteins, it is particularly at risk of complement activation. In the

C3 glomerulopathies, ineffective fluid phase complement regu-

lation allows unrestricted C3 activation and deposition of C3

products in the glomerular capillary wall45–47. FH also is retained

by the glomerular capillary wall surface; when this is inefficient,

endothelial cell injury and atypical hemolytic uremic syndrome

can result48–50. A comparable pathophysiology is believed to occur

in Bruchs membrane in the eye, accounting for the relationship

between FH and age-related macular degeneration51.

Pharmacologically targeting the complement system is now

clinical reality. Because of the nature of complement activation,

many inhibitors directed against a given complement protein also

block successive steps in the activation pathway(s). For example,

the anti-C5 antibody eculizumab prevents formation of C5a and

C5b-9; the latter accounts for its therapeutic efficacy and now

routine clinical use in paroxysmal nocturnal hemolgobinuria, as

well as increased risks of Neisserial infections52. Eculizumab is

highly effective, but it is also the only complement inhibitor in

clinical use. Thus, it has been used in a number of past and

present clinical trials, including in membranous nephropathy,

lupus nephritis, atypical and Shiga-toxin-associated hemolytic

uremic syndrome, C3 glomerulopathies, and anti-neutrophil

cytoplasmic antigen-associated GN53–55, diseases with a consid-

erable range in phenotype. Identifying which among the limited

number of active complement products are pathogenic in a given

disease process is not a trivial point. Blocking those not directly

relevant to disease will needlessly impair normal immunity as

well as potential counterregulatory (anti-inflammatory) signals,

for which there is growing evidence3.

In summary, here we studied a GN model in which the

humoral immune response is directed to a continuously pre-

sent foreign antigen. It is directly relevant to GN occurring in

humans in infectious illnesses (e.g., Streptococcus and

Hepatitis C), as well as other IC-mediated GNs such as lupus

nephritis, IgA nephropathy, and membranous nephropathy;

each of which is characterized by an active humoral immune

response, formation of glomerular ICs, and the resulting

pathological effects. We show the importance of complement

regulation by both plasma FH and CP to limit the quantity of

active C5a. Signaling through C5aR1 enhances the humoral

immune response as well as the inflammatory response to

ICs that have formed in glomeruli. Both effects are relevant

even after disease has begun. Thus, pharmacological targeting

of C5a in IC-mediated GN has potential clinical relevance. This

could readily be accomplished by blocking C5 cleavage with

eculizumab.
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