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MEK2 is a prognostic marker and potential
chemo-sensitizing target for glioma patients undergoing
temozolomide treatment

Hua He1,6, Maojin Yao2,6, Wenhao Zhang3,6, Bangbao Tao4,6, Feili Liu4, Shu Li5, Yan Dong1,
Chenran Zhang1, Yicheng Meng1, Yuxin Li1, Guohan Hu1, Chun Luo1, Hui Zong2 and Yicheng Lu1

Although temozolomide (TMZ) is the first-line chemotherapeutic agent for glioblastoma, it is often non-curative due to

drug resistance. To overcome the resistance of glioblastoma cells to TMZ, it is imperative to identify prognostic markers for

outcome prediction and to develop chemo-sensitizing agents. Here, the gene expression profiles of TMZ-resistant and

TMZ-sensitive samples were compared by microarray analysis, and mitogen-activated protein kinase kinase 2 (MEK2) was

upregulated specifically in resistant glioma cells but not in sensitive tumor cells or non-tumor tissues. Moreover, a

comprehensive analysis of patient data revealed that the increased level of MEK2 expression correlated well with the

advancement of glioma grade and worse prognosis in response to TMZ treatment. Furthermore, reducing the level of MEK2 in

U251 glioma cell lines or xenografted glioma models through shRNA-mediated gene knockdown inhibited cell proliferation

and enhanced the sensitivity of cells toward TMZ treatment. Further analysis of tumor samples from glioma patients by

real-time PCR indicated that an increased MEK2 expression level was closely associated with the activation of many drug

resistance genes. Finally, these resistance genes were downregulated after MEK2 was silenced in vitro, suggesting that the

mechanism of MEK2-induced chemo-resistance could be mediated by the transcriptional activation of these resistance

genes. Collectively, our data indicated that the expression level of MEK2 could serve as a prognostic marker for glioma

chemotherapy and that MEK2 antagonists can be used as chemo-sensitizers to enhance the treatment efficacy of TMZ.
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INTRODUCTION

Glioblastoma is one of the most common malignant central

nervous system (CNS) tumors1. The prognosis of patients with

glioma remains poor despite improved treatment modalities,

including maximum surgical resection, chemotherapy with

anti-neoplastic drugs and radiotherapy2,3. Temozolomide

(TMZ), an alkylating agent, has shown promising results in

the treatment of newly diagnosed patients with glioblastoma

multiforme or refractory anaplastic astrocytoma when used as

single agent as well as in combination with radiation therapy4.

TMZ was approved by the Food and Drug Administration5

because it readily passes through the blood–brain barrier due

to its lipophilic properties and causes little damage to the liver

with its metabolites excreted by the kidneys. TMZ in combina-

tion with radiation therapy is recommended by NCCNand

NICE6,7, thus making it a standardized treatment protocol

for such diseases8. However, many glioma patients have been

reported to be insensitive to TMZ treatment, and recent
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studies have demonstrated that several genes contribute

to TMZ resistance, such as the base excision repair enzyme

alkylpurine-DNA-N-glycosylate (APNG)9, methylguanine-

DNA methyltransferase (MGMT)10 and signal transducers

and activators of transcription 3 (STAT3)11. Other articles have

also indicated that TMZ resistance is associated with the

expression of vascular endothelial growth factor (VEGF)12

and epidermal growth factor receptor (EGFR)13. Changes in

EGFR expression by itself activates both MEK and PI3 kinase

pathways14,15.

Recently, a number of frequent genetic alterations have

been identified in human glioblastoma16. Among all of these

altered genes, the Ras-Raf-MAP kinase signaling pathway has

demonstrated to be important in the control of glioma cell

proliferation17. The importance of Raf in oncogenic signaling

was confirmed by the discovery of activating BRAF mutations

in a variety of human tumors, including 11% of glioma cell

lines18. Additionally, the loss of NF1, a GAP protein that inac-

tivates Ras, has also been detected in ,20% of human GBM

samples from the TCGA studies19. Although the relationship

between aberrant activation of the mitogen-activated protein

kinase (MAPK) pathway in gliomagenesis has been well estab-

lished20, the role of this pathway in the drug resistance of glio-

mas remains to be elucidated.

In this paper, we found that the expression of MEK2 in

primary glioma was upregulated and was correlated with

glioma grades and the outcome of TMZ treatment. We further

revealed that downregulation of MEK2 inhibited the ERK1/2

pathway and sensitized glioma cells to TMZ treatment.

MATERIALS AND METHODS

Cell lines and materials

The human glioma cell lines U251 and U87 were obtained from

ATCC (Manassas, VA) and maintained in Dulbecco’s modified

Eagle’s medium (DMEM) (Invitrogen, Carlsbad, CA, USA) with

10% fetal bovine serum (Thermo Fisher Scientific, Inc.,

Waltham, MA, USA) and 50 U/mL penicillin and streptomycin

(Invitrogen) in a 5% CO2 humidified atmosphere at 37 uC. TMZ

was purchased from Sigma-Aldrich. MEK inhibitors, including

PD184352 (CI-1040) and trametinib (GSK1120212), were pur-

chased from Selleck.

Human tissues

All human glioma tissues were obtained from the Changzheng

Hospital (China Secondary Military Medical University,

Shanghai, China) in compliance with the laws and institutional

guidelines approved by the Hospital Ethics Committee. Gliomas

were graded by the Pathology Department of Changzheng

Hospital according to the World Health Organization grading

system. Human normal brain tissues (mostly from the cortex)

were acquired from patients with physical injuries to the brain

and were authorized by patients for further experiments.

Microarray analysis

RNA was extracted from three TMZ-sensitive and seven TMZ-

resistant glioma patients and hybridized to a whole human

genome oligo microarray (Agilent Technologies). Quantile

normalization was used to equalize the distribution of probe

intensities for each array, and two-sample t-statistics were cal-

culated for each gene. The genes of differentiated expression

were designated based on the criteria of P f 0.05 and a fold

change of o2 in their expression values between the two

groups. The array clustering was performed by Cluster 3.0.

Real-time PCR

Real-time PCR was performed as previously described21. The

following primers were used for each gene (from 59 to 39):

MEK2 forward, GCGGTCACGGGATGGA TAG, MEK2 reverse,

GCTCCGCTGGGTTCTTGAT; ABCB1 forward, GCTCCTGAC

TATGCCAAAGC, ABCB1 reverse, CTTCACCTCCAGGC TCA

GTC; ABCC1 forward, AGGACACGTCGGAACAA GTC, ABC

C1 reverse, AGGGGTTCCACTCCTTCTGT; ABCC2 forward,

TCATTCAGACGACCATCCAA, ABCC2 reverse, TTCTCAATG

CCAGCTTCCTT; ABCG2 forward, CACAGGTGGAGGCAAA

TCTT, ABCG2 reverse, CCGAAGAGCTGCTGAGAACT; BCL2

forward, TCCATGTCTTTGGACAACCA, BCL2 reverse, CTCC

ACCAGTGTTCCCATCT; MGMT forward, ATGGATGTTTG-

AGCGACACA, MGMT reverse ATAGAGCAAGGGCAGCG

TTA; GAPDH forward, ACAACTTTGGTATCGTGGAAGG, GA

PDH reverse, GCCATCACGC-CACAGTTTC.

The PCR procedure was as follows: an initial denaturing step

at 95 uC for 3 minutes, then 95 uC for 30 seconds, 60 uC for 30

seconds, and 72 uC for 30 seconds for a total of 40 cycles. The

results are presented as the relative mRNA level of interest ana-

lyzed by normalizing the threshold cycle (Ct) value to that of the

internal control (GAPDH) and the external control. The results

are representative of at least three independent experiments.

Immunoblot and immunohistochemistry

The experiment was performed as previously described21. The

MEK2 antibody was purchased from Abcam (ab28834). In the

immunoblot, the relative amount of target protein was deter-

mined by normalizing the density value to an internal control

(GAPDH) via Image Quant 5.2 (Molecule Dynamic).

Immunohistochemistry was performed with paraffin-embed-

ded tissue sections of 5 mm thickness mounted on pre-coated

glass slides. Nuclei were stained with hematoxylin. The images

were collected by a light microscope (Olympus).

MEK2 RNAi

U251 cells were transfected by a lentivirus carrying the siRNA

fragments against MEK2, which was synthesized and packaged

by Genechem Inc. The knockdown efficiency was examined 48

hrs after transfection by immunoblot. The RNAi target

sequence was 59-GATCCCCGAAGGAGAGCCTCACAGCAT

TCAAGAGATGCTG-TGAGGCTCTCCTTCTTTTTA-39.

Cell growth and viability assay

Cell growth and viability assays of glioma cells transfected with

different constructs or treated with different drugs were performed

by the (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium

bromide (MTT)) assay as previously described22. Cells were
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plated in a 96-well plate at a density of 5000 cells/well. After

incubation for 2 hrs with the cell-counting kit-8 reagent (10 ml/

well), the reaction was terminated by adding SDS solution

(0.1% final concentration). Absorbance at the 450 nm wave-

length was measured by an enzyme-labeling instrument (ELX-

800 type; Bio-Tek, Shanghai, China). The results are represent-

ative of at least three independent experiments.

Flow cytometric analysis

Cell cycle and apoptosis were measured by flow cytometry as

previously described21. The Cell Cycle Analysis Kit (GenScrip)

and Annexin V PE Apoptosis Detection Kit (BD Biosciences)

were used for cell cycle and apoptosis staining according to the

manufacturer’s instructions. Then, the cells were analyzed on a

FACSCalibur (BD Bioscience). Typically, signals from 10 000

cells were acquired and analyzed for each sample using FlowJo

7.6. The results of flow cytometry are representative of at least

three independent experiments.

In vivo studies

The in vivo studies were performed as previously described21.

In the subcutaneous glioma xenograft model, U87 cells were

infected with lentivirus at an MOI of 10 (si-CRTL 2, si-MEK2),

and 24 hrs after infection, 2 3 106 cells were subcutaneously

implanted into the flank of BALB/c athymic nude male mice.

All of the mice were 3–4 weeks old (n 5 8 per group). After 2

weeks, TMZ was given orally to the mice (66 mg/kg daily for 2

days), and the mice were killed when signs of sickness were

found. We evaluated the tumor burden by the length (L) and

width (W) of xenografted tumors every 5 days. The tumor

burden was calculated as follows: L*(w)2/2.

In the intracranial glioma model, U87 cells were infected

with adenovirus at an MOI of 10 (si-CRTL 2, si-MEK2), and

24 hrs after infection, 5 3 105 cells were injected into the right

caudate putamen of athymic nude male mice at 6 weeks of age

(n 5 14 per group). At 2 weeks, mice were given TMZ by oral

gavage (66 mg/kg daily for 2 days) and killed upon signs of

sickness.

At 1 and 3 weeks after the transplantation of tumor cells,

mouse brains were scanned to detect tumor formation and size

by MRI3. After tail vein injection of gadopentetate dimeglu-

mine, the entire mouse brain was covered, and both T1- and

T2-weighted images were obtained.

Specific pathogen-free conditions were used to keep the athy-

mic nude mice, and we followed the animal welfare guidelines of

Second Military Medical University to take care of all mice.

Statistical analysis

Paired groups were analyzed by Student’s t-test, whereas three

or more groups were compared by analysis of variance followed

by Dunnett’s t-test for multiple pair-wise comparisons.

Kaplan–Meier survival analysis was utilized to compare overall

survival times in glioma patients. Univariate survival analysis

was conducted using the Kaplan–Meier method and analyzed

by the log-rank test to assess survival differences between

groups. A two-tailed P value , 0.05 was considered to be

statistically significant. The data are presented as the mean 6

SD. All statistical analyses were performed using Office Excel

2007 (Microsoft Corporation, Redmond, WA, USA) or SPSS

software (version 11.5; SPSS, Inc., Chicago, IL, USA).

RESULTS

Significant upregulation of MEK2 in gliomas

We used bioinformatics methods to analyze the microarray data

in the previous experiments, and 25 core genes involved in the

chemosensitivity of GBM to Me-CCNU were obtained23. MEK2

was widely expressed in gliomas. To study the genes involved in

TMZ resistance, we used microarray analysis to compare the

mRNA expression profiles of three glioma patients sensitive to

TMZ treatment and seven glioma patients resistant to TMZ

(Figure 1a). We found that MEK2 was one of the most upregu-

lated genes in glioma patients with TMZ resistance in compar-

ison with glioma patients sensitive to TMZ (Figure 1a).

Next, MEK2 expression was examined in human glioma

tissues. As shown in Figure 1b, the MEK2 mRNA level was

increased specifically in glioma tissues compared with normal

brain tissues as quantified by real-time PCR. Consistently, the

results of immunoblotting demonstrated that the MEK2 protein

level was also upregulated in glioma tissues versus normal brains

(Figure 1c). Immunohistochemistry staining results of MEK2

demonstrated that in glioma cells from all types of patient sam-

ples, but not stromal cells, MEK2 was over-expressed, whereas in

neurons and normal glia cells of normal brain slices, the express-

ion level of MEK2 was low (Figure 1d). We therefore concluded

that MEK2 was over-expressed in tumor tissues.

The level of MEK2 expression is positively correlated

with glioma grades and negatively correlated with disease

outcome

To determine the contribution of MEK2 to glioma progression,

we investigated MEK2 expression levels in glioma samples of

different grades. As shown in Figure 2a, stronger MEK2 stain-

ing was detected in high grades of glioma (WHO III–IV) (n 5

42) compared with low grades of glioma (WHO I–II) (n 5 23).

The expression change of MEK2 mRNA was also studied using

real-time PCR, and a similar upregulation pattern was observed in

glioma samples. Consistently, the increasing MEK2 mRNA level

was closely associated with higher tumor grades (normal tissue,

1.145 6 0.517; low grade, 1.96 6 0.890; high grade, 3.57 6 0.979,

respectively) (Figure 2b), which was also true for MEK2 protein

levels (normal tissue, 0.17 6 0.137; low grade, 0.55 6 0.253; high

grade, 1.02 6 0.216, respectively) (Figure 2c).

Then, we analyzed patient data for the role of MEK2 in general

prognosis, and in tumor responses to TMZ-treatment, to deter-

mine whether MEK2 could serve as a predictive factor for disease

outcome. A total of 87 glioma patients with WHO-IV who under-

went glioma surgical resection from October 2008 to December

2010 were included in this study. As shown in Figure 2d,

patients with a low protein expression level of MEK2 based on

immunohistochemistry showed prolonged overall survival time

compared with those with high expression of MEK2. Within this

cohort, we further analyzed MEK2 expression in 50 patients who

post-operatively received TMZ treatment. We found that higher
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MEK2 expression was associated with shorter overall survival time

in patients receiving TMZ treatment, suggesting that higher

expression of MEK2 could confer resistance in glioma cells to

TMZ treatment (Figure 2e).

MEK2 is necessary to promote proliferation of glioma cells

To explore the biological function of MEK2 in glioma cells, we

selectively knocked down MEK2 using siRNA in U87 and

U251 cell lines (Figure 3a). As shown in Figure 3b and 3c, the

proliferation of U251 and U87 cells decreased greatly after

MEK2 silencing as determined by MTT assays. However,

results of 7AAD and Annexin V staining by fluorescence-acti-

vated cell sorter analysis indicated that MEK2-silenced glioma

cells underwent a similar apoptotic rate to that of cells in the

control group (Figure 3d).

The cell cycle progression was analyzed by flow cytometry

to test whether MEK2 played a role in regulating glioma pro-

liferation. The results of a cell cycle analysis indicated that

MEK2-silenced cells displayed an increased accumulation in

G2/M phase compared with those in the control group

(16.3 6 1.4% vs. 9.7 6 0.5% for U251 cells, P , 0.01;

20.0 6 2.4% vs. 13.8 6 2.8% for U87 cells, P , 0.05,

respectively) (Figure 3e and f). Consistently, we did not observe

an obvious increase in cell death, in terms of cells in sub-G1

phase, after MEK2 silencing in U251 and U87 cell lines (data

not shown).
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Enhanced chemotherapy sensitivity of TMZ in

MEK2-knockdown glioma cells in vitro

To test whether MEK2 is necessary for glioma cells to resist

TMZ-induced cell death, we treated glioma cells in the control

and MEK2-silenced groups with TMZ and assessed the apop-

totic rate of each group. We found that MEK2-deficient

cells displayed an increased cell death rate compared with those

in the control group (Control vs. MEK2-silenced group: 15.0 6

2.5% vs. 42.8 6 6.2% for U251 cells, P , 0.01; 18.0 6 6.4% vs.

37.2 6 3.9% for U87 cells, P , 0.05, respectively), suggesting

that MEK2 knockdown in tumor cells enhanced their sensitiv-

ity to TMZ treatment (Figure 4a and b).

We further determined whether MEK2 silencing increases

TMZ sensitivity in glioma cells. As shown in Figure 4c, U251

normally exhibited an IC50 of TMZ at approximately 150 mM

by MTT assays. After selective knockdown of MEK2, U251

showed a decrease in IC50 to less than 50 mM. Consistently,

administration of the MEK1/2 inhibitors trametinib and

PD184352 resulted in more apoptosis in glioma cells upon

TMZ administration compared with DMSO (Figure 4d).

These results indicated that MEK2 silencing increased the sens-

itivity of glioma cells to TMZ treatment.

The downstream genes in relation to drug resistance with

MEK2 expression

To explore the mechanisms underlying MEK2-dependent

TMZ resistance, we analyzed several genes related to drug

resistance in human malignancy. As shown in Figure 5a

and b, the mRNA levels of ABCB1, ABCC1, ABCC2, ABCG2,

BCL2, and MGMT were significantly downregulated in U251 and
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U87 cell lines when MEK2 was silenced. Furthermore, the MEK2

expression level was associated closely with the ABCG2 (r 5

0.790, P , 0.01) and MGMT (r 5 0.803, P , 0.01) expression

levels in 34 tested human samples, including 8 normal tissues and

26 glioma tissues (Figure 5c and d). Therefore, MEK2 most likely

confers chemoresistance by promoting the expression of multiple

drug resistance genes.

Effect of MEK2 inhibition on the chemotherapy sensitivity of

TMZ in vivo

To prove that MEK2 is important for the development of

glioma resistance in vivo, we generated both subcutaneously

and intracranially xenografted glioma models using nude mice

and treated them with TMZ.

In the intracranial model (Figure 6a), Si-MEK2-infected

U87 cell glioma burden mice (n 5 8) had longer survival

times (mean 5 48 days, 95% CI 5 41.9 to 54.1 days,

P , 0.001 vs Si-ctl) compared with Si-ctl-infected glioma

burden mice (mean 5 30.4 days, 95% CI 5 25.1 to 35.7 days)

(n 5 8 in each group). At 21-day post-implantation, an MRI

was used to stain the coronal sections of the brains, and the

results showed that tumors from Si-MEK2-infected cells

were clearly smaller compared with those from Si-ctl-

infected cells (Figure 6b and c).

These results indicated that MEK2 was important for the

chemotherapy sensitivity of gliomas to TMZ.

In the subcutaneous group, after injection, the tumor bur-

den was determined every 5 days (Figure 6d). The tumors still

grew after 30 days, and tumors from Si-MEK2-infected cells

were smaller than those from Si-ctl-infected cells. The mean

tumor burden of Si-ctl-infected cells was 125.75 6 114 mm3

(n 5 8) and of Si-MEK2-infected cells was 10.32 6 2.65 mm3

(n 5 8, P 5 0.013 vs. Si-ctl) (Figure 6e).
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DISCUSSION

In this study, MEK2 was identified to be a gene differentially

expressed in glioma patients who were sensitive or resistant to

TMZ treatment. It has been reported that the MAPK pathway is

highly activated in many cancers, including glioma17,24. Our

study further revealed the potential function of MEK2 in the

chemotherapy resistance of gliomas.

MEK2 is involved in many important cellular processes, such as

cell proliferation, cell apoptosis, and cell differentiation25–27.

Moreover, it is also implicated in the initiation and progression

of many human malignancies28–30. We observed that MEK2 was

expressed highly in glioma cells, and its expression level increased

as tumor grade advanced. These results strongly suggested MEK2

is a gene closely associated with glioma formation and progression.
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Additionally, we provided multiple pieces of evidence that

MEK2 also plays an important role in TMZ resistance. MEK2

was identified as a differentially expressed gene by comparative

study of cDNA microarray from patients insensitive or sens-

itive to TMZ treatment. In addition, the intracranial glioma

model and the subcutaneous model presented convincing in

vivo data and reinforced the important role of MEK2 in TMZ

resistance of gliomas. Thus, the expression level of MEK2 could

serve as a predictor of disease outcome for patients receiving

TMZ treatment.

The mechanisms underlying MEK2-dependent TMZ resist-

ance were also investigated in our study. Through silencing

MEK2 by siRNA in glioma cell lines, cell growth was blocked

significantly due to cell cycle arrest at G2/M phase, and cell

apoptosis was largely unaffected in the absence of other treat-

ments. Therefore, the increased sensitivity of MEK2-silenced

glioma cells to TMZ was not caused by cell apoptosis.

Additionally, TMZ is an alkylating agent that exerts its anti-

neoplastic activity by interfering with DNA replication31. Thus,

the cell cycle arrest at S phase, but not G2/M phase, caused by

MEK2 silencing could lead to enhanced sensitivity of glioma

cells to TMZ treatment. Given that there is a DNA damage

checkpoint that acts at the G2/M transition to ensure that cells

do not initiate mitosis immediately after replication before they

repair damaged DNA, our data might suggest that MEK2 either

promotes DNA repair or helps glioma cells bypass the check-

point and enter M phase. Aberrant activation of the MAPK/

ERK pathway has been reported to upregulate ABCB1

expression in acute lymphoblastic leukemia32. Additionally,

administration of MAPK pathway inhibitors can reverse the

multiple drug resistance phenotype mediated through P-gly-

coprotein in many different types of tumor cells33–36. The

enhanced ERK kinase activity would affect the nuclear trans-

location of Y-box binding protein-1, which is capable of bind-

ing to the promoter region of multidrug resistance genes and

regulating the mRNA expression levels of those genes. The role

of MEK2 in regulating the TMZ sensitivity of glioma cells is

consistent with previous findings on the function of ERK sig-

naling in the multidrug resistance of human malignancies.

It has been reported that APNG and MGMT were involved

in the TMZ resistance of gliomas37. We here found that the

mRNA level of MGMT was closely associated with that of

MEK2, consistent with a previously identified connection

between MEK2-ERK-MDM2-p53 signaling and MGMT

expression. In addition, many genes involved in drug trans-

port (ABCB1, ABCC1, ABCC2, ABCG2)38, anti-apoptosis

(BCL2)39 and DNA repair (MGMT)40 are upregulated by

MEK2 in glioma cell lines, so it is highly likely that MEK2

simultaneously regulates multiple signal pathways to pro-

mote TMZ resistance. As for upstream signaling leading to

aberrant MEK2 activation, the recurrent mutation of

important genes in the RAF-MAPK signaling cascade such

as KRAS and BRAF might be a trigger17,18 . Alternatively,

abnormal over-expression of VEGF and EGFR, which was

reported to be associated with enhanced resistance to TMZ

treatment, could activate MAPK signaling28.
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Another interesting finding of our study is that MEK2 inhi-

bitors could be used as a sensitizing strategy for TMZ treat-

ment. Here, the administration of trametinib (GSK1120212)

and PD184352 (CI-1040), two MEK1/2 inhibitors undergoing

clinical trials41, greatly altered the apoptotic rate of glioma

cells upon TMZ treatment. Notably, these inhibitors are non-

selective inhibitors to MEK1 and MEK2, and the contribution

of MEK1 inhibition in improved TMZ sensitivity should be

further investigated in future studies. It has been shown that

although MEK1 and MEK2 share many similarities in structure

and kinase properties, they play distinct roles in many physio-

logical processes42. However, the MEK1/2 inhibitors conferred

an increase in the sensitivity of glioma cells to TMZ treatment

compared with untreated MEK2 silenced glioma cells, which
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suggested that MEK1 might also be involved in the regulation

of TMZ sensitivity in glioma cells.

Collectively, our study provided clear evidence that

MEK2 expression levels were closely related to the outcome

of TMZ treatment. Moreover, our study revealed a tremendous

potential for MEK2 blockade to be utilized as a useful sensitiz-

ing strategy for the improvement of the therapeutic effects

of TMZ.
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