
1Scientific RepoRts | 6:33892 | DOI: 10.1038/srep33892

www.nature.com/scientificreports

Identifying and removing the cell-
cycle effect from single-cell RNA-
Sequencing data
Martin Barron & Jun Li

Single-cell RNA-Sequencing (scRNA-Seq) is a revolutionary technique for discovering and describing cell 
types in heterogeneous tissues, yet its measurement of expression often suffers from large systematic 
bias. A major source of this bias is the cell cycle, which introduces large within-cell-type heterogeneity 
that can obscure the differences in expression between cell types. The current method for removing 
the cell-cycle effect is unable to effectively identify this effect and has a high risk of removing other 
biological components of interest, compromising downstream analysis. We present ccRemover, a 
new method that reliably identifies the cell-cycle effect and removes it. ccRemover preserves other 
biological signals of interest in the data and thus can serve as an important pre-processing step for 
many scRNA-Seq data analyses. The effectiveness of ccRemover is demonstrated using simulation data 
and three real scRNA-Seq datasets, where it boosts the performance of existing clustering algorithms in 
distinguishing between cell types.

Identifying and characterizing different cell types in heterogeneous tissues is the foundation of understanding 
how cancer evolves and metastasizes, how brains function, how stem cells program and develop, among numer-
ous other important applications. However, this cannot be done using the regular (bulk-based) RNA-Sequencing 
technique, which is the de facto standard for measuring the transcriptome but can only measure the average 
expression of all cells in bulk. ScRNA-Seq eliminates these limitations by preparing libraries from single cells and 
measuring the individual transcriptional profiles of hundreds or thousands of single cells (See e.g1–8. for reviews).

Applying clustering algorithms, such as k-means clustering or hierarchical clustering, to the gene expression 
profiles of single cells can reveal the different cell types present in heterogeneous tissues, allowing them to be 
identified and characterized9–14. However, for this approach to achieve its optimum power the high-noise nature 
of scRNA-Seq data needs to be carefully handled15–21. ScRNA-Seq data, while known to have large variance intro-
duced during library preparation17,22, also suffers from large systematic bias caused by biological noises, which 
act as confounding factors that obscure biological signals of interest in the data12,15,23. For data generated by 
other high-throughput techniques such as microarrays, removing systematic bias has been shown to be critically 
important24–26. For scRNA-Seq data, one of the major sources of biological noise is the cell cycle19,27–32. During 
the cell cycle a cell increases in size, replicates its DNA and splits into daughter cells. Different cells are at different 
time points of this cycle, and thus they may have quite different expression profiles15, even if they are cells of the 
same type33,34. This within-type heterogeneity can seriously deteriorate the performance of clustering algorithms 
for cell type identification: it may blur clusters of cell types or cause cells of similar cell-cycle statuses to stand 
out as new clusters. Figure 1 shows an example using simulation data. Gene expression data is simulated for 50 
cells and 2,000 genes. The cells are randomly assigned to two cell types (denoted using different shapes) and three 
cell-cycle stages (denoted using different colors). Figure 1a shows the results of principal component analysis 
(PCA) on this simulated data. The cells are clustered into six distinct clusters, grouping by both cell types and 
cell-cycle statuses. Cell-type discovery using this original data directly will mistakenly result in the discovery of 
six cell types.

The aim of this paper, is to develop an efficient computational method to remove this effect from the data, 
giving a dataset free from the cell-cycle effect, on which downstream analysis, such as discovering cell types, can 
be more efficient.

Some genes, from annotation databases, are known to play a role in the cell cycle and their expressions are 
heavily influenced by the cell cycle. These genes are often called “cell-cycle genes”12,35. However, attempting to 
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remove the cell-cycle effect by simply excluding these cell-cycle genes from the analysis is not a viable strategy. 
This is because the cell cycle also affects the expression level of many genes which are thought to be unrelated to 
the cell cycle12, although usually to a lesser extent compared to the cell-cycle genes. For example, when consider-
ing a set of over 6,500 genes not previously associated with the cell cycle, Buettner et al.12 found that 44% of the 
genes showed significant correlation with at least one cell-cycle gene.

The scLVM (single-cell latent variable model) algorithm first proposed the idea of estimating the cell-cycle 
effect and then removing this effect from scRNA-Seq data12. All genes are retained after applying scLVM, but the 
effect of the cell cycle will be removed from their expression levels. scLVM uses only the cell-cycle genes to iden-
tify the cell-cycle effect. It develops a sophisticated Bayesian latent variable model to reconstruct hidden factors in 
the expression profile of the cell-cycle genes. It declares that the leading K(K ≥  1) factors are the cell-cycle effect 
and removes them from the whole dataset. No formal statistical methods have been proposed to choose K with 
the authors recommending using either the default value K =  1, or relying on a scree plot of the variance cap-
tured by each latent factor and using the elbow point, similar to choosing the number of significant components 
in a PCA. scLVM has shown its ability in removing the cell-cycle effect from real scRNA-Seq datasets, which 
are the first real data example we will show in the Results section of the main text and the real data example in 
the Supplementary Information Section S1. To date, scLVM is still the only available method for removing the 
cell-cycle effect. The key assumption that scLVM makes is that all the main effects in the expression of cell-cycle 
genes are cell-cycle effects. However, we have realized that this may not hold, making the application of scLVM 
hazardous. Cells of different cell types, even if they are in the same time point of their cell cycle, should have dif-
ferent expressions even on cell-cycle genes. In other words, the expression of cell-cycle genes is also influenced 
by the cell type. We call the expression change caused by the cell type “the cell-type effect”. Likewise, there can be 
effects from experimental condition, disease state, etc. There is no guarantee that the cell-cycle effect is stronger 
than all other effects, even on the cell-cycle genes. Indeed even if the cell-cycle effect is the strongest, it is not 
likely that all its components (generally, more than one latent factor is needed to describe the cell-cycle effect) 
are stronger than the components of other effects. In other words, some of the leading K factors of the gene 
expression profile of the cell-cycle genes may not be generated by the cell cycle and instead may originate from 
biological features of interest such as differences in cell type. Removing all the leading K factors will remove these 
signals of interest from the data, compromising the downstream analysis of the data, such as clustering analysis 
for cell-type discovery, defeating the purpose of a scRNA-Seq experiment. For clearer illustration, we show four 
cases in Table 1 as examples. In case 1, the first leading factor in the cell-cycle genes represents the cell-cycle effect; 
scLVM will work when K =  1 is used. In case 2, the top two leading factors in the cell-cycle genes both represent 
the cell-cycle effect; scLVM will work when K =  2 is used, although the cell-cycle effect will not be removed com-
pletely when the default value K =  1 is used and other effect(s) may be removed along with the cell-cycle effect if 
K >  2 is used. In case 3, the first leading factor represents another effect of interest; scLVM will remove this effect 
no matter what K value is used, meaning that scLVM will always fail. In case 4, the first and third leading factors 

Figure 1. The simulation data projected onto its first two principal components. The cell types are 
represented by the different shapes (circle, triangle) and the cell-cycle time point of each cell is represented by 
the different colors (red, blue, green). (a) Original Data. Here the data is clustered into six groups corresponding 
to the combinations of cell type and cell-cycle status. (b) scLVM corrected data (one latent factor removed). The 
data clusters into three groups corresponding to cell-cycle status. (c) scLVM corrected data (three latent factors 
removed). No distinct clusters are observed. (d) ccRemover corrected data. The data splits into two groups 
corresponding to the cell types.

Case 1 Case 2 Case 3 Case 4

Leading factor #1 Cell-cycle Cell-cycle Other Cell-cycle

Leading factor #2 Other Cell-cycle Cell-cycle Other

Leading factor #3 Other Other Cell-cycle Cell-cycle

Leading factor #4 Other Other Other Other

Performance of scLVM Likely good Maybe good Fail Poor

Table 1.  The performance of scLVM depends on the type of effect each leading factor describes.
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represent the cell-cycle effect; scLVM will not remove the cell-cycle effect completely (when K <  3) and/or remove 
other effects as well (when K ≥  2).

A better method should include a mechanism to check each factor and make a judgement as to whether the 
factor represents the cell-cycle effect. We propose a method called cell-cycle remover (ccRemover) that effectively 
identifies the components of the cell-cycle effect from scRNA-Seq data. It then removes them from the data 
while preserving the other components of the data. ccRemover identifies the cell-cycle effect using the expression 
profiles of all genes. For simplicity, we call genes that are not annotated as cell-cycle genes “control genes”. The 
assumption that ccRemover makes is that the cell-cycle effect is stronger on average in the cell-cycle genes than 
control genes.

ccRemover carries out a simple PCA on the expression profiles of control genes to capture the sources of  
variation/effects, represented by the loadings of the principal components. It then projects the expression of 
all genes on these loadings to get the component scores for each gene. The magnitude of the component scores 
measures the strength of the effects on the genes. For each effect (principal component), ccRemover compares the 
average magnitude of the component scores of the cell-cycle genes with the average magnitude of the component 
scores of control genes. It declares all effects whose average magnitude is larger on the cell-cycle genes than on 
the control genes as cell-cycle effects. A formal bootstrap-based statistical test is developed for this comparison. 
Then all effects declared as the cell-cycle effect are removed from the whole dataset by subtracting the projections 
of gene expression profiles on these effects. This identification and removal process is repeated until no more 
principal components are identified as the cell-cycle effect. For details of the algorithm, refer to the Methods sec-
tion. ccRemover is implemented as an R package36 and is available at http://www.nd.edu/~jli9/ccRemover.zip for 
review proposes. Once the paper is accepted, it will be made publicly available via Bioconductor37.

The performance of ccRemover is demonstrated using a simulated dataset and three real scRNA-Seq datasets, 
where ccRemover is able to successfully remove the effects of the cell cycle from the data while preserving the 
other components of the data. We show that ccRemover can aid in the identification of subpopulations of cells, 
improve the clustering analysis of single cells and performs favorably compared to scLVM.

Results
For the simulated data and each of the real scRNA-Seq datasets the analysis follows the same process. Firstly we 
apply scLVM and ccRemover to the original dataset, which we call “the original data”. scLVM is applied using the 
python script available from the scLVM GitHub page. This gives us a scLVM corrected dataset and a ccRemover 
corrected dataset, which we refer to as the “scLVM corrected data” and the “ccRemover corrected data” respec-
tively. Once we have acquired the three datasets the same clustering algorithms and statistical tests are applied to 
each of them allowing us to compare the performance of the methods.

We use the same set of cell-cycle genes when applying scLVM and ccRemover. The lists of cell-cycle genes are 
acquired by combining two sources. Firstly Biomart was used to download lists of genes that were annotated to 
the cell cycle38. In addition two R packages were used to retrieve gene annotation data from GO term39, and these 
were org.Mm.eg.db40 and org.Hs.eg.db41 for annotations for mouse and human respectively. For the choice of K 
(the number of leading factors to be removed) in scLVM, we try both the default value K =  1 and the value given 
by the scree plot.

Simulation Data. We simulate data matrix X that contains measurements for 50 cells and 2,000 genes, of 
these genes 400 are assigned as cell-cycle genes. The cells are randomly assigned to the two classes (cell types) 
and three cell-cycle stages. Suppose cell j is assigned to class tj and cell-cycle stage sj, tj ∈  {1, 2} and sj ∈  {1, 2, 3}. We 
simulate Xij, the expression of gene i in cell j by

= + +X Y Z W (1)ij it is ijj j

where Y is the cell-type effect, Z is the cell-cycle effect, and W is random noise. The cell-type effect is generated 
by Yi1, Yi2 ∼  N(0, 1.22), the cell-cycle effect is generated by Zi1, Zi2, Zi3 ∼  N(0, 1) for cell-cycle genes and Zi1, Zi2, 
Zi3 ∼  N(0, 0.62) for control genes, and the random noise is generated by Wij ∼  N(0, 1).

In Fig. 1, the data is plotted on the first two principal components with the shape of the points corresponding 
to their cell type and the color corresponding to their cell-cycle stage. Ideally, the data should be separated only by 
shape and not color, that is, by cell type and not cell-cycle stage. However, on the original data (Fig. 1a), the cells 
are clustered into six different groups corresponding to the cell type and cell-cycle stage combinations demon-
strating how the cell cycle can confound the analysis of scRNA-Seq data.

scLVM removes the first leading factor (K =  1, default choice) or the first three leading factors (K =  3, sug-
gested by the scree plot). Figure 1b shows the results when the first leading factor is removed, where the cells are 
clustered into three groups according to the cell-cycle stage, and cells from different cell types are completely 
indistinguishable. scLVM has failed completely here by mistakenly removing the cell-type effect instead of the 
cell-cycle effect. Figure 1c shows the results when all three leading factors are removed. The cells exhibit no clear 
clusters, indicating that scLVM has removed both the cell-cycle effect and the cell-type effect. The data has effec-
tively been rendered useless as it now contains just noise.

Figure 1d shows the results of correcting the data using ccRemover, where the cells are well separated by the 
cell type and within each cluster cells with different cell-cycle stages are completely mixed. This means that the 
cell-cycle effect has been thoroughly removed, while the cell-type information has been preserved. ccRemover 
is able to correctly identify the second and third principal components as cell-cycle effects and removes them.

In our simulation study above, we made two simplifications in the data simulation. First, we simulated 
Gaussian data directly instead of simulating the raw count data, normalizing the counts by the sequencing 
depth, and then log-transforming them. Second, we simulate the cell cycle as three discrete stages. In reality, the 

http://www.nd.edu/~jli9/ccRemover.zip


www.nature.com/scientificreports/

4Scientific RepoRts | 6:33892 | DOI: 10.1038/srep33892

cell-cycle status is more like a continuous variable, as even if two cells are in the same stage, they may still differ in 
how far they have progressed through that stage.

In our simulation, the leading latent factor of the expression profile of cell-cycle genes is not the cell-cycle 
effect. This corresponds to case 3 in Table 1, and scLVM fails as expected. Changing our simulation parameters 
can make the data represent other cases in Table 1, on many of which we should not expect such distinct results 
between scLVM and ccRemover. We will show a wider range of comparisons using real datasets.

Real dataset 1: T helper cell data. The first real dataset is the differentiating T-helper (TH) cell dataset that 
was used to display the ability of scLVM to help reveal hidden subpopulations of cells by Buettner et al.12. We will 
demonstrate that ccRemover also has this ability, and improves on the performance of scLVM. The dataset was 
generated by Mahata et al.42 to study the differentiation of TH cells and the steroids they synthesize to contribute 
to immune homeostasis. The data was created by polarizing naive TH cells in vitro towards a TH2 subtype, leading 
to a population in which there are cells differentiating towards the TH2 subtype and cells which are not. The objec-
tive for this dataset is to identify biologically meaningful clusters of cells. The original dataset was downloaded 
from the supplementary materials of Buettner et al.12 and contains normalized and log transformed expression 
measurements for 81 cells and 7,073 genes, of which 532 were identified as cell-cycle genes. For this dataset, the 
scLVM corrected data along with cluster assignments for the corrected data are also available from the same 
source and were used to evaluate the performance of scLVM. When ccRemover is applied to the original data it 
identifies the first principal component to be a cell-cycle effect on the first iteration. Once this effect is removed 
from the data no other features are deemed to be cell-cycle related.

Both scLVM and ccRemover remove the cell-cycle effect efficiently on this data. To check this, in Fig. 2, we 
plot the density of the expression level of cell-cycle genes selected from the top ranked genes on Cyclebase43. On 
the original data (red lines), many genes display a bimodal density commonly seen in scRNA-Seq data indicating 
the on-off action of genes, in this case, controlled by the cell cycle18,44–46. On the scLVM (green lines) or ccRe-
mover (blue lines) corrected data, the bimodality of the densities largely disappears and most genes display a uni-
modal distribution indicating that the cell-cycle effect has been reduced or removed completely for these genes.

To determine if biologically meaningful clusters can be discovered from the data we avail of a criterion for 
measuring performance used by Buettner et al. during their analysis. There is a list of 122 known TH2 signa-
ture genes curated by Buettner et al. If the cells are clustered into two clusters and genes that are differentially 
expressed between these two clusters are identified, these TH2 signature genes should be over-represented in the 
set of differentially expressed genes if different clusters represent physiologically distinct subpopulations of cells. 
This over-representation can be summarized by an odds ratio of the percentage of TH2 signature genes in the set 
of differentially expressed genes to that in all genes. A large odds ratio is favored.

To implement this criterion, we applied 2-means clustering and use a t-test with false discovery rate 0.01 to 
identify differentially expressed genes. Then the odds ratio, the 95% confidence interval of the odds ratio, and 
the p-value of the hypothesis of odds ratio >  1 were calculated by a hypergeometric test. The results are shown in 
Table 2. On the original data, the odds ratio is less than 1, indicating that the clustering of cells is unlikely to be 
physiologically meaningful. The true substructure of the data is completely obscured, and this could be due to the 
confounding effects of the cell cycle.

On the scLVM corrected data, the odds ratio is 2.382, with the lower confidence interval bound of 1.518 and 
p-value 1.542 ×  10−4. On the ccRemover corrected data, the odds ratio is 3.439, with the lower confidence interval 

Figure 2. Density plots of selected genes from the T-cell data. The densities are displayed for the original 
(red), scLVM corrected (green) and ccRemover corrected (blue) data. The genes were selected from among 
the top ranked genes on Cyclebase. The original data displays bimodal densities which are common in scRNA-
Seq data indicating genes whose expression switches on and off. When the cell-cycle effect is removed using 
ccRemover or scLVM these bimodal densities disappear.
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bound 2.297 and p-value 2.373 ×  10−9. This indicates that both scLVM and ccRemover are able to remove the 
cell-cycle effect from the data so that the true substructure of the data can be revealed, and ccRemover removes 
the cell-cycle effect more thoroughly and/or keeps other biological features more intact compared to scLVM.

We also applied ccRemover to another dataset used by Buettner et al.12, the mouse embryonic stem cells 
(mESC) dataset. This dataset contains cells from the same cell type, but the cell-cycle stage of each cell is known 
a priori by the Hoechst staining. By applying two criteria proposed by Buettner et al.12, we find both scLVM and 
ccRemover are very successful in removing the cell-cycle effect from this dataset, and ccRemover outperforms 
scLVM slightly. Our full analysis of this dataset is presented in the Supplementary Information (Supplementary 
Section S1).

Real dataset 2: human glioblastomas data. This dataset contains cells from five human glioblastomas47. 
It was created by Patel et al. by isolating individual cells from freshly resected and dissociated IDH1/2 wild-type 
primary human glioblastomas, MGH26, MGH28, MGH29, MGH30 and MGH31. This dataset has log trans-
formed and centered TPM (Transcripts Per Million) measurements for 5,948 genes and 430 single cells with each 
tumor represented by 70 to 118 cells. Of the 5,948 genes 412 were identified as cell-cycle genes. It has been shown 
that the level of cell-cycle activity within this dataset is very low, with an average of only 8% of the cells per tumor 
showing cell-cycle activity47. For this dataset the objective is to cluster the cells by their tumor of origin.

When scLVM was applied, the scree plot suggests removing the first leading hidden factor, agreeing with its 
default choice. When ccRemover was applied to this dataset the 5th, 6th and 9th components were identified as 
cell-cycle effects and removed on the first iteration. On the second iteration the 10th component was identified 
as a cell-cycle effect. Once this effect was removed from the data there were no more cell-cycle effects detected.

Hierarchical clustering was applied to the (original, scLVM corrected, and ccRemover corrected) data, split-
ting the cells into five clusters, with each cluster being assigned the class of the majority of the cells contained 
within the cluster. The results are shown in Fig. 3. On the original data, 87.44% of the cells were clustered cor-
rectly. From the plot of the dendrogram (Fig. 3a) it is clear that the MGH31 (red) cluster contains cells from all the 
other tumors that have been incorrectly classified, the MGH28 (purple) and MGH30 (blue) clusters also display 
significant impurities. On the scLVM corrected data, 90.00% of the cells were classified correctly, an improvement 
of over 2.5% from the original data. On the ccRemover corrected data, 92.32% of the cells were classified cor-
rectly, an increase of nearly 5% from the original data. The purity of the clusters in the dendrogram (Fig. 3c) for 
the ccRemover corrected data show marked improvement over the original data, and especially the MGH28 and 
MGH31 clusters show convincing improvements in purity. This result is particularly striking when considering 
the very low levels of cell-cycle activity within this dataset and demonstrates that ccRemover can improve the 
downstream analysis of scRNA-Seq data even when the cell-cycle effect is not very strong.

Method odds ratio
95% confidence interval 

of the odds ratio p-value

original data 0.466 (0.318, 0.687) 0.999

scLVM 2.382 (1.518, 3.655) 1.542 ×  10−4

ccRemover 3.439 (2.297, 5.100) 2.373 ×  10−9

Table 2.  Statistical tests on the differentiating T-cell dataset.

Figure 3. Dendrogram plots from the hierarchical clustering on the original, ccRemover corrected and 
scLVM corrected glioblastoma data. The tumor of each of the cells is represented by their colors, MGH26 
(yellow), MGH28 (purple), MGH29 (orange), MGH30 (blue) and MGH31 (red). The clustering assignments 
are displayed as boxes separating the cells. (a) Original data. There are significant misclassifications within the 
clusters for the original dataset. In particular the MGH28, MGH30 and MGH31 clusters contain significant 
numbers of cells from the other tumors. (b) scLVM corrected data. There is an increase in the accuracy of the 
clustering from the original data, however the MGH26 and MGH30 cells are now mixed between clusters. 
(c) ccRemover corrected data. There is a significant improvement in the purity clusters here compared to the 
original and scLVM corrected data. The MGH28 cluster is now much purer and only contains a few cells from 
the other tumors.
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Real dataset 3: lung adenocarcinoma data. This dataset was generated by Kim et al. to investigate the 
mechanisms by which intra-tumoral heterogeneity impacts the therapeutic outcome of cancer treatments48. It 
contains 176 cells from three cell types: 77 patient-derived xenograft tumor cells from a lung adenocarcinoma 
patient tumor xenograft, 50 single H358 human lung cancer cells (H358), and 49 PDX cells derived from a lung 
cancer-brain metastasis (LC.MBT). Interestingly, the 77 cells in the first type come from two groups of cells 
that are technical replicates of each other. One group contains 34 cells, and the other group contains 43 cells, 
and they are called LC.PT and LC.PT_RE in the original paper. These two groups of cells were isolated and 
RNA-sequenced separately, and thus there should be batch effects, which may affect specific subsets of genes and 
may affect different genes in different ways49.

The TPM values for 57,820 genes are available for each of the 176 cells. Prior to analysis any genes which had 
zero expression for over two thirds of the cells were removed from the data, leaving 10,977 genes of which 757 
were annotated to the cell cycle. The data was transformed to a log-scale by adding 1 to each of the measurements 
and taking the natural log.

The scree plot from scLVM suggests removing the first leading hidden factor, agreeing with its default choice. 
Instead, ccRemover suggests removing six principal components in its four iterations, and interestingly, these six 
components do not include the very first principal component.

When using 3-means clustering on the original data, the three clusters represent the three cell types per-
fectly, and thus there is no room for improvement. Instead, we consider using 4-means clustering, in order to 
see whether the 77 cells of the first cell type can be clustered accordingly to the two sets of technical replicates, 
LC.PT and LC.PT_RE. Figure 4 shows the results. On both the original data (Fig. 4a) and the scLVM corrected 
data (Fig. 4b), the LC.PT and LC.PT_RE cells are split into two clusters (clusters 3 and 4) each containing roughly 
equal proportions of cells from each set, indicating that the technical replicates are non-separable. On the ccRe-
mover corrected data (Fig. 4c), on the other hand, the majority (80%) of cluster 3 are cells from the LC.PT_RE 
group, while the majority (89%) of cluster 4 are cells from the LC.PT group. This means that cells from different 
sets of technical replicates are largely separated by the batch effect. This batch effect is present in all three of the 
original and corrected datasets, but it has a noticeable influence in the clustering results only on ccRemover cor-
rected data. The reason could be that the batch effect is confounded by the stronger cell-cycle effect in the original 
data, and it stands out when the cell-cycle effect was removed by ccRemover. scLVM may have not removed the 
cell-cycle effect thoroughly enough to make a difference.

Further analysis was carried out to determine if this is the case. Figure 5 displays heat maps of the expression 
of the top ranked cell-cycle genes from Cyclebase43. The cell-cycle genes displayed in the heat map are ordered 
based on the time point of the cell cycle at which their expression peaks. If the cell-cycle effect exists, there should 
be blocks of similar expression levels, and these blocks should not occupy from the first row to the last row as the 
genes do not achieve their peak expressions at the same time point of the cell cycle. On the original data (Fig. 5a), 
there are clear such blocks, and the most prominent one is shown in a blue box. For the scLVM corrected data the 
blocks are less apparent but still present (Fig. 5b), indicating that the cell-cycle effect has been removed partially. 
For the ccRemover corrected data (Fig. 5c), there are no easily visible blocks left indicating that ccRemover has 
effectively removed the cell-cycle effect from this dataset. For both the scLVM and ccRemover corrected data the 
range of expression for the cell-cycle genes is reduced and so the heat map colors show less variation.

This example shows a feature of ccRemover: while it quite thoroughly removes the cell-cycle effect, it keeps all 
other effects, favorable (like the cell-type effect) or unfavorable (like the batch effect), intact. This is exactly what 
ccRemover is designed for. In this example, ccRemover makes the batch effect stand out, which may actually facil-
itate removing the batch effect. This can be done by using software specifically designed for removing the batch 
effect, and it is out of scope of this paper.

Figure 4. Bar plots of the clustering assignments for the lung adenocarcinoma cells. (a) Original data. The 
LC.PT and LC.PT_RE cells split into two clusters each containing a roughly equal proportion of cells from 
each sample, indicating that 4-means failed to separate the cells from these two samples. (b) scLVM corrected 
data. Similar to the original data scLVM fails to split the LC.PT and LC.PT_RE cells into separate clusters.  
(c) ccRemover corrected data. The separation of the LC.PT and LC.PT_RE cells between the clusters has 
improved significantly with one cluster dominated by LC.PT cells and the other by LC.PT_RE cells.
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Discussion
ScRNA-Seq data suffer from a systematic bias which is introduced by the cell cycle. The cell cycle can have a 
confounding effect on the analysis of scRNA-Seq data, conceal the true biological features of interest and compro-
mise the interpretation of scRNA-Seq experiments. In fact, we saw for the differentiating T-cell data that the true 
substructure of the data was undetectable unless the cell-cycle effect was removed. This can increase the difficulty 
of identifying new subtypes and subpopulations of cells in scRNA-Seq data. The current method developed for 
removing this effect, scLVM, does not inspect whether a leading factor represents the cell cycle, and thus it has a 
considerable risk of removing other important features of the data, as well as removing the cell-cycle effect incom-
pletely. We developed a new method, ccRemover, that includes a formal statistical test to inspect whether an effect 
is a component of the cell-cycle effect or not. By using this test, ccRemover is able to remove the effects of the cell 
cycle from scRNA-Seq data quite thoroughly while preserving the other information that is contained within 
the data. Applying ccRemover to remove the cell-cycle effect can allow previously distorted signals of interest to 
emerge from the data and improve the analysis of scRNA-Seq data. This has been shown in both simulation data 
and real datasets.

The idea of using control genes for removing excess variation is not new26,50,51. The control genes from prior 
applications are genes which are known a priori to be “null” with regard to the biological factor of interest. 
Control genes in ccRemover are somewhat different: instead of using genes that are annotated not to be affected 
by the factor of interest (the cell cycle), we define them to be genes that are not annotated to be affected. We expect 
control genes in ccRemover to be affected by the cell-cycle effect, although the effect is weaker among control 
genes than it is among the cell-cycle genes. In practice, we recommend simply using all genes that are not anno-
tated as cell-cycle genes as control genes; thus, once the set of cell-cycle genes is retrieved, the set of control genes 
is obtained freely.

ccRemover relies on a known set of cell-cycle genes, which are often retrieved from annotation databases. In 
reality, the annotation databases are always incomplete and inaccurate. Using additional simulations, we have 
shown that ccRemover seems to be quite tolerant to incomplete and/or inaccurate annotations. See Section S3 in 
Supplementary Information for details.

As ccRemover utilizes the control genes to capture various effects in the data, if the cell-cycle effect only influ-
ences a few of the control genes, it may not be captured by the principal components and hence missed for detec-
tion by ccRemover. To explore how robust ccRemover is to the sparsity of the cell-cycle effect among the control 
genes we performed additional simulations (Section S2 in Supplementary Information). Using a modified version 
of the model from the simulation section we simulate data where the cell cycle affects differing proportions of the 
control genes. ccRemover is able to effectively identify and remove the cell-cycle effect from the data if at least 8% 
of the control genes are affected by the cell-cycle. This required proportion can be even lower when the data has 
a greater absolute number of genes or cells. This requirement is likely to be satisfied for most real datasets. For 
example, we have previously mentioned that Buettner et al. found that 44% of 6,500 genes previously considered 
unrelated to the cell-cycle were correlated with at least one cell-cycle gene12.

The cell cycle is often the main source of biological noise in scRNA-Seq data. When it is removed by ccRe-
mover, other effects may stand out as the main confounding factors, as we have shown in our third real data 
example. ccRemover does not remove these effects as it is designed for removing the cell-cycle effect exclusively. 
However, if a set of genes are known to be more influenced by a particular effect to be removed, one can treat this 
set of genes as set A (the cell-cycle genes) and then ccRemover can be directly used to remove this effect.

Methods
We describe our ccRemover algorithm in this section. Denote the matrix of gene expression values as X, with element 
Xi,j being the expression value for the ith gene and the jth cell, i =  1, … , p and j =  1, … , n. We recommend transforming 

Figure 5. Heat maps of gene expression in the lung adenocarcinoma dataset. The cell-cycle genes were 
chosen from the top ranked cell-cycle genes on Cyclebase and are ordered by their cell-cycle peak time. The cells 
were ordered based on a hierarchical clustering of the original data and the order is the same for each heat map. 
(a) Original Data. The blocks of similar expression indicate cells at a similar cell-cycle time point, indicating 
the presence of cell-cycle effects. (b) scLVM corrected data. The blocks of similar expression have been reduced 
but are still apparent. The color of the heat map is more balanced as the range of the expression levels is reduced 
after they have been corrected. (c) ccRemover corrected data. The obvious blocks have been removed from the 
corrected dataset.
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the data to a log scale and centering it on a gene-by-gene basis. Let = −A i i{ : gene is a cell cycle gene}  
and =B i i{ : gene is a control gene}, with the corresponding data matrices XA and XB. The numbers of genes in 
A and B are represented as |A| and |B| respectively. Thus, the dimensions of X, XA and XB are p ×  n, |A| ×  n and |B| ×  n, 
respectively.

The ccRemover algorithm follows these steps:

1. Perform a PCA on the data matrix of control genes XB. Let the loadings be v1, … , vn, and the corresponding 
component scores be β1, … , β with βj =  XBvj. Then β= ∑ =X vB j

n
j j

T
1 .

2. Project the data matrix of cell-cycle genes XA onto …v v, , n1 . The component scores for vj are α = X vj A j.
3. Find the set of …v v, , n1  that have significantly larger component scores on cell-cycle genes than on control 

genes. This can be done by testing whether

α β
∆ = − >

A B
0

(2)
j

j j2 2

using the bootstrap (details given later), where ⋅ 2 denotes the L2 norm. Let the significant set of j be S. 
The directions ∈{ }v j S:j  will be used as the cell-cycle effect.

4. Project X onto ∈v j S,j  to extract the cell-cycle effect from the data matrix. Subtract these projections from 
X to remove them from the data. That is, the corrected data matrix with the cell-cycle effect removed is 
given by

∑= − ∈X̂ X Xv v( ) (3)j S j j
T

Steps 1 to 4 are repeated until no more cell-cycle effects are identified (i.e. no statistically significant Δ j >  0 is 
found). We have found that usually no more than four repetitions are needed.

We use the following two-class bootstrap procedure52 to test whether Δ j is significantly larger than 0:

1. Take a random sample with replacement of |A| rows from XA and another |B| rows from XB. This gives the 
resampled data matrices ⁎XA and ⁎XB.

2. Calculate ∆⁎
j  a bootstrap replicate of Δ j, by applying steps 1 and 2 of the algorithm of ccRemover to ⁎XB and 

⁎XA.
3. Repeat steps 1 and 2 of this algorithm nboot times to get bootstrap replicates ∆ … ∆⁎ ⁎, ,j j

n1 boot. We use 
nboot =  100 for all our simulations and real data examples. Let the standard deviation of these bootstrap 
replicates be σ∆ j

.
4. Reject ∆ ≤H : 0j0  when the bootstrap based t-statistic ≥

σ

∆
∆

∆
Cj

j

, where CΔ is a cutoff specified by the 

practitioner.

For most datasets, we suggest using CΔ =  3, which roughly corresponds to a p-value of 0.01. We used this 
cutoff for all our simulations and real data examples except for the glioblastoma data, where it is known that the 
cell-cycle activity is at a very low level47. We use a smaller cutoff value CΔ =  2 for this data, and it roughly corre-
sponds to a p-value of 0.05.
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