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Abstract

Fragile X mental retardation protein (FMRP) is an RNA binding protein with 842 target mMRNAs
in mammalian brain. Silencing of the fragile X mental retardation 1 (FMR1) gene leads to loss of
expression of FMRP and upregulated metabotropic glutamate receptor 5 (mGIuR5) signaling
resulting in the multiple physical and cognitive deficits associated with fragile X syndrome (FXS).
Reduced FMRP expression has been identified in subjects with autism, schizophrenia, bipolar
disorder, and major depression who do not carry the mutation for FMRZ1. Our laboratory has
recently demonstrated altered expression of four downstream targets of FMRP-mGIuRS5 signaling
in brains of subjects with autism: homer 1, amyloid beta A4 precursor protein (APP), ras-related
C3 botulinum toxin substrate 1 (RAC1), and striatal-enriched protein tyrosine phosphatase
(STEP). In the current study we investigated the expression of the same four proteins in lateral
cerebella of subjects with schizophrenia, bipolar disorder, and major depression and in frontal
cortex of subjects with schizophrenia and bipolar disorder. In frontal cortex we observed: 1)
reduced expression of 120 kDa form of APP in subjects with schizophrenia and bipolar disorder;
2) reduced expression of 61 kDa and 33 kDa forms of STEP in subjects with schizophrenia; 3)
reduced expression of 88 kDa form of APP in subjects with bipolar disorder; and 3) trends for
reduced expression of 88 kDa form of APP and homer 1 in subjects with schizophrenia and
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bipolar disorder, respectively. In lateral cerebella there was no group difference, however we
observed increased expression of RAC1 in subjects with bipolar disorder, and trends for increased
RAC1 in subjects with schizophrenia and major depression. Our results provide further evidence
that proteins involved in the FMRP-mGIuRS5 signaling pathway are altered in schizophrenia and
mood disorders.
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1. Introduction

Emerging evidence suggests that downregulation of fragile X mental retardation protein
(FMRP) may be common to multiple psychiatric disorders including autism, schizophrenia,
bipolar disorder, and major depression, rather than simply a hallmark of fragile X syndrome
(FXS) (Fatemi et al., 2010a, 20114, 2013a,b; Fatemi and Folsom, 2011, 2014; Fernandez et
al., 2013; Kelemen et al., 2013; Kovécs et al., 2013; Jacquemont et al., 2014). In FXS,
reduced FMRP is the result of gene silencing of the Fragile X mental retardation 1 gene
(FMR1). FMRP normally acts as a translational repressor and negative regulator of group |
metabotropic glutamate receptors (mGIuRs). In particular, the loss of FMRP regulation of
metabotropic glutamate receptor 5 (mMGIuRb) is believed to result in enhanced glutamatergic
signaling which ultimately results in the multiple physical and cognitive deficits associated
with FXS (Bear et al., 2004; Délen and Bear, 2008).

While there is a great deal of overlap between autism and FXS with regard to symptoms
(Bailey et al., 1998; Irwin et al., 2001; Hatton et al., 2006; Gothelf et al., 2008; Hallahan et
al., 2009; Hutsler and Zhang, 2010) and comorbidity (Bailey et al., 1998; Chudley et al.,
1998; Wassink et al., 2001; Kaufman et al., 2004; Hatton et al., 2006), recent findings of
reduced FMRP in brains of subjects with autism were from individuals who did not carry the
mutation of FMR1 (Fatemi and Folsom, 2011; Fatemi et al., 2011a). Similarly, recent
findings of reduced FMRP expression in brains and peripheral blood lymphocytes of
subjects with schizophrenia were also from people who did not carry the FMR1 mutation
(Fatemi et al., 2010a; Fatemi et al., 2013b; Kelemen et al., 2013; Kovacs et al., 2013). Thus,
a genetic mutation of FMRL1 is not required to result in reduced FMRP expression.

Our laboratory has provided evidence of impairment of FMRP-mGIuUR5 signaling in patients
with schizophrenia and mood disorders (Fatemi et al., 2010a, 2011b; Fatemi and Folsom,
2014). Western blotting studies have identified reduced expression of FMRP in lateral
cerebellum from subjects with schizophrenia, bipolar disorder, and major depression (Fatemi
et al., 2010a) and from superior frontal cortex [Brodmann Area 9 (BA9)] of subjects with
schizophrenia and bipolar disorder (Fatemi et al., 2013b). Our results were recently verified
by the finding of reduced FMRP in peripheral blood lymphocytes of people with
schizophrenia (Kelemen et al., 2013; Kovacs et al., 2013). Moreover, mGIuR5 protein levels
were significantly reduced in both brain sites in schizophrenia and bipolar disorder while
MRNA levels for mGIuR5 were significantly reduced in lateral cerebellum of subjects with
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schizophrenia and major depression and BA9 of subjects with bipolar disorder (Fatemi et al.,
2013b).

These preliminary findings suggest that FMRP-mGIURS5 signaling is altered in subjects with
schizophrenia and mood disorders. FMRP is estimated to bind to approximately 5% of all
transcripts in the mammalian brain (Darnell et al., 2001; Darnell and Klann, 2013). The next
step in our investigation of the FMRP-mGIuRS5 signaling system is to identify changes in
some of the specific downstream targets. Recently we identified changes in four such targets
—homer 1, amyloid beta A4 precursor protein (APP), ras-related C3 botulinum toxin
substrate 1 (RACL1), and striatal-enriched protein tyrosine phosphatase (STEP) - in cerebellar
vermis and BA9 of adults and children with autism when compared to controls (Fatemi et
al., 2013a). Brain volumetric studies and functional imaging studies have shown that both
BAO9 and the cerebellum show abnormalities in subjects with schizophrenia and mood
disorders (Liotti et al., 2002; Kruger et al., 2003; Holmes et al., 2005; Crespo-Facorro et al.,
2007; Baldacara et al., 2008; Bonilha et al., 2008). The cerebellum and prefrontal cortex are
connected through the cortico-pontocerebellar and cerebello-thalamocortical pathways
(Schmahmann and Pandya, 1997). Disruptions of this circuitry have been hypothesized to
contribute to cognitive dysfunction associated with schizophrenia (Andreasen et al., 1996).
Due to the importance of these two regions in schizophrenia, we hypothesized that we would
observe similar changes in expression of FMRP-mGIURS5 signaling molecules in subjects
with schizophrenia and mood disorders.

2. Materials and methods

2.1. Brain Procurement

The current study was approved by the Institutional Review Board of the University of
Minnesota-School of Medicine. The Harvard Brain and Tissue Resource Center provided
postmortem superior frontal cortex [Brodmann Area 9 (BA9)] from the McLean 74 Cohort.
Postmortem lateral cerebella were provided by the Stanley Foundation Neuropathology
Consortium under approved ethical guidelines. Psychiatrists established DSM-1V diagnoses
of schizophrenia, bipolar disorder, major depression, or no disorder prior to death using
information from family interviews and from all available medical records. The Harvard
Brain and Tissue Resource Center and the Stanley Medical Research Foundation collected
details regarding subject selection, demographics, diagnostic process, and tissue processing.
The McLean 74 Cohort consists of 20 subjects with schizophrenia, 19 subjects with bipolar
disorder, and 28 normal controls (Table 1). For the current study, the Stanley collection
consisted of 9-13 subjects with schizophrenia, 7-12 subjects with bipolar disorder, 8-13
with major depression without psychotic features and 10-12 normal controls (Table 2). All
groups were matched for a variety of demographic measures and analyzed statistically for
the impact of all confounds on various protein values (Tables 1 and 2).

2.2. SDS-PAGE and Western Blotting

Brain tissue was prepared for SDS-PAGE and western blotting using previously established
protocols (Fatemi et al., 2008, 2009a,b, 2010a,b, 2011a; Fatemi and Folsom, 2011). For both
BAO9 and lateral cerebellum, 30 pg of tissue was used as this amount of protein provided
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values within the linear range of optical density measurements. For APP 6% resolving gels
were used; for homer 1, neuronal specific enolase (NSE), and beta-actin 10% resolving gels
were used; and for STEP and RAC1 12% resolving gels were employed. For all experiments
5% stacking gels were used. Interblot variability was minimized by including samples from
subjects of each group (control, schizophrenia, bipolar disorder, major depression) on each
gel. Moreover, interblot variability was further minimized by expressing proteins of interest
as ratios to B-actin and NSE, both of which varied minimally and nonsignificantly across
gels (Tables 3 and 4). All samples were run in duplicate. Samples were electrophoresed for
15 minutes at 75 V followed by 60 minutes at 150 V. Following electrophoresis, samples
were electroblotted onto nitrocellulose membranes for 2 h at 300 mAmp at 4 °C. Blots were
then blocked with 0.2% I-Block (Tropix, Bedford, MA, USA) in PBS with 0.3% Tween 20
for one hour at room temperature (RT). Blots were incubated in the appropriate primary
antibodies overnight at 4 ° C. The primary antibodies used were anti-RAC1 (1:500; BD
Transduction, San Jose, CA, USA), anti-APP (1:500; Abcam Inc., Cambridge, MA, USA),
anti-homer 1 (1:750; Abnova, Taipei, Taiwan), anti-STEP (1:400; Abgent, San Diego, CA,
USA, this antibody has previously been used to determine levels of STEP by Carty et al.,
2012), anti-NSE (1:2,000; Abcam Inc., Cambridge, MA, USA), and anti-p actin (A5441,
Sigma Aldrich (St. Louis, MO, USA), 1:5 000). Blots were then washed for 30 minutes at
RT in PBS supplemented with 0.3% Tween 20 (PBST). Following the wash step, blots were
incubated in the proper secondary antibodies: either goat anti-mouse 1gG (A9044, Sigma
Aldrich, 1:80 000) or goat anti-rabbit 1gG (A9169, Sigma Aldrich, 1:80 000) for one hour at
RT. Blots were washed twice in PBST for 15 min., each. After the second wash, bands were
visualized using the ECL-plus detection system (GE Healthcare, Little Chalfont,
Buckinghamshire, UK) and exposed to CL-Xposure film (Thermo Scientific, Rockford, IL,
USA). The molecular weights of approximately 120 kDa and 88 kDa (APP); 61 kDa, 33
kDa (STEP); 46 kDa (NSE); 45 kDa (homer 1); 42 kDa (B-actin); and 21 kDa (RAC1)
immunoreactive bands were quantified with background subtraction using a Bio-Rad
GS-800 Calibrated Densitometer (Bio-Rad, Hercules, CA, USA) and Quantity One 1-D
Analysis software (Bio-Rad, Hercules, CA, USA). Sample densities were analyzed blind to
nature of diagnosis. Results obtained are based on at least two independent experiments.

2.3. Statistical Analysis

All protein measurements for each group were normalized against p-actin and neuronal
specific enolase (NSE) and expressed as ratios of these two housekeeping proteins; RAC 1/
B-actin, homer 1/B-actin, APP 120 kDa/B-actin, APP 88 kDa/B-actin, STEP 61 kDa/B-actin,
STEP 33 kDa/p-actin, RAC 1/NSE, homer 1/NSE, APP 120 kDa/NSE, APP 88 kDa/NSE,
STEP 61 kDa/NSE, and STEP 33 kDa/NSE. Statistical analysis was performed using
previously described protocols (Fatemi et al., 2008, 2010a, 2011a,b). An initial MANOVA
was performed for each brain region using all protein measurements in the dependent
variable set with subsequent ANOVA'’s on individual proteins if the initial MANOVA was
significant. When ANOVA'’s were significant, specific contrast t-tests were conducted on the
relationships of interest. The level of significance was then adjusted for the number of
specific contrasts [i.e. p < 0.025 for the McLean 74 cohort (Table 3) and p < 0.0167 for the
Stanley Neuropathology Consortium (Table 4)]. Relationships between possible
confounding variables and outcome measures were explored using analysis of variance

Schizophr Res. Author manuscript; available in PMC 2016 September 27.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Folsom et al.

3. Results

Page 5

(ANOVA) for categorical confounders and Pearson correlation coefficients for continuous
confounders. When confounding variables showed significant relationships to outcomes,
analysis of covariance was used to explore these effects on group differences. All analyses
were conducted using SPSS v.19 (SPSS inc, Chicago, IL).

3.1. Western Blotting Results for RAC1, homer 1, APP, and STEP in BA9

All protein measurements were normalized against p-actin or NSE. An initial MANOVA
using all normalized protein measurements in the dependent variable set yielded a
significant difference between diagnostic groups (Wilks’ Lambda F(20,98) =1.69, p = .047).
In BA9, ANOVA identified group differences for APP 120 kDa/p-actin [F(2,64) = 6.37, p <
0.003], APP 120 kDa/NSE [F(2,64) = 5.83, p < 0.005], APP 88 kDa/B-actin [F(2,62) = 5.10,
p < 0.009], APP 88 kDa/NSE [F(2,62) = 5.15, p < 0.009], STEP 61 kDa/B-actin [F(2,64) =
4.19, p <0.019], STEP 61 kDa/NSE [F(2,64) = 4.73, p < 0.012], and STEP 33 kDa/NSE
[F(2,62) = 3.51, p < 0.036] with a trend for homer 1/p-actin [F(2,61) = 3.02, p < 0.056] (Fig.
1; Table 3).

Follow up t-tests (after adjustment for multiple comparisons) found significant reductions
for APP 120 kDa/p-actin, STEP 61/B-actin, and STEP 33 kDa/p-actin (p < 0.007, p < 0.008,
and p < 0.012, respectively) and APP 120 kDa/NSE, STEP 61 kDa/NSE, and STEP 33 kDa/
B-actin (p < 0.009, p < 0.005, and p < 0.007, respectively) in BA9 of subjects with
schizophrenia (Table 3, Figs. 2 and 3). Trends in the same direction were found for APP 88
kDa/B-actin (p < 0.028) and APP 88 kDa/NSE (p < 0.041). In subjects with bipolar disorder,
follow up t-tests found significant reductions in APP 120 kDa/p-actin (p < 0.012) and APP
88 kDa/p-actin (p < 0.023), and APP 120 kDa/NSE, and APP 88 kDa/NSE (p < 0.012, and p
< 0.014, respectively). A trend in the same direction was found for homer 1/p-actin (p <
0.035) in subjects with bipolar disorder (Table 3; Figs. 2 and 3). There were no significant
changes in protein levels for RAC1 in BA9 in either disorder (Table 3, Fig. 3). There were
no changes in levels of p-actin or NSE in BAO9.

3.2. Western Blotting Results for RAC1, homer 1, APP, and STEP in Lateral Cerebellum

The initial MANOVA using all normalized protein measurements in the dependent variable
set failed to yield a significant difference between diagnostic groups (Wilks’ Lambda
F(36,48) =0.61, p = 0.94). Table 4 summarizes our results.

3.3. Analysis of Confounds for Protein Data in BA9

No significant differences were found on the outcome measures as a function of hemisphere
side, history of substance abuse, multiple substance abuse, severity of substance abuse, post
mortem interval, or pH. Nor did we find significant differences on use of barbiturates,
opiates, amphetamines, cocaine or propoxyphene. We also examined age of onset and
antidepressant use and found no significant differences. While gender, suicide, and
benzodiazepine use, anticonvulsant use, and mood stabilizer use were significantly different
between diagnostic groups (p < 0.006, p < 0.027, p < 0.03, respectively), they were not
associated with any of the outcome measures. When comparing bipolar subjects who
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committed suicide versus those who did not, we found that subjects who had committed
suicide displayed increased expression of homer 1 (p < 0.035; data not shown). However,
group differences showed that there was a trend towards reduced homer 1/NSE when
compared with controls (Table 3). Thus, suicide could not lead to this change and its impact
was not considered meaningful. Among possible confounds, severity of alcohol abuse was
associated with significant differences on APP 120 kDa/B-actin [F(3,59) = 3.47, p < 0.021],
however analysis of covariance with alcohol use severity as a covariate did not alter the
results reported above. There were no differences between subjects with alcohol abuse vs.
those without alcohol abuse in each group with regard to any of the protein measures. Use of
antipsychotic medication was also associated with significantly lower levels on a number of
outcome measures, however antipsychotic use was also almost completely confounded
within schizophrenia and bipolar disorder groups. When examined within those with bipolar
disorder there were no differences on the outcome measures as a function of antipsychotic
medication use. Within the schizophrenia group, those on antipsychotic medications (17 out
of 20) displayed significantly lower values on APP 120 kDa/B-actin [F(1,18) = 8.60, p <
0.009], APP 120 kDa/NSE [F(1,18) = 6.04, p = 0.024], and STEP 61 kDa/NSE [F(1,18) =
6.10, p < 0.024]. We further explored the potential effect of antipsychotic medications by
examining the effect of chlorpromazine equivalent dose (CPZ) on these three outcomes
within subjects with schizophrenia. We found no relationship between CPZ level and APP
120 kDa/p-actin (r = 0.04), APP 120 kDa/NSE (r = 0.01) or STEP 61 kDa/NSE (r =0.01).
While there were significant differences between the groups for use of anticonvulsants and
mood stabilizers (p < 0.0001 and p < 0.0001, respectively), the effect sizes were low as
measured by eta squared (n2) values (n2 = 0.02 and 12 = 0.04, respectively) and there were
no significant effects on any of the outcome measures. We did find a negative association
between age and levels of APP 88 kDa/NSE and APP 88 kDa/B-actin and disease duration
and levels of APP 120 kDa/NSE and STEP 61 kDa/NSE. Likewise, we re-ran the previous
analyses with age as a covariate and found the results unaffected. We compared bipolar and
schizophrenic subjects on disease duration and found no significant differences [F(1,31) =
0.008, p < 0.93].

3.4. Analysis of Confounds for Protein Data in Lateral Cerebellum

In lateral cerebella, there were no effects of age, sex, PMI, race, side of brain, brain weight,
pH, history of substance abuse, substance abuse severity, alcohol abuse severity, alcohol
abuse, alcohol dependence, on any of the outcome measures. Where there were significant
between group differences in terms of family history of mental illness (p < 0.001), age of
onset (p < 0.001), duration of illness (p < 0.010), lifetime use of fluphenazine (p < 0.019),
and use of antidepressants (p < 0.011), they were not associated with any of the outcome
measures. Although suicide was associated with higher RAC1/p-actin levels [F(2,47) = 5.83,
p < 0.005], this was entirely confounded within diagnostic groups and could not be explored
as a confound in comparisons with normal controls. Further analyses within the two
diagnostic groups found no significant interaction of diagnosis and suicide on RAC1/B-actin
levels. We further investigated suicide and alcohol severity in lateral cerebellum. With
regards to suicide, the only significant data consisted of an increase in STEP 33 kDa (p <
0.01) in subjects with schizophrenia who had a history of suicide. However, STEP 33 kDa
data was not changed significantly in the schizophrenia group (Table 4). Thus, by inference,
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suicide had no meaningful impact on protein values in cerebellum. By the same token,
reanalysis of data based on history of alcohol abuse showed increases STEP 61 kDa p-actin
and NSE ratios (p < 0.018, p < 0.007, respectively) in depressed subjects with alcohol abuse;
increased homer 1 (p < 0.037) in controls with alcohol abuse and decreased STEP 33 kDa (p
< 0.019) in subjects with schizophrenia who abused alcohol. Again, none of these proteins
were changed significantly (Table 4) in the original cerebellar data. Thus, the impact of
suicide or alcohol abuse was not meaningful in cerebellar data.

4. Discussion

Our results provide evidence that four proteins that are involved in FMRP-mGIuURS5 signaling
display altered expression in BA9 of subjects with schizophrenia and mood disorders. The
most important salient findings are: 1) APP 120 kDa/B-actin and APP 120 kDa/NSE were
significantly reduced in BA9 of subjects with schizophrenia and bipolar disorder; 2) APP 88
kDa/B-actin and APP 88 kDa/NSE were significantly reduced in BA9 of subjects with
bipolar disorder; 3) STEP 61 kDa/p-actin and STEP 61 kDa/NSE were significantly reduced
in BA9 of subjects with schizophrenia; 4) STEP 33 kDa/B-actin and STEP 33 kDa/NSE
were significantly reduced in BA9 of subjects with schizophrenia; 5) homer 1/p-actin
showed a trend for reduction in BA9 of subjects with bipolar disorder; and 6) APP 88 kDa/
B-actin and APP 88 kDa/NSE showed a trend towards reduction in BA9 of subjects with
schizophrenia. It should be noted that those results trending but not achieving significance
(APP 88 kDa/p-actin, APP 88 kDa/NSE, and homer 1//B-actin) still displayed effect size
differences considered to be moderate to large (d = 0.71, d = 0.64, d = 0.73; respectively). In
lateral cerebellum, despite a significant increase in RAC1/B-actin in subjects with bipolar
disorder and a trend for increased RAC1/p-actin in subjects with schizophrenia and RAC1/
B-actin and RAC1/NSE in subjects with major depression, absence of significance in the
initial MANOVA between groups undermined the potential statistical meaning of these
values.

The gene for APP is located at 21g21.3 (Goldgaber et al., 1987; Kang et al., 1987) and codes
for a protein that is involved in synapse formation and neural plasticity (Priller et al., 2006;
Turner et al., 2003). Westmark and Malter (2007) have demonstrated that FMRP binds to a
guanine-rich, G-quartet-like sequence of the coding region of APP mRNA and that APP
mRNA co-immunopercipitates with FMRP in resting synaptoneurosomes. Subsequent
studies have also demonstrated binding of FMRP to APP mRNA (Ascano et al., 2012;
Darnell et al., 2011). Furthermore, APP translation is increased when synaptoneurosomes
are stimulated by the group 1 mGIuR agonist (S)-3,5-dihydroxyphenylglycine (DHPG)
demonstrating that APP translation is mGIuR5 dependent and regulated by FMRP
(Westmark and Malter, 2007). Finally, Westmark and Malter (2007) identified elevated
levels of APP and its cleavage product beta amyloid (Ap) in brains of Fmrl KO mice.

Because of APP’s roles in synapse formation and neural plasticity (Turner et al., 2003;
Priller et al., 2006), it has been investigated as a candidate gene for schizophrenia. However,
the results have been equivocal (Jones et al., 1992; Coon et al., 1993; Fukuda et al., 1993;
Karayiorgou et al., 1994; Morris et al., 1994; Mortilla et al., 1994; Forsell and Lannfelt,
1995). Less is known about levels of APP expression in subjects with schizophrenia, while
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AP has been shown to be reduced in cerebrospinal fluid of elderly patients with
schizophrenia, supporting our results (Frisoni et al., 2011; Albertini et al., 2012). Our
findings of reduced APP in BA9 of subjects with schizophrenia and bipolar disorder are not
similar to our previous findings in autism (Fatemi et al., 2013a), possibly suggesting
differences in processing of APP in autism vs. schizophrenia and mood disorders. The lack
of change in APP expression in lateral cerebella of subjects with schizophrenia and mood
disorders could potentially be due to brain regional differences.

Analysis of impact of antipsychotics on APP levels showed absence of any significant
relationships between CPZ equivalent dose and APP protein outcomes. Direct effects of
antipsychotic drugs on APP expression are currently unclear, although it has been
hypothesized that antipsychotic medications may have a neuroprotective effect (Palotas et
al., 2003; Kallman et al., 2012). While typical antipsychotics such as haloperidol or
thioridazine have been shown to increase APP expression (Palotéas et al., 2003; Shi et al.,
2012), atypical antipsychotics such as quetiapine or risperidone either reduced Ap levels or
had no effect on APP levels, respectively (Palotas et al., 2003; Zhu et al., 2013).
Furthermore, reserpine reduced cytosolic APP level while increasing membrane fractions of
APP (Komachi et al., 1994). The above effects by antipsychotics also vary with brain
location or duration of treatment. None of these reports indicated use of prefrontal or
cerebellar areas of the brain. Thus, it is unlikely that our results in either subjects with
schizophrenia or bipolar disorder are due to effects of antipsychotics (Table 5).

The gene that codes for STEP - also known as protein tyrosine phosphatase, non-receptor
type 5 (PTPN5) —is localized to 11p15.1 (Li et al., 1995). STEP is present in the
postsynaptic density (PSD), where it is an important regulator of N-methyl-D-aspartate
(NMDA\) receptor function (Goebel-Goody et al., 2012a,b). Darnell et al (2011) have
identified a highly significant association between STEP mRNA and FMRP. Basal levels of
STEP are elevated in Fmrl KO mice, suggesting control of its expression (Goebel-Goody et
al., 2012a,b). Similar to findings for APP, STEP mRNA is increased following treatment
with DHPG in wild-type but not in Fmrl KO mice (Zhang et al., 2008; Goebel-Goody et al.,
2012a,b). Moreover, the DHPG-induced increase in STEP translation required mGIuR5
activation (Zhang et al., 2008).

We examined two isoforms of STEP: STEP 61 kDa, which is membrane bound and has
phosphatase activity (Goebel-Goody et al., 2012a,b), and STEP 33 kDa, which is a cleavage
product of STEP 61 kDa (Fitzpatrick and Lombroso, 2011). We further investigated STEP
expression using a mono-clonal antibody against STEP (clone 23E5) and obtained similar
results (data not shown). Our results of reduced STEP 61 kDa in BA9 are in contrast to
findings of increased expression of STEP 61 kDa in anterior cingulate cortex and
dorsolateral prefrontal cortex of subjects with schizophrenia (Carty et al., 2012). However,
those findings have not been independently verified by other laboratories. Moreover, the
difference in results may be due to regional differences (superior frontal cortex vs.
dorsolateral prefrontal cortex). Indeed, brain regional differences in expression of STEP
isoforms have previously been identified (Boulanger et al., 1995). This may also explain
why the STEP 61 kDa isoform predominates in BA9 and STEP 33 kDa isoform
predominates in lateral cerebellum. Administration of MK-801 resulted in increased
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expression of STEP 61 kDa in primary cortical cultures and in synaptosomal fractions of
mouse cortex (Carty et al., 2012). STEP KO mice were less likely to experience cognitive
impairments following subchronic administration of PCP (Carty et al., 2012). Haplotype
analysis has found a nominal association between the single nucleotide polymorphism
(SNP) rs4075664 of PTPN5 and schizophrenia in an Israeli population sample (Pelov et al.,
2012), with three SNPs displaying a stronger association with schizophrenia in males:
rs4075664, rs2278732, and rs4757710 (Pelov et al., 2012).

We observed reduced expression of STEP 61 kDa/NSE in subjects with schizophrenia who
were taking antipsychatic drugs when compared to those who were not. As with APP 120
kDa/NSE and APP 120 kDa/B-actin, there was no significant relationship between CPZ
equivalent dose and STEP 61 kDa/NSE in subjects with schizophrenia. Carty et al. (2012)
found that chronic (three-week) treatment with haloperidol, clozapine, or risperidone
increased phosphorylation of STEP 61 kDa, which leads to its inactivation. However, they
found no impact of antipsychotics on STEP 61 kDa mRNA or protein levels (Carty et al.,
2012). Thus, it is unlikely that our reported changes in schizophrenia are due to
antipsychotic treatment. In BA9 of children with autism we observed significant reduction in
expression of STEP 61 kDa with no significant differences in BA9 or cerebellar vermis of
adults with autism (Fatemi et al., 2013a). We found significant reduction of STEP 33 kDa in
BAO9 of adults with autism, consistent with our current findings in schizophrenia (Fatemi et
al., 2013a).

It has previously been reported that STEP mRNA is not expressed in cerebellum (Lombroso
etal., 1991). However, not only have we observed the presence of major STEP bands 61
kDa, and 33 kDa in both frontal and cerebellar tissues from three different US brain banks
(Fatemi et al., 2013a, current report, and unpublished results), we have also observed the
same isoforms in mouse cerebellar tissues (data not shown). Additionally, previously
published data has identified presence of mMRNA for STEP in cerebellum (Hodges et al.,
2006) and protein expression has also been demonstrated in human cerebellum (Human
Protein Atlas) and mouse cerebellum (GENSAT).

Homer proteins are components of the postsynaptic density (PSD) that have multiple roles in
synaptogenesis, receptor trafficking, and involvement in dopaminergic and glutamatergic
signaling (Szumlinski et al., 2006). Homer proteins directly interact with mGIuR5 and help
regulate mGIuR signaling (Ango et al., 2002; Sergé et al., 2002; Kammermeier, 2008;
Ronesi and Huber, 2008). In wild type mice, but not Fmrl KO mice, disruption of homer 1-
mGIuR5 interactions has been shown to inhibit mGIluR5-induced long-term depression and
protein synthesis (Ronesi and Huber, 2008).

A mutation screening of homer gene family with schizophrenia suggested that it was
unlikely that homer 1 contributed to the etiology of schizophrenia (Norton et al., 2003).
However, recently Spellman et al. (Spellmann et al., 2011) found that two single nucleotide
polymorphisms (SNPs) of homer 1 (rs2290639 and rs4704560) were associated both with
positive and global baseline subscale scores of the positive and negative syndrome scale
(PANSS). The rs2290639 SNP was also associated with improvement on global subscale
scores following four weeks of antipsychotic treatment (Spellmann et al., 2011). Homer 1
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KO mice exhibit a number of defects similar to schizophrenia including impaired PP,
increased anxiety, and enhanced MK-801-stimulated motor activity (Szumlinski et al.,
2005). Our observation of a near significant reduction in homer 1 expression in BA9 of
subjects with bipolar disorder is analogous to our previous report of a significant reduction
in homer 1 expression in BA9 of adults with autism (Fatemi et al., 2013a).

A review of the literature indicates that antipsychotic effect on homer expression varies
dependent on its class (typical vs. atypical), brain region, and duration of treatment (acute,
subacute, or choric). Thus, in rat, haloperidol mostly increased mRNA for homer 1 in basal
ganglia and other brain regions but not in prefrontal cortex (De Bartolomeis et al., 2002;
Polese et al., 2002; lasevoli et al., 2010a; Tomasetti et al., 2011) both acutely and
chronically. Olanzapine increased mRNA in frontal cortex chronically (Fatemi et al., 2006)
as well as in other brain regions (lasevoli et al., 2010b). Other atypical agents like
risperidone, quetiapine, clozapine, or sulpride varied in their effects depending on duration
of treatment or brain regions examined (Polese et al., 2002; lasevoli et al., 2010b; Tomasetti
et al., 2011). However, none of these effects were in frontal or cerebellar cortices. More
importantly, some antipsychotics like sertindole were without an effect either acutely or
chronically (lasevoli et al., 2010a). Additionally, none of the above reports evaluated the
impact of antipsychotics on protein expression as changes in mMRNA do not always lead to
concordant effects in protein expression. Thus, while our analysis did not show an impact of
antipsychotics on homer 1 expression in BA9 in bipolar subjects, a general effect of
antipsychotics on this protein cannot be ruled out because of the complex array of data
presented above (Table 5).

RAC1 is involved in functions that are relevant to neurotransmission, specifically the
modulation of dendritic spine morphology and density (Luo et al., 1996; Threadgill et al.,
1997; Nakayama et al., 2000). Dominant-negative mutants of RAC1 have been shown to
reduce the number of dendrites of neurons (Threadgill et al., 1997; Nakayama et al., 2000),
while constitutively active forms of RAC1 increase the number of small immature spines
(Luo et al., 1996; Threadgill et al., 1997). Altered dendritic spine morphology or density
may contribute to cognitive impairments of schizophrenia (Hayashi-Takagi et al., 2010).
Indeed, inhibition of RAC1 activity in the hippocampus of mice inhibited the induction of
long term potentiation (LTP) (Martinez and Tejada-Simon, 2011). RACL interacts with
FMRP via cytoplasmic FMRP interacting proteins 1 and 2 (CYFIP1/2; Schenck et al., 2001,
2003). In Fmrl KO mice, there is increased expression of RAC1 mRNA, suggesting that
FMRP acts as a negative regulator of RAC1 (Bongmba et al., 2011). While MANOVA
analysis found no significant group differences for lateral cerebellum, there were near
significant increases in RACL1 for subjects with schizophrenia and mood disorders. We have
previously observed upregulation of RAC1 in BA9 of children and adults with autism and in
cerebellar vermis of adults with autism (Fatemi et al., 2013a; Fatemi and Folsom, 2014).
Thus, there appears concordance in our data both in autism and in schizophrenia and mood
disorders.

Treatment of a rat pancreas cell line (PANC-1) with chlorpromazine resulted in increased
GFP-RAC1 expression (Table 5; Eisenberg et al., 2008). Hill et al. (2006) reported on a
significant decrease in RAC1 mRNA expression in white matter of prefrontal cortex in
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subjects with schizophrenia (Hill et al., 2006). However, these authors did not report on any
change in RAC1 expression in PFC of monkeys treated chronically with either haloperidol
or olanzapine (Table 5; Hill et al., 2006). Thus, it appears unlikely that our results with
RAC1 are due to antipsychotic treatment.

In conclusion, investigation of the FMRP regulon in BA9 and lateral cerebellum, shows
evidence for abnormalities in several targets of FMRP signaling in schizophrenia and mood
disorders. Because these four proteins are involved in a number of signaling pathways,
further research needs to be done to determine if these changes are the result of dysregulated
FMRP-mGIuR5 signaling or whether other pathways contribute to their altered expression.
Our results are also supported by recent discovery of mutations in several targets of FMRP
in schizophrenia (Fromer et al., 2014; Purcell et al., 2014) pointing to new molecular targets
for etiological studies and avenues for treatment in this disorder.
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Fig. 1.
Representative samples of APP, STEP, Homer 1, RAC1, NSE, and p-actin from BA9 (A) of

subjects with schizophrenia (S), bipolar disorder (B), and matched controls (C) and from
lateral cerebellum (B) from subjects with schizophrenia (S), bipolar disorder (B), major
depression (D) and matched controls (C). p-actin images for BA9 and NSE images for BA9
and lateral cerebellum were reprinted from Fatemi et al. (2013b) with permission from
Nature Publishing Group. B-actin images from lateral cerebellum were reprinted from
Fatemi et al. (2010a) with permission from Elsevier.
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Fig. 2.
Expression of Homer 1/p-actin (A), Homer 1/NSE (B), APP 120 kDa/p-actin (C), APP 120

kDa/NSE (D), APP 88 kDa/p-actin (E), APP 88 kDa/NSE (F), STEP 61 kDa/B-actin (G),
STEP 61 kDa/NSE (H), in BA9 of healthy controls vs. subjects with schizophrenia and
bipolar disorder. Histogram bars shown as mean + standard error, *, p < 0.025.
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E)?pression of STEP 33 kDa/p-actin (A), STEP 33 kDa/NSE (B), RAC1/p-actin (C),
RAC1/NSE (D), p-actin (E), and NSE (F) in BA9 of healthy controls vs. subjects with
schizophrenia, and bipolar disorder. Histogram bars shown as mean + standard error, *, p <
0.025. Histogram bars for p-actin and NSE were reprinted from Fatemi et al. (2013b) with
permission from Nature Publishing Group.
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