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Abstract

Fragile X mental retardation protein (FMRP) is an RNA binding protein with 842 target mRNAs 

in mammalian brain. Silencing of the fragile X mental retardation 1 (FMR1) gene leads to loss of 

expression of FMRP and upregulated metabotropic glutamate receptor 5 (mGluR5) signaling 

resulting in the multiple physical and cognitive deficits associated with fragile X syndrome (FXS). 

Reduced FMRP expression has been identified in subjects with autism, schizophrenia, bipolar 

disorder, and major depression who do not carry the mutation for FMR1. Our laboratory has 

recently demonstrated altered expression of four downstream targets of FMRP-mGluR5 signaling 

in brains of subjects with autism: homer 1, amyloid beta A4 precursor protein (APP), ras-related 

C3 botulinum toxin substrate 1 (RAC1), and striatal-enriched protein tyrosine phosphatase 

(STEP). In the current study we investigated the expression of the same four proteins in lateral 

cerebella of subjects with schizophrenia, bipolar disorder, and major depression and in frontal 

cortex of subjects with schizophrenia and bipolar disorder. In frontal cortex we observed: 1) 

reduced expression of 120 kDa form of APP in subjects with schizophrenia and bipolar disorder; 

2) reduced expression of 61 kDa and 33 kDa forms of STEP in subjects with schizophrenia; 3) 

reduced expression of 88 kDa form of APP in subjects with bipolar disorder; and 3) trends for 

reduced expression of 88 kDa form of APP and homer 1 in subjects with schizophrenia and 
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bipolar disorder, respectively. In lateral cerebella there was no group difference, however we 

observed increased expression of RAC1 in subjects with bipolar disorder, and trends for increased 

RAC1 in subjects with schizophrenia and major depression. Our results provide further evidence 

that proteins involved in the FMRP-mGluR5 signaling pathway are altered in schizophrenia and 

mood disorders.
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1. Introduction

Emerging evidence suggests that downregulation of fragile X mental retardation protein 

(FMRP) may be common to multiple psychiatric disorders including autism, schizophrenia, 

bipolar disorder, and major depression, rather than simply a hallmark of fragile X syndrome 

(FXS) (Fatemi et al., 2010a, 2011a, 2013a,b; Fatemi and Folsom, 2011, 2014; Fernandez et 

al., 2013; Kelemen et al., 2013; Kovács et al., 2013; Jacquemont et al., 2014). In FXS, 

reduced FMRP is the result of gene silencing of the Fragile X mental retardation 1 gene 

(FMR1). FMRP normally acts as a translational repressor and negative regulator of group I 

metabotropic glutamate receptors (mGluRs). In particular, the loss of FMRP regulation of 

metabotropic glutamate receptor 5 (mGluR5) is believed to result in enhanced glutamatergic 

signaling which ultimately results in the multiple physical and cognitive deficits associated 

with FXS (Bear et al., 2004; Dölen and Bear, 2008).

While there is a great deal of overlap between autism and FXS with regard to symptoms 

(Bailey et al., 1998; Irwin et al., 2001; Hatton et al., 2006; Gothelf et al., 2008; Hallahan et 

al., 2009; Hutsler and Zhang, 2010) and comorbidity (Bailey et al., 1998; Chudley et al., 

1998; Wassink et al., 2001; Kaufman et al., 2004; Hatton et al., 2006), recent findings of 

reduced FMRP in brains of subjects with autism were from individuals who did not carry the 

mutation of FMR1 (Fatemi and Folsom, 2011; Fatemi et al., 2011a). Similarly, recent 

findings of reduced FMRP expression in brains and peripheral blood lymphocytes of 

subjects with schizophrenia were also from people who did not carry the FMR1 mutation 

(Fatemi et al., 2010a; Fatemi et al., 2013b; Kelemen et al., 2013; Kovács et al., 2013). Thus, 

a genetic mutation of FMR1 is not required to result in reduced FMRP expression.

Our laboratory has provided evidence of impairment of FMRP-mGluR5 signaling in patients 

with schizophrenia and mood disorders (Fatemi et al., 2010a, 2011b; Fatemi and Folsom, 

2014). Western blotting studies have identified reduced expression of FMRP in lateral 

cerebellum from subjects with schizophrenia, bipolar disorder, and major depression (Fatemi 

et al., 2010a) and from superior frontal cortex [Brodmann Area 9 (BA9)] of subjects with 

schizophrenia and bipolar disorder (Fatemi et al., 2013b). Our results were recently verified 

by the finding of reduced FMRP in peripheral blood lymphocytes of people with 

schizophrenia (Kelemen et al., 2013; Kovács et al., 2013). Moreover, mGluR5 protein levels 

were significantly reduced in both brain sites in schizophrenia and bipolar disorder while 

mRNA levels for mGluR5 were significantly reduced in lateral cerebellum of subjects with 
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schizophrenia and major depression and BA9 of subjects with bipolar disorder (Fatemi et al., 

2013b).

These preliminary findings suggest that FMRP-mGluR5 signaling is altered in subjects with 

schizophrenia and mood disorders. FMRP is estimated to bind to approximately 5% of all 

transcripts in the mammalian brain (Darnell et al., 2001; Darnell and Klann, 2013). The next 

step in our investigation of the FMRP-mGluR5 signaling system is to identify changes in 

some of the specific downstream targets. Recently we identified changes in four such targets 

– homer 1, amyloid beta A4 precursor protein (APP), ras-related C3 botulinum toxin 

substrate 1 (RAC1), and striatal-enriched protein tyrosine phosphatase (STEP) - in cerebellar 

vermis and BA9 of adults and children with autism when compared to controls (Fatemi et 

al., 2013a). Brain volumetric studies and functional imaging studies have shown that both 

BA9 and the cerebellum show abnormalities in subjects with schizophrenia and mood 

disorders (Liotti et al., 2002; Krüger et al., 2003; Holmes et al., 2005; Crespo-Facorro et al., 

2007; Baldaçara et al., 2008; Bonilha et al., 2008). The cerebellum and prefrontal cortex are 

connected through the cortico-pontocerebellar and cerebello-thalamocortical pathways 

(Schmahmann and Pandya, 1997). Disruptions of this circuitry have been hypothesized to 

contribute to cognitive dysfunction associated with schizophrenia (Andreasen et al., 1996). 

Due to the importance of these two regions in schizophrenia, we hypothesized that we would 

observe similar changes in expression of FMRP-mGluR5 signaling molecules in subjects 

with schizophrenia and mood disorders.

2. Materials and methods

2.1. Brain Procurement

The current study was approved by the Institutional Review Board of the University of 

Minnesota-School of Medicine. The Harvard Brain and Tissue Resource Center provided 

postmortem superior frontal cortex [Brodmann Area 9 (BA9)] from the McLean 74 Cohort. 

Postmortem lateral cerebella were provided by the Stanley Foundation Neuropathology 

Consortium under approved ethical guidelines. Psychiatrists established DSM-IV diagnoses 

of schizophrenia, bipolar disorder, major depression, or no disorder prior to death using 

information from family interviews and from all available medical records. The Harvard 

Brain and Tissue Resource Center and the Stanley Medical Research Foundation collected 

details regarding subject selection, demographics, diagnostic process, and tissue processing. 

The McLean 74 Cohort consists of 20 subjects with schizophrenia, 19 subjects with bipolar 

disorder, and 28 normal controls (Table 1). For the current study, the Stanley collection 

consisted of 9–13 subjects with schizophrenia, 7–12 subjects with bipolar disorder, 8–13 

with major depression without psychotic features and 10–12 normal controls (Table 2). All 

groups were matched for a variety of demographic measures and analyzed statistically for 

the impact of all confounds on various protein values (Tables 1 and 2).

2.2. SDS-PAGE and Western Blotting

Brain tissue was prepared for SDS-PAGE and western blotting using previously established 

protocols (Fatemi et al., 2008, 2009a,b, 2010a,b, 2011a; Fatemi and Folsom, 2011). For both 

BA9 and lateral cerebellum, 30 μg of tissue was used as this amount of protein provided 
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values within the linear range of optical density measurements. For APP 6% resolving gels 

were used; for homer 1, neuronal specific enolase (NSE), and beta-actin 10% resolving gels 

were used; and for STEP and RAC1 12% resolving gels were employed. For all experiments 

5% stacking gels were used. Interblot variability was minimized by including samples from 

subjects of each group (control, schizophrenia, bipolar disorder, major depression) on each 

gel. Moreover, interblot variability was further minimized by expressing proteins of interest 

as ratios to β-actin and NSE, both of which varied minimally and nonsignificantly across 

gels (Tables 3 and 4). All samples were run in duplicate. Samples were electrophoresed for 

15 minutes at 75 V followed by 60 minutes at 150 V. Following electrophoresis, samples 

were electroblotted onto nitrocellulose membranes for 2 h at 300 mAmp at 4 °C. Blots were 

then blocked with 0.2% I-Block (Tropix, Bedford, MA, USA) in PBS with 0.3% Tween 20 

for one hour at room temperature (RT). Blots were incubated in the appropriate primary 

antibodies overnight at 4 ° C. The primary antibodies used were anti-RAC1 (1:500; BD 

Transduction, San Jose, CA, USA), anti-APP (1:500; Abcam Inc., Cambridge, MA, USA), 

anti-homer 1 (1:750; Abnova, Taipei, Taiwan), anti-STEP (1:400; Abgent, San Diego, CA, 

USA; this antibody has previously been used to determine levels of STEP by Carty et al., 

2012), anti-NSE (1:2,000; Abcam Inc., Cambridge, MA, USA), and anti-β actin (A5441, 

Sigma Aldrich (St. Louis, MO, USA), 1:5 000). Blots were then washed for 30 minutes at 

RT in PBS supplemented with 0.3% Tween 20 (PBST). Following the wash step, blots were 

incubated in the proper secondary antibodies: either goat anti-mouse IgG (A9044, Sigma 

Aldrich, 1:80 000) or goat anti-rabbit IgG (A9169, Sigma Aldrich, 1:80 000) for one hour at 

RT. Blots were washed twice in PBST for 15 min., each. After the second wash, bands were 

visualized using the ECL-plus detection system (GE Healthcare, Little Chalfont, 

Buckinghamshire, UK) and exposed to CL-Xposure film (Thermo Scientific, Rockford, IL, 

USA). The molecular weights of approximately 120 kDa and 88 kDa (APP); 61 kDa, 33 

kDa (STEP); 46 kDa (NSE); 45 kDa (homer 1); 42 kDa (β-actin); and 21 kDa (RAC1) 

immunoreactive bands were quantified with background subtraction using a Bio-Rad 

GS-800 Calibrated Densitometer (Bio-Rad, Hercules, CA, USA) and Quantity One 1-D 

Analysis software (Bio-Rad, Hercules, CA, USA). Sample densities were analyzed blind to 

nature of diagnosis. Results obtained are based on at least two independent experiments.

2.3. Statistical Analysis

All protein measurements for each group were normalized against β-actin and neuronal 

specific enolase (NSE) and expressed as ratios of these two housekeeping proteins: RAC 1/

β-actin, homer 1/β-actin, APP 120 kDa/β-actin, APP 88 kDa/β-actin, STEP 61 kDa/β-actin, 

STEP 33 kDa/β-actin, RAC 1/NSE, homer 1/NSE, APP 120 kDa/NSE, APP 88 kDa/NSE, 

STEP 61 kDa/NSE, and STEP 33 kDa/NSE. Statistical analysis was performed using 

previously described protocols (Fatemi et al., 2008, 2010a, 2011a,b). An initial MANOVA 

was performed for each brain region using all protein measurements in the dependent 

variable set with subsequent ANOVA’s on individual proteins if the initial MANOVA was 

significant. When ANOVA’s were significant, specific contrast t-tests were conducted on the 

relationships of interest. The level of significance was then adjusted for the number of 

specific contrasts [i.e. p < 0.025 for the McLean 74 cohort (Table 3) and p < 0.0167 for the 

Stanley Neuropathology Consortium (Table 4)]. Relationships between possible 

confounding variables and outcome measures were explored using analysis of variance 
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(ANOVA) for categorical confounders and Pearson correlation coefficients for continuous 

confounders. When confounding variables showed significant relationships to outcomes, 

analysis of covariance was used to explore these effects on group differences. All analyses 

were conducted using SPSS v.19 (SPSS inc, Chicago, IL).

3. Results

3.1. Western Blotting Results for RAC1, homer 1, APP, and STEP in BA9

All protein measurements were normalized against β-actin or NSE. An initial MANOVA 

using all normalized protein measurements in the dependent variable set yielded a 

significant difference between diagnostic groups (Wilks’ Lambda F(20,98) =1.69, p = .047). 

In BA9, ANOVA identified group differences for APP 120 kDa/β-actin [F(2,64) = 6.37, p < 

0.003], APP 120 kDa/NSE [F(2,64) = 5.83, p < 0.005], APP 88 kDa/β-actin [F(2,62) = 5.10, 

p < 0.009], APP 88 kDa/NSE [F(2,62) = 5.15, p < 0.009], STEP 61 kDa/β-actin [F(2,64) = 

4.19, p < 0.019], STEP 61 kDa/NSE [F(2,64) = 4.73, p < 0.012], and STEP 33 kDa/NSE 

[F(2,62) = 3.51, p < 0.036] with a trend for homer 1/β-actin [F(2,61) = 3.02, p < 0.056] (Fig. 

1; Table 3).

Follow up t-tests (after adjustment for multiple comparisons) found significant reductions 

for APP 120 kDa/β-actin, STEP 61/β-actin, and STEP 33 kDa/β-actin (p < 0.007, p < 0.008, 

and p < 0.012, respectively) and APP 120 kDa/NSE, STEP 61 kDa/NSE, and STEP 33 kDa/

β-actin (p < 0.009, p < 0.005, and p < 0.007, respectively) in BA9 of subjects with 

schizophrenia (Table 3, Figs. 2 and 3). Trends in the same direction were found for APP 88 

kDa/β-actin (p < 0.028) and APP 88 kDa/NSE (p < 0.041). In subjects with bipolar disorder, 

follow up t-tests found significant reductions in APP 120 kDa/β-actin (p < 0.012) and APP 

88 kDa/β-actin (p < 0.023), and APP 120 kDa/NSE, and APP 88 kDa/NSE (p < 0.012, and p 

< 0.014, respectively). A trend in the same direction was found for homer 1/β-actin (p < 

0.035) in subjects with bipolar disorder (Table 3; Figs. 2 and 3). There were no significant 

changes in protein levels for RAC1 in BA9 in either disorder (Table 3, Fig. 3). There were 

no changes in levels of β-actin or NSE in BA9.

3.2. Western Blotting Results for RAC1, homer 1, APP, and STEP in Lateral Cerebellum

The initial MANOVA using all normalized protein measurements in the dependent variable 

set failed to yield a significant difference between diagnostic groups (Wilks’ Lambda 

F(36,48) =0.61, p = 0.94). Table 4 summarizes our results.

3.3. Analysis of Confounds for Protein Data in BA9

No significant differences were found on the outcome measures as a function of hemisphere 

side, history of substance abuse, multiple substance abuse, severity of substance abuse, post 

mortem interval, or pH. Nor did we find significant differences on use of barbiturates, 

opiates, amphetamines, cocaine or propoxyphene. We also examined age of onset and 

antidepressant use and found no significant differences. While gender, suicide, and 

benzodiazepine use, anticonvulsant use, and mood stabilizer use were significantly different 

between diagnostic groups (p < 0.006, p < 0.027, p < 0.03, respectively), they were not 

associated with any of the outcome measures. When comparing bipolar subjects who 
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committed suicide versus those who did not, we found that subjects who had committed 

suicide displayed increased expression of homer 1 (p < 0.035; data not shown). However, 

group differences showed that there was a trend towards reduced homer 1/NSE when 

compared with controls (Table 3). Thus, suicide could not lead to this change and its impact 

was not considered meaningful. Among possible confounds, severity of alcohol abuse was 

associated with significant differences on APP 120 kDa/β-actin [F(3,59) = 3.47, p < 0.021], 

however analysis of covariance with alcohol use severity as a covariate did not alter the 

results reported above. There were no differences between subjects with alcohol abuse vs. 

those without alcohol abuse in each group with regard to any of the protein measures. Use of 

antipsychotic medication was also associated with significantly lower levels on a number of 

outcome measures, however antipsychotic use was also almost completely confounded 

within schizophrenia and bipolar disorder groups. When examined within those with bipolar 

disorder there were no differences on the outcome measures as a function of antipsychotic 

medication use. Within the schizophrenia group, those on antipsychotic medications (17 out 

of 20) displayed significantly lower values on APP 120 kDa/β-actin [F(1,18) = 8.60, p < 

0.009], APP 120 kDa/NSE [F(1,18) = 6.04, p = 0.024], and STEP 61 kDa/NSE [F(1,18) = 

6.10, p < 0.024]. We further explored the potential effect of antipsychotic medications by 

examining the effect of chlorpromazine equivalent dose (CPZ) on these three outcomes 

within subjects with schizophrenia. We found no relationship between CPZ level and APP 

120 kDa/β-actin (r = 0.04), APP 120 kDa/NSE (r = 0.01) or STEP 61 kDa/NSE (r =0.01). 

While there were significant differences between the groups for use of anticonvulsants and 

mood stabilizers (p < 0.0001 and p < 0.0001, respectively), the effect sizes were low as 

measured by eta squared (η2) values (η2 = 0.02 and η2 = 0.04, respectively) and there were 

no significant effects on any of the outcome measures. We did find a negative association 

between age and levels of APP 88 kDa/NSE and APP 88 kDa/β-actin and disease duration 

and levels of APP 120 kDa/NSE and STEP 61 kDa/NSE. Likewise, we re-ran the previous 

analyses with age as a covariate and found the results unaffected. We compared bipolar and 

schizophrenic subjects on disease duration and found no significant differences [F(1,31) = 

0.008, p < 0.93].

3.4. Analysis of Confounds for Protein Data in Lateral Cerebellum

In lateral cerebella, there were no effects of age, sex, PMI, race, side of brain, brain weight, 

pH, history of substance abuse, substance abuse severity, alcohol abuse severity, alcohol 

abuse, alcohol dependence, on any of the outcome measures. Where there were significant 

between group differences in terms of family history of mental illness (p < 0.001), age of 

onset (p < 0.001), duration of illness (p < 0.010), lifetime use of fluphenazine (p < 0.019), 

and use of antidepressants (p < 0.011), they were not associated with any of the outcome 

measures. Although suicide was associated with higher RAC1/β-actin levels [F(2,47) = 5.83, 

p < 0.005], this was entirely confounded within diagnostic groups and could not be explored 

as a confound in comparisons with normal controls. Further analyses within the two 

diagnostic groups found no significant interaction of diagnosis and suicide on RAC1/β-actin 

levels. We further investigated suicide and alcohol severity in lateral cerebellum. With 

regards to suicide, the only significant data consisted of an increase in STEP 33 kDa (p < 

0.01) in subjects with schizophrenia who had a history of suicide. However, STEP 33 kDa 

data was not changed significantly in the schizophrenia group (Table 4). Thus, by inference, 
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suicide had no meaningful impact on protein values in cerebellum. By the same token, 

reanalysis of data based on history of alcohol abuse showed increases STEP 61 kDa β-actin 

and NSE ratios (p < 0.018, p < 0.007, respectively) in depressed subjects with alcohol abuse; 

increased homer 1 (p < 0.037) in controls with alcohol abuse and decreased STEP 33 kDa (p 

< 0.019) in subjects with schizophrenia who abused alcohol. Again, none of these proteins 

were changed significantly (Table 4) in the original cerebellar data. Thus, the impact of 

suicide or alcohol abuse was not meaningful in cerebellar data.

4. Discussion

Our results provide evidence that four proteins that are involved in FMRP-mGluR5 signaling 

display altered expression in BA9 of subjects with schizophrenia and mood disorders. The 

most important salient findings are: 1) APP 120 kDa/β-actin and APP 120 kDa/NSE were 

significantly reduced in BA9 of subjects with schizophrenia and bipolar disorder; 2) APP 88 

kDa/β-actin and APP 88 kDa/NSE were significantly reduced in BA9 of subjects with 

bipolar disorder; 3) STEP 61 kDa/β-actin and STEP 61 kDa/NSE were significantly reduced 

in BA9 of subjects with schizophrenia; 4) STEP 33 kDa/β-actin and STEP 33 kDa/NSE 

were significantly reduced in BA9 of subjects with schizophrenia; 5) homer 1/β-actin 

showed a trend for reduction in BA9 of subjects with bipolar disorder; and 6) APP 88 kDa/

β-actin and APP 88 kDa/NSE showed a trend towards reduction in BA9 of subjects with 

schizophrenia. It should be noted that those results trending but not achieving significance 

(APP 88 kDa/β-actin, APP 88 kDa/NSE, and homer 1//β-actin) still displayed effect size 

differences considered to be moderate to large (d = 0.71, d = 0.64, d = 0.73; respectively). In 

lateral cerebellum, despite a significant increase in RAC1/β-actin in subjects with bipolar 

disorder and a trend for increased RAC1/β-actin in subjects with schizophrenia and RAC1/

β-actin and RAC1/NSE in subjects with major depression, absence of significance in the 

initial MANOVA between groups undermined the potential statistical meaning of these 

values.

The gene for APP is located at 21q21.3 (Goldgaber et al., 1987; Kang et al., 1987) and codes 

for a protein that is involved in synapse formation and neural plasticity (Priller et al., 2006; 

Turner et al., 2003). Westmark and Malter (2007) have demonstrated that FMRP binds to a 

guanine-rich, G-quartet-like sequence of the coding region of APP mRNA and that APP 

mRNA co-immunopercipitates with FMRP in resting synaptoneurosomes. Subsequent 

studies have also demonstrated binding of FMRP to APP mRNA (Ascano et al., 2012; 

Darnell et al., 2011). Furthermore, APP translation is increased when synaptoneurosomes 

are stimulated by the group 1 mGluR agonist (S)-3,5-dihydroxyphenylglycine (DHPG) 

demonstrating that APP translation is mGluR5 dependent and regulated by FMRP 

(Westmark and Malter, 2007). Finally, Westmark and Malter (2007) identified elevated 

levels of APP and its cleavage product beta amyloid (Aβ) in brains of Fmr1 KO mice.

Because of APP’s roles in synapse formation and neural plasticity (Turner et al., 2003; 

Priller et al., 2006), it has been investigated as a candidate gene for schizophrenia. However, 

the results have been equivocal (Jones et al., 1992; Coon et al., 1993; Fukuda et al., 1993; 

Karayiorgou et al., 1994; Morris et al., 1994; Mortilla et al., 1994; Forsell and Lannfelt, 

1995). Less is known about levels of APP expression in subjects with schizophrenia, while 
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Aβ has been shown to be reduced in cerebrospinal fluid of elderly patients with 

schizophrenia, supporting our results (Frisoni et al., 2011; Albertini et al., 2012). Our 

findings of reduced APP in BA9 of subjects with schizophrenia and bipolar disorder are not 

similar to our previous findings in autism (Fatemi et al., 2013a), possibly suggesting 

differences in processing of APP in autism vs. schizophrenia and mood disorders. The lack 

of change in APP expression in lateral cerebella of subjects with schizophrenia and mood 

disorders could potentially be due to brain regional differences.

Analysis of impact of antipsychotics on APP levels showed absence of any significant 

relationships between CPZ equivalent dose and APP protein outcomes. Direct effects of 

antipsychotic drugs on APP expression are currently unclear, although it has been 

hypothesized that antipsychotic medications may have a neuroprotective effect (Palotás et 

al., 2003; Kállmán et al., 2012). While typical antipsychotics such as haloperidol or 

thioridazine have been shown to increase APP expression (Palotás et al., 2003; Shi et al., 

2012), atypical antipsychotics such as quetiapine or risperidone either reduced Aβ levels or 

had no effect on APP levels, respectively (Palotás et al., 2003; Zhu et al., 2013). 

Furthermore, reserpine reduced cytosolic APP level while increasing membrane fractions of 

APP (Komachi et al., 1994). The above effects by antipsychotics also vary with brain 

location or duration of treatment. None of these reports indicated use of prefrontal or 

cerebellar areas of the brain. Thus, it is unlikely that our results in either subjects with 

schizophrenia or bipolar disorder are due to effects of antipsychotics (Table 5).

The gene that codes for STEP - also known as protein tyrosine phosphatase, non-receptor 

type 5 (PTPN5) – is localized to 11p15.1 (Li et al., 1995). STEP is present in the 

postsynaptic density (PSD), where it is an important regulator of N-methyl-D-aspartate 

(NMDA) receptor function (Goebel-Goody et al., 2012a,b). Darnell et al (2011) have 

identified a highly significant association between STEP mRNA and FMRP. Basal levels of 

STEP are elevated in Fmr1 KO mice, suggesting control of its expression (Goebel-Goody et 

al., 2012a,b). Similar to findings for APP, STEP mRNA is increased following treatment 

with DHPG in wild-type but not in Fmr1 KO mice (Zhang et al., 2008; Goebel-Goody et al., 

2012a,b). Moreover, the DHPG-induced increase in STEP translation required mGluR5 

activation (Zhang et al., 2008).

We examined two isoforms of STEP: STEP 61 kDa, which is membrane bound and has 

phosphatase activity (Goebel-Goody et al., 2012a,b), and STEP 33 kDa, which is a cleavage 

product of STEP 61 kDa (Fitzpatrick and Lombroso, 2011). We further investigated STEP 

expression using a mono-clonal antibody against STEP (clone 23E5) and obtained similar 

results (data not shown). Our results of reduced STEP 61 kDa in BA9 are in contrast to 

findings of increased expression of STEP 61 kDa in anterior cingulate cortex and 

dorsolateral prefrontal cortex of subjects with schizophrenia (Carty et al., 2012). However, 

those findings have not been independently verified by other laboratories. Moreover, the 

difference in results may be due to regional differences (superior frontal cortex vs. 

dorsolateral prefrontal cortex). Indeed, brain regional differences in expression of STEP 

isoforms have previously been identified (Boulanger et al., 1995). This may also explain 

why the STEP 61 kDa isoform predominates in BA9 and STEP 33 kDa isoform 

predominates in lateral cerebellum. Administration of MK-801 resulted in increased 

Folsom et al. Page 8

Schizophr Res. Author manuscript; available in PMC 2016 September 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



expression of STEP 61 kDa in primary cortical cultures and in synaptosomal fractions of 

mouse cortex (Carty et al., 2012). STEP KO mice were less likely to experience cognitive 

impairments following subchronic administration of PCP (Carty et al., 2012). Haplotype 

analysis has found a nominal association between the single nucleotide polymorphism 

(SNP) rs4075664 of PTPN5 and schizophrenia in an Israeli population sample (Pelov et al., 

2012), with three SNPs displaying a stronger association with schizophrenia in males: 

rs4075664, rs2278732, and rs4757710 (Pelov et al., 2012).

We observed reduced expression of STEP 61 kDa/NSE in subjects with schizophrenia who 

were taking antipsychotic drugs when compared to those who were not. As with APP 120 

kDa/NSE and APP 120 kDa/β-actin, there was no significant relationship between CPZ 

equivalent dose and STEP 61 kDa/NSE in subjects with schizophrenia. Carty et al. (2012) 

found that chronic (three-week) treatment with haloperidol, clozapine, or risperidone 

increased phosphorylation of STEP 61 kDa, which leads to its inactivation. However, they 

found no impact of antipsychotics on STEP 61 kDa mRNA or protein levels (Carty et al., 

2012). Thus, it is unlikely that our reported changes in schizophrenia are due to 

antipsychotic treatment. In BA9 of children with autism we observed significant reduction in 

expression of STEP 61 kDa with no significant differences in BA9 or cerebellar vermis of 

adults with autism (Fatemi et al., 2013a). We found significant reduction of STEP 33 kDa in 

BA9 of adults with autism, consistent with our current findings in schizophrenia (Fatemi et 

al., 2013a).

It has previously been reported that STEP mRNA is not expressed in cerebellum (Lombroso 

et al., 1991). However, not only have we observed the presence of major STEP bands 61 

kDa, and 33 kDa in both frontal and cerebellar tissues from three different US brain banks 

(Fatemi et al., 2013a, current report, and unpublished results), we have also observed the 

same isoforms in mouse cerebellar tissues (data not shown). Additionally, previously 

published data has identified presence of mRNA for STEP in cerebellum (Hodges et al., 

2006) and protein expression has also been demonstrated in human cerebellum (Human 

Protein Atlas) and mouse cerebellum (GENSAT).

Homer proteins are components of the postsynaptic density (PSD) that have multiple roles in 

synaptogenesis, receptor trafficking, and involvement in dopaminergic and glutamatergic 

signaling (Szumlinski et al., 2006). Homer proteins directly interact with mGluR5 and help 

regulate mGluR signaling (Ango et al., 2002; Sergé et al., 2002; Kammermeier, 2008; 

Ronesi and Huber, 2008). In wild type mice, but not Fmr1 KO mice, disruption of homer 1-

mGluR5 interactions has been shown to inhibit mGluR5-induced long-term depression and 

protein synthesis (Ronesi and Huber, 2008).

A mutation screening of homer gene family with schizophrenia suggested that it was 

unlikely that homer 1 contributed to the etiology of schizophrenia (Norton et al., 2003). 

However, recently Spellman et al. (Spellmann et al., 2011) found that two single nucleotide 

polymorphisms (SNPs) of homer 1 (rs2290639 and rs4704560) were associated both with 

positive and global baseline subscale scores of the positive and negative syndrome scale 

(PANSS). The rs2290639 SNP was also associated with improvement on global subscale 

scores following four weeks of antipsychotic treatment (Spellmann et al., 2011). Homer 1 
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KO mice exhibit a number of defects similar to schizophrenia including impaired PPI, 

increased anxiety, and enhanced MK-801-stimulated motor activity (Szumlinski et al., 

2005). Our observation of a near significant reduction in homer 1 expression in BA9 of 

subjects with bipolar disorder is analogous to our previous report of a significant reduction 

in homer 1 expression in BA9 of adults with autism (Fatemi et al., 2013a).

A review of the literature indicates that antipsychotic effect on homer expression varies 

dependent on its class (typical vs. atypical), brain region, and duration of treatment (acute, 

subacute, or choric). Thus, in rat, haloperidol mostly increased mRNA for homer 1 in basal 

ganglia and other brain regions but not in prefrontal cortex (De Bartolomeis et al., 2002; 

Polese et al., 2002; Iasevoli et al., 2010a; Tomasetti et al., 2011) both acutely and 

chronically. Olanzapine increased mRNA in frontal cortex chronically (Fatemi et al., 2006) 

as well as in other brain regions (Iasevoli et al., 2010b). Other atypical agents like 

risperidone, quetiapine, clozapine, or sulpride varied in their effects depending on duration 

of treatment or brain regions examined (Polese et al., 2002; Iasevoli et al., 2010b; Tomasetti 

et al., 2011). However, none of these effects were in frontal or cerebellar cortices. More 

importantly, some antipsychotics like sertindole were without an effect either acutely or 

chronically (Iasevoli et al., 2010a). Additionally, none of the above reports evaluated the 

impact of antipsychotics on protein expression as changes in mRNA do not always lead to 

concordant effects in protein expression. Thus, while our analysis did not show an impact of 

antipsychotics on homer 1 expression in BA9 in bipolar subjects, a general effect of 

antipsychotics on this protein cannot be ruled out because of the complex array of data 

presented above (Table 5).

RAC1 is involved in functions that are relevant to neurotransmission, specifically the 

modulation of dendritic spine morphology and density (Luo et al., 1996; Threadgill et al., 

1997; Nakayama et al., 2000). Dominant-negative mutants of RAC1 have been shown to 

reduce the number of dendrites of neurons (Threadgill et al., 1997; Nakayama et al., 2000), 

while constitutively active forms of RAC1 increase the number of small immature spines 

(Luo et al., 1996; Threadgill et al., 1997). Altered dendritic spine morphology or density 

may contribute to cognitive impairments of schizophrenia (Hayashi-Takagi et al., 2010). 

Indeed, inhibition of RAC1 activity in the hippocampus of mice inhibited the induction of 

long term potentiation (LTP) (Martinez and Tejada-Simon, 2011). RAC1 interacts with 

FMRP via cytoplasmic FMRP interacting proteins 1 and 2 (CYFIP1/2; Schenck et al., 2001, 

2003). In Fmr1 KO mice, there is increased expression of RAC1 mRNA, suggesting that 

FMRP acts as a negative regulator of RAC1 (Bongmba et al., 2011). While MANOVA 

analysis found no significant group differences for lateral cerebellum, there were near 

significant increases in RAC1 for subjects with schizophrenia and mood disorders. We have 

previously observed upregulation of RAC1 in BA9 of children and adults with autism and in 

cerebellar vermis of adults with autism (Fatemi et al., 2013a; Fatemi and Folsom, 2014). 

Thus, there appears concordance in our data both in autism and in schizophrenia and mood 

disorders.

Treatment of a rat pancreas cell line (PANC-1) with chlorpromazine resulted in increased 

GFP-RAC1 expression (Table 5; Eisenberg et al., 2008). Hill et al. (2006) reported on a 

significant decrease in RAC1 mRNA expression in white matter of prefrontal cortex in 
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subjects with schizophrenia (Hill et al., 2006). However, these authors did not report on any 

change in RAC1 expression in PFC of monkeys treated chronically with either haloperidol 

or olanzapine (Table 5; Hill et al., 2006). Thus, it appears unlikely that our results with 

RAC1 are due to antipsychotic treatment.

In conclusion, investigation of the FMRP regulon in BA9 and lateral cerebellum, shows 

evidence for abnormalities in several targets of FMRP signaling in schizophrenia and mood 

disorders. Because these four proteins are involved in a number of signaling pathways, 

further research needs to be done to determine if these changes are the result of dysregulated 

FMRP-mGluR5 signaling or whether other pathways contribute to their altered expression. 

Our results are also supported by recent discovery of mutations in several targets of FMRP 

in schizophrenia (Fromer et al., 2014; Purcell et al., 2014) pointing to new molecular targets 

for etiological studies and avenues for treatment in this disorder.
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Fig. 1. 
Representative samples of APP, STEP, Homer 1, RAC1, NSE, and β-actin from BA9 (A) of 

subjects with schizophrenia (S), bipolar disorder (B), and matched controls (C) and from 

lateral cerebellum (B) from subjects with schizophrenia (S), bipolar disorder (B), major 

depression (D) and matched controls (C). β-actin images for BA9 and NSE images for BA9 

and lateral cerebellum were reprinted from Fatemi et al. (2013b) with permission from 

Nature Publishing Group. β-actin images from lateral cerebellum were reprinted from 

Fatemi et al. (2010a) with permission from Elsevier.
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Fig. 2. 
Expression of Homer 1/β-actin (A), Homer 1/NSE (B), APP 120 kDa/β-actin (C), APP 120 

kDa/NSE (D), APP 88 kDa/β-actin (E), APP 88 kDa/NSE (F), STEP 61 kDa/β-actin (G), 

STEP 61 kDa/NSE (H), in BA9 of healthy controls vs. subjects with schizophrenia and 

bipolar disorder. Histogram bars shown as mean ± standard error, *, p < 0.025.
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Fig. 3. 
Expression of STEP 33 kDa/β-actin (A), STEP 33 kDa/NSE (B), RAC1/β-actin (C), 

RAC1/NSE (D), β-actin (E), and NSE (F) in BA9 of healthy controls vs. subjects with 

schizophrenia, and bipolar disorder. Histogram bars shown as mean ± standard error, *, p < 

0.025. Histogram bars for β-actin and NSE were reprinted from Fatemi et al. (2013b) with 

permission from Nature Publishing Group.
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