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Studies attempting to characterize the membrane translocation of antimicrobial and cell-penetrating peptides are frequently
limited by the resolution of conventional light microscopy. This study shows that spheroplasts provide a valuable approach to
overcome these limits. Spheroplasts produce less ambiguous images and allow for more systematic analyses of localization. Data
collected with spheroplasts are consistent with studies using normal bacterial cells and imply that a particular peptide may not
always follow the same mechanism of action.

Antimicrobial peptides (AMPs) represent a promising alterna-
tive to conventional therapeutics in the face of concerns

about the rise of antibiotic-resistant bacteria in clinical settings
(1). Traditionally, AMPs were believed to kill bacteria through
membrane disruption. While many AMPs do induce membrane
permeabilization, researchers have identified increasing num-
bers of peptides that function by translocating into bacterial
cells and targeting intracellular components (2). Thus, it has
become increasingly important for researchers to reliably de-
termine whether AMPs are able to effectively translocate into
bacterial cells (3). Many researchers have turned to confocal mi-
croscopy in order to assess cell entry (4–11). However, bacterial
cells are so small that effective imaging is limited by the resolution
of conventional light microscopes. For example, in order to dis-
tinguish whether any observed signal from peptides arises from
inside the cell versus on the cell membrane, researchers ideally
should examine individual focal plane images throughout cells.
However, if signal on the membrane is sufficiently strong it can
“contaminate” slices ostensibly taken “inside” the cell, as we have
observed in measurements of the membrane-localized dye di-8-
ANEPPS (Fig. 1).

In order to overcome these resolution limits, we have em-
ployed bacterial spheroplasts (12–14). Spheroplasts are produced
by culturing bacteria in the presence of an antibiotic, such as
cephalexin, that prevents division while still allowing cells to grow.
The resulting elongated bacterial “snakes” are then exposed to
lysozyme, which digests the outer cell wall and produces spher-
ical spheroplasts that are typically 2 to 5 �m in diameter (see
Fig. S1 in the supplemental material). Perhaps even more im-
portant than larger size, the spherical shape allows one to ob-
tain consistent slices regardless of how a spheroplast is oriented
during imaging.

In order to test the validity of using spheroplasts to assess
peptide translocation, we have measured the cellular localiza-
tion of four previously characterized peptides (Table 1). To this
end, we exposed Escherichia coli spheroplasts to peptides with an
N-terminally conjugated fluorescein isothiocyanate (FITC) la-
bel for imaging; detailed methods for spheroplast preparation
and peptide incubation are provided in the supplemental ma-
terial. As one set of positive and negative controls, we chose
buforin II (BF2), arguably the best-studied membrane-trans-
locating AMP (15), and BF2 with a P11A mutation that dra-
matically decreases the peptide’s ability to enter cells and lipid

vesicles (6, 16). As an additional nontranslocating control, we
employed magainin 2, a prototypical AMP that acts at the cell
membrane (16). As in previous studies, BF2 and magainin pep-
tides included F10W and F5W variations, respectively, which
allow for straightforward quantification without significantly
altering the peptide activity or mechanism. We also considered
HipC, a cell-penetrating peptide without antibacterial activity
that was previously observed to enter E. coli (5).

All four control peptides showed the same behavior in
spheroplasts as when studied with normal E. coli cells (Fig. 2).
Both BF2 and HipC clearly showed entry into the majority of
spheroplasts, while P11A BF2 and magainin typically colocal-
ized with membrane dye. For all samples, we found that the use
of a membrane dye made it significantly easier to visually distin-
guish membrane localization from cytosol entry, and no samples
showed membrane dye signal contamination on image slices
taken from the inside of spheroplasts, regardless of dye intensity.

In addition to providing improved confocal images, work-
ing with spheroplasts also allows us to obtain appreciably more
individual images than possible when working with normal
cells. While the smaller samples of images possible with bacte-
rial cells can allow one to demonstrate qualitative trends, the
difficulty of obtaining sufficiently high-quality images makes it
infeasible to perform more systematic analyses of entry data.
However, with spheroplasts we can consider the percentage
of images showing translocation or membrane localization,
providing more systematic data (Table 1). Again, these per-
centages support the previously observed trends for membrane
entry (5, 6, 16), with BF2 and HipC entering significantly more
spheroplasts than P11A BF2 and magainin. Interestingly, none
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of these peptides exclusively exhibit membrane localization or
membrane translocation behavior. It is possible that sphero-
plast behavior differs from bacterial cells or that the observed
heterogeneity was related to the exact time of imaging; for ex-
ample, perhaps all spheroplasts would show entry with BF2 if
allowed to incubate for a longer time. However, our observa-
tion could also be consistent with the idea that a given AMP
may not always follow a single, exclusive mechanism. In fact,
there is some evidence for this in previous studies, such as
measurements showing that the “translocating” BF2 peptide

does induce low levels of membrane permeabilization (17) and
that the P11A mutation in BF2 reduces but does not eliminate
translocation into lipid vesicles (16). It will be interesting for
future studies on spheroplasts, bacterial cells, and other model
systems to further evaluate this possibility. It is also worth not-
ing that it is impossible to know for certain whether a particular
spheroplast is alive, in the process of dying, or dead in our
images, based on the time frame between peptide incubation
and mounting and focusing a slide. While this limitation also
occurs for studies with normal bacteria, the optical advantages
of spheroplasts may make studies looking at the time frame of
AMP effects on cells more feasible.

In summary, bacterial spheroplasts provide a promising ap-
proach for the effective visualization of AMP interactions with
bacterial cells. Clearly, there are differences between “normal”
bacterial cells and spheroplasts, in particular the lack of the
outer cell wall. Researchers will need to take care to ensure that
the lack of cell wall does not affect the results observed in
spheroplast experiments for peptides. For example, the cell

FIG 1 Confocal images from a z-stack taken of an E. coli cell incubated with
the fluorescent membrane labeling dye di-8-ANEPPS. z positions are given
relative to the middle image.

TABLE 1 Sequences of peptides used in the study and percentages of imaged spheroplasts showing translocation and membrane localization for
each peptidea

Peptide Sequence No. of spheroplasts % translocating % membrane localized

BF2 TRSSRAGLQWPVGRVHRLLRK 67 63 37
P11A BF2 TRSSRAGLQWAVGRVHRLLRK 101 26 74
Magainin 2 GIGKWLHSAKKFGKAFVGEIMNS 60 18 82
HipC GNYAHRVGAGAPVWL 67 97 3
a Data for each peptide were collected from at least two independently prepared batches of spheroplasts, characterized over a total of at least five separate imaging sessions for each
peptide; data for each spheroplast batch are given in Tables S1 to S4 in the supplemental material.

FIG 2 Confocal images of representative E. coli spheroplasts incubated with
FITC-labeled peptides (BF2, P11A BF2, HipC, or magainin 2) and di-8-
ANEPPS. Images from the middle of a z-stack of each spheroplast were chosen,
and the merged fluorescence of FITC (green) and di-8-ANEPPS (red) is
shown.
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wall may have a “sieving” effect with some larger peptides that
would be lost in spheroplasts, requiring additional controls
comparing spheroplasts and “normal” cells in other assays
(18). However, even with these caveats we believe that sphero-
plasts provide an excellent model system compared to other
alternatives to overcome size and shape limitations, such as
giant unilamellar vesicles (19–21), as spheroplasts preserve a
physiological bacterial membrane composition and are viable
if returned to growth conditions (13, 22). Moreover, although
spheroplasts have generally been produced from E. coli, proto-
cols can be adjusted to make them from strains of other species
(23). Thus, we believe that the use of bacterial spheroplasts can be
a useful addition to the toolbox of researchers characterizing
AMPs and other membrane-active agents, such as cell-penetrating
peptides.
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