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Of 137 Staphylococcus lugdunensis isolates collected from two nephrology centers in Hong Kong, 10 (7.3%) and 3 (2.2%) isolates
had high-level and low-level mupirocin resistance, respectively. Isolates with high-level resistance contained the plasmid-medi-
ated ileS2 gene, while isolates with low-level resistance contained the mutation V588F within the chromosomal ileS gene. All but
one of the ileS2-positive isolates belong to the predominating clone HKU1. Plasmids carrying the ileS2 gene were mosaic and
also cocarry multiple other resistance determinants.

Staphylococcus lugdunensis resembles Staphylococcus aureus in
its ability to cause catheter-related bacteremia, endocarditis,

and exit site infections in renal dialysis patients (1, 2). While an-
tibiotic resistance in S. lugdunensis is not regarded as a major clin-
ical problem, resistance to aminoglycosides, macrolides, oxacillin,
and tetracycline have been increasingly reported (3–5). In dialysis
settings, topical mupirocin has been shown to substantially reduce
the risk for S. aureus infections (6). However, long-term applica-
tion may result in the development of mupirocin resistance in S.
aureus and other colonizing staphylococci (7). In dialysis patients,
a high prevalence of S. lugdunensis carriage has been reported, but
data on mupirocin resistance in S. lugdunensis are lacking (1, 3, 8).
In staphylococci, low-level mupirocin resistance (LLMR) occurs
as the result of a point mutation in the chromosomal ileS gene that
reduces the binding of mupirocin. Conversely, high-level mupi-
rocin resistance (HLMR) is conferred by the plasmid-borne ileS2
gene that encodes an alternative isoleucyl-tRNA synthetase that is
not bound by mupirocin. The goal of this study was to determine
the prevalence and mechanisms of mupirocin resistance in S. lug-
dunensis.

We previously screened 252 adult patients from two nephrol-
ogy centers (A and B) from November 2013 to February 2014 in
Hong Kong and obtained 137 unique S. lugdunensis isolates, in-
cluding 116 methicillin-sensitive S. lugdunensis (MSSL) isolates
and 21 methicillin-resistant S. lugdunensis (MRSL) isolates (3).
Pulsed-field gel electrophoresis (PFGE) divided 129 isolates into
10 clones (designated HKU1 to HKU10) and eight singletons (3).
The predominant clone, HKU1 (sequence type 38), accounted for
79 isolates (3). This study was approved by the Institutional Re-
view Boards of the University of Hong Kong and the Hospital
Authority (reference numbers UW13-351 and KW/EX-13-138-
69-15). Informed consent was obtained from the patients.

In the present study, a disk diffusion (5-�g disk) method was
used to screen for mupirocin resistance, and resistant isolates (in-
hibition zone, �13 mm) were further examined by Etest (9). PCR
assays were used to detect ileS2 and to map the IS257-ileS2 spacer
regions (see Table S1 in the supplemental material) (10). Six iso-
lates were sequenced by an Illumina sequencing platform (5 by
MiSeq and 1 by HiSeq) at �200-fold coverage (11, 12). The plas-
mids were assembled de novo and annotated as previously de-
scribed, and gaps were closed by additional PCRs and Sanger se-

quencing (see Table S1) (11–14). The six assembled ileS2-carrying
plasmids were correlated with the results from S1 nuclease-PFGE
and Southern blotting using an ileS2 probe. In four strains (8G,
20G, 63N, and 93G), the ileS2-carrying plasmid is the only plas-
mid detected (see Table S2 in the supplemental material). In two
strains (15G and 33G), an extra small plasmid (�4 kb) was found
in addition to the large ileS2-carrying plasmid. One of the isolates
(93G) was further sequenced by PacBio, resulting in a single-con-
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TABLE 1 Univariate analysis of potential risk factors for carriage of S.
lugdunensis with HLMR

Factor

Carriage of S.
lugdunensis with HLMR

P valueb
No
(n � 242)

Yes
(n � 10)

Male (%) 54.5 90.0 0.027
Age, �65 yr (%) 45.5 70.0 0.127
Hemodialysis (%) 49.6 30.0 0.225
Duration of dialysis (mean � SD [yr]) 4.1 � 5.1 4.9 � 2.6 0.594
Topical gentamicin use (%)a 25.2 10.0 0.274
Topical mupirocin use (%)a 49.2 100.0 0.002
Old age home resident (%) 14.9 10.0 0.669
Diabetes mellitus (%) 47.5 20.0 0.087
Chronic skin disease (%) 8.3 0.0 0.343
Medical care in nephrology center A (%) 38.4 90.0 0.001
a Topical gentamicin and mupirocin use indicate use in the past 4 weeks.
b These values were obtained by Student’s t (continuous variable) or chi-square
(categorical variable) tests. A P value of less than 0.05 was considered to be statistically
significant.
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tig ileS2-carrying plasmid (pK93G), which is concordant with the
assembled plasmid using Illumina data.

Overall, 3 (2.2%) and 10 (7.3%) isolates were found to have
LLMR (MIC, 32 �g/ml) and HLMR (MIC, �1,024 �g/ml), re-
spectively (see Table S2 in the supplemental material). All isolates
with LLMR were MSSL, and all of them were from nephrology
center B. The 10 isolates with HLMR included two MRSL and

eight MSSL isolates. All except one MSSL isolate with HLMR were
from nephrology center A. There is no significant difference in the
prevalences of HLMR among MRSL and MSSL isolates (9.5% [2/
21] and 6.9% [8/116], respectively; P � 0.65). The clones of the
three isolates with LLMR were diverse (3 different pulsotypes). In
contrast, 9 of the 10 isolates with HLMR were members of the
HKU1 clone. The remaining isolate (from nephrology center A)

FIG 1 Comparative analysis of linear plasmid maps for six plasmids from mupirocin-resistant Staphylococcus lugdunensis carriage isolates from Hong Kong.
Open reading frames and genes are represented by boxes and are colored to show shared regions: pSK41 region (gray; GenBank accession no. AF051917),
Tn4001-IS257 hybrid (yellow), IS257-ileS2 region (light blue), pT33G region (light orange), pT20G region (deep blue), and pSP01 region (light green; GenBank
accession no. KR230047). The numbers and horizontal lines above the linear maps showed the locations of the primers, PCRs, and the Sanger sequencing
performed to confirm the assemblies. All genes in the plasmids are shown, but the genes and regions in the maps are not drawn exactly in proportion to the length
of the sequences.
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belongs to HKU3. Prevalence of HLMR among HKU1 isolates was
significantly higher than that among non-HKU1 isolates (12.7%
[9/71] and 1.5% [1/66], respectively; P � 0.018).

The proportions of patients in nephrology centers A and B with
recent exposure to topical mupirocin were 73.5% (75/102) and
36.0% (54/150), respectively (P � 0.001); those for topical genta-
micin were 6.9% (7/102) and 36.7% (55/150), respectively (P �
0.001). In univariate analysis, the carriage of S. lugdunensis with
HLMR was significantly and positively associated with the male
sex, the recent use of topical mupirocin, and medical care in ne-
phrology center A (Table 1). In multivariate analysis, medical care
in nephrology center A was the only variable that was indepen-
dently associated with the carriage of S. lugdunensis with HLMR
(odds ratio, 14.4; 95% confidence interval, 1.8 to 115.7; P �
0.012).

The three isolates with LLMR were ileS2 negative but had a
V588F mutation in the chromosomal ileS gene (see Table S2 in the
supplemental material). All 10 isolates with HLMR were ileS2 pos-
itive, and seven had either an A839V (n � 6) or G591R (n � 1)
mutation in the chromosomal ileS gene. V588F and G591R are
mutations within the mupirocin-binding pocket and have been
correlated with low-level resistance (15). A839V is not a signifi-
cant mutation. The following five amplification patterns were ob-
tained for the IS257-ileS2 spacer regions (see Fig. S1 in the supple-
mental material): types I (n � 2), II (n � 5), III (n � 1), IV (n � 1),
and V (n � 1). The complete sequences of six plasmids carrying
ileS2 were obtained (Fig. 1). The number of plasmid replication
initiation (rep) genes in each plasmid ranges from one to five. The
families of the rep genes include rep5 (n � 2), rep7 (n � 3), rep13
(n � 3), rep15 (n � 3), rep20 (n � 2), rep22 (n � 3), and rep24 (n �
2) (14). In the plasmids, one to six other genes encoding resistance
to aminoglycosides (aacA-aphD, aadD, and aadK), lincosamide
(lnuA), tetracyclines (tetK), biocides (qacA and qacC), and heavy
metals (cadDX) were detected. Two plasmids (pT15G-1 and
pK93G) shared extensive homology with pSK41, including a
Tn4001-IS257 hybrid inserted downstream of orf5 (16). In the two
plasmids, the IS257-ileS2 region was inserted downstream of the
qac gene. The other four plasmids (pT33G-1, pT8G, pT20G, and
pT63N) were mosaic, with modules having high homologies to
regions in pSK41 and pSP01 or were shared among each other
(Fig. 1). pSK41 and pSP01 are two completely sequenced ileS2-
negative plasmids that were previously described in staphylococci
(14, 17).

This study revealed that mupirocin resistance is emerging
among S. lugdunensis isolates in dialysis settings. Notably, this
involves the expansion of a predominating HKU1 clone and mo-
saic multidrug-resistant plasmids cocarrying IS257-associated
ileS2 and other resistance determinants. In staphylococcal plas-
mids, it is known that IS257 elements can integrate small plasmids
into larger, multireplicon plasmids (13, 18). During the study pe-
riod, the routine prescriptions for Tenckhoff catheter exit site in-
fection prophylaxis in nephrology centers A and B were topical
mupirocin and gentamicin, respectively. Mupirocin was seldom
used in center B except for in special situations, such as gentamicin
intolerance. In center A, all new peritoneal dialysis patients were
screened for S. aureus carriage, and topical mupirocin was used for
the elimination of carriage. These differences in mupirocin use
policy may explain why HLMR prevalence is higher in center A
than in center B. It has previously been described that coagulase-
negative staphylococci may acquire HLMR following nasal de-

colonization of S. aureus with mupirocin (19). It is worrying that
6 of the 10 isolates with HLMR had coresistance to gentamicin
(aacA-aphD positive) because this may undermine efforts to pre-
vent resistance emergence through rotational use of mupirocin
and gentamicin (20). In conclusion, our findings highlight the
potential for the dissemination of mupirocin resistance through
successful S. lugdunensis clones and multidrug-resistant mosaic
plasmids. Infection control practices should be enhanced to re-
duce the spread of the resistant clones.

Accession number(s). The sequences of the plasmids depicted
in Fig. 1 have been deposited in GenBank under accession num-
bers KU882681 (pT15G-1, 42,253 bp), KU882682 (pK93G, 25,674
bp), KU882683 (pT33G-1, 46,415 bp), KU882684 (pT8G, 31,767
bp), KU882685 (pT20G, 37,435 bp), and KU882686 (pT63N,
40,583 bp).
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