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Abstract

The human brain has enormously complex cellular diversity and connectivities fundamental to our 

neural functions, yet difficulties in interrogating individual neurons has impeded understanding of 

the underlying transcriptional landscape. We developed a scalable approach to sequence and 

quantify RNA molecules in isolated neuronal nuclei from post-mortem brain, generating 3,227 

sets of single neuron data from six distinct regions of the cerebral cortex. Using an iterative 

clustering and classification approach, we identified 16 neuronal subtypes that were further 

annotated on the basis of known markers and cortical cytoarchitecture. These data demonstrate a 

robust and scalable method for identifying and categorizing single nuclear transcriptomes, 

revealing shared genes sufficient to distinguish novel and orthologous neuronal subtypes as well as 

regional identity within the human brain.

Main Text

While significant progress has been achieved in mice (1–3), comprehensive classification of 

adult human brain neurons on the basis of their single-cell transcriptomes has yet to be 

realized. Examination of individual neuronal gene expression profiles for functional patterns 

could provide unbiased insights into subtypes from defined neuroanatomical regions, which 

are missed by gross anatomical studies that report limited transcriptomic differences across 
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the neocortex (4–7). Previous analyses of single adult human neurons has been dependent on 

methods compatible with freshly isolated neurosurgical tissues (8), which can be difficult to 

obtain, with limited regional sampling and depth. By contrast, post-mortem tissues provide a 

vastly more accessible source of both normal and diseased brain, wherein challenges to 

interrogating single neuronal genomes can be overcome using single nuclei (9, 10) 

combined with RNA sequencing. Here, we report the development of a scalable pipeline 

from post-mortem brain through nuclear transcriptome analyses that identifies both known 

and novel neuronal subtypes across the cerebral cortex in humans.

With the goal of defining transcriptomic profiles of single neurons, neuronal nuclear antigen 

(NeuN) was used (9) to isolate neuronal nuclei (Fig. S1) from the post-mortem brain of a 

normal, 51-year old female (Fig. 1A). We focused on six classically defined Brodmann 

Areas (BAs) with well-documented anatomical and electrophysiological properties that were 

derived from a single cortical hemisphere, since inter-hemispheric and inter-individual 

transcriptome differences were reported to be minimal (4–7). Isolation of nuclei was used to 

reduce transcriptomic contamination from other cells or degradation encountered with 

whole-neuron dissociation or laser caption micro-dissection (Fig. S2). Furthermore, 

sequencing of RNA from single nuclei on a limited scale has found gene expression values 

comparable to that of the whole cell (11, 12). Therefore, we developed and implemented a 

highly-scalable, single nucleus RNA sequencing (SNS) pipeline (13) (Fig. 1A, Fig. S1, Fig. 

S3–S8) that has broad applicability for post-mortem brains derived from multiple brain 

banks/repositories (Fig. S4F).

Using this pipeline, we processed 86 Fluidigm C1 chips and sequenced 4,488 single nuclei 

to an average depth of 8.34M reads (Table S1, Fig. S5). Genomic mapping rates revealed a 

high proportion of reads that corresponded to intronic sequences (Fig. 1A, Fig. S5A). The 

low percentage of intergenic reads argues against possible genomic contamination. Instead, 

the intronic reads likely captured an abundance of nascent RNA transcripts present in the 

nuclei. Intronic reads can be used to predict de novo expression (14), as well as whole cell 

gene transcription levels (15). Additionally, our single nuclei expression data inclusive of 

intronic reads accurately predicted cellular identity (Fig. S7), thereby providing initial 

validation for our SNS pipeline.

After quality filtering, including removal of doublets misclassified as single nuclei (13) (Fig. 

1A, Fig. S6), we achieved 3,227 data sets across the six cortical regions (Fig. 1A, Table S2). 

To identify neuronal subtypes, we developed a clustering and classification strategy that was 

capable of resolving 17 clusters (13) (Fig. S8A) on the basis of differential expression of 

neuronally annotated marker genes (Tables S3–S4, Fig. S8B). These clusters showed distinct 

subgroup aggregation (Fig. 1B, Fig. S9A) and unique gene expression profiles associated 

with neuronal ontologies (Fig. 1C, Fig. S9B, Tables S5–S6). With the exception of a single 

cluster (NoN, n=44) deriving from one C1 chip having reduced mapping rates, 16 of these 

clusters were generated independent of detectable batch effects (Table S2, Fig. S10). 

Differential expression of inhibitory markers associated with GABAergic interneurons 

(Table S3) distinguished potential inhibitory (In) from excitatory (Ex) neuronal subtypes 

(Fig. 1B), consistent with mutually exclusive positivity of associated marker genes using a 

fraction of positive thresholding method (2) (Fig. 2A). As such, our dataset first 
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differentiated two major classifications within the cerebral cortex: 972 inhibitory neurons 

that generally encompass interneurons and 2,253 excitatory neurons that generally 

encompass pyramidal or projection neurons (16). Furthermore, each subgroup within these 

classifications showed distinct contributions from each brain region (Fig. 2A, Table S7), 

likely reflecting varied proportions of these neuronal subtypes across BAs, with most 

variability present in the visual cortex (BA17) that is known to have distinct cytoarchitecture 

and gene expression profiles (7, 17).

In order to further annotate inhibitory neuron subtypes, we examined expression of known 

marker genes associated with cortical layers, developmental origin, and interneuron 

classification (13) (Fig. 2B). On the basis of in situ human brain expression data (Fig. S11) 

(17), our inhibitory neuron subtypes were found to distribute spatially from the pial surface 

(most superficial boundary) to white matter (deepest boundary) of the neocortex, and could 

be grouped by the developmental origin of interneurons from subcortical regions of the 

medial, lateral, or caudal ganglionic eminences (MGE, LGE or CGE) (Fig. 2B) (18, 19). 

Furthermore, distinct profiles of interneuron classification markers revealed subtypes that 

parallel those identified from the mouse somatosensory cortex (3) (Fig. 2B–C, Fig. S12A). 

Cortical regional heterogeneity within subtypes was also observed, as evident by a layer 3 

population (In4) that showed a specific absence of RELN/SST expression in BA17 (Fig. 2C, 

Fig. S11B, D). As such, our data distinguished inhibitory neuron subtypes having 

heterogeneous distributions within the neocortex.

Most excitatory cortical projection or pyramidal neurons can be categorized by their layer 

position established during neocortical development (17) combined with their axonal 

projections (16) (Fig. 3A). Our excitatory neuron subgroups, which were also in high 

concordance with subtypes identified in mice (3) (Fig. S12B), expressed known markers 

associated with a superficial-to-deep cortical distribution (13) (Fig. 3B–D, Fig. S13), with 

more than one subtype occupying most layers. Our data set was able to resolve cortical 

region specificity, as seen for the BHLHE22 positive (Fig. 3C, Fig. S13A,D) layer 4 

subtypes Ex2 and Ex3 (Fig. 4A), where Ex2 derived predominantly from rostral regions, 

BA8 and BA10, and Ex3 from caudal regions, BA17 and BA41/42 (Fig. 2A, Fig. 4B). 

Consistently, these subgroups showed distinct gene expression (Fig. 4C, Table S8) 

associated with neuronal electrophysiology and connectivity (Table S9). Furthermore, we 

were able to resolve intra-subtype heterogeneity, in terms of BA-specific expression 

patterns, which was observed in all subtypes (Fig. 4B), as for example within the Ex3 

subtype between BA17 and BA41/42 regions (Fig. 4B,D; Table S10). As such, regional 

neurophysiological differences in cortical regions may be attributed to not only variations in 

the proportions of interneuron and projection neuron subtypes, but also to cell-intrinsic 

transcriptomic differences amongst single neurons within a subtype. Consistent with this 

possibility, we found genes having known variability between the visual and temporal 

cortices from in situ hybridization (ISH) studies (17) also had transcriptomic differences that 

could be attributed to subtypes defined by our data set (13) (Fig. S14A, Table S11). 

Therefore, our data highlight subtle yet region-defining gene expression signatures amongst 

specific neuronal subtypes that could not be detected from bulk analyses (Fig. S14B).
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To further understand the extent of heterogeneity that may exist within subtypes, we 

identified genes varying globally (Table S12, Fig. S15A) or expressed differentially within 

each BA (Table S13, Fig. S15B) for each subgroup. While a subset of In and Ex subgroup-

variable genes were associated with differential expression between brain regions, a large 

proportion were unique (Fig. S15C). Therefore, the potential exists for not only intra-

regional cortical transcriptomic differences, but also further intra-subtype heterogeneity. 

This might reflect a technical need for increased sampling depth for further subtype 

resolution, yet may also indicate the potential for even more diversity within subtypes 

associated with a broader range of individualized neuronal activities. Consistent with these 

observations, proportions of subgroup variable genes were associated with neuronal subtype 

classification, post-synaptic function and known regional expression variability (Fig. S15C). 

These data support further local and regional functional heterogeneity existing amongst 

defined subtypes.

Our results demonstrate that post-mortem SNS can identify expected and novel neuronal 

subtypes that provide insight into brain function through distinct profiles of activity defining 

genes (Fig. S16, Table S14). Furthermore, given that only a very small subset of layer 

specific markers used in our analyses (CARTPT, CHRNA7, PDYN, RELN) were found to 

have ISH differences between individual donors (17), our subtypes can be expected to be 

globally representative. Indeed, our subtypes remain highly conserved in mice (3), with 

differences highlighting evolutionary changes in potential orthologues (Fig. S12). Our data 

sets reveal shared gene expression signatures that can distinguish subtypes and regional 

identity, supporting a transcriptional basis for well-known differences in cortical 

cytoarchitecture. Additional heterogeneity found within single neuronal transcriptomes may 

further reflect activities of complex neuronal networks that vary with function and time, as 

well as underlying genomic mosaicism that exists in human cortical neurons (10, 20–23). 

Our study thus lays the groundwork for high-throughput global human brain transcriptome 

mapping using nuclei derived from readily available post-mortem tissues for analyses of 

normal individuals, as assessed here, as well as myriad diseases of brain and mind.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Summary

Single-nucleus RNA sequencing of neurons from the adult human cerebral cortex 

revealed transcriptomic signatures sufficient to identify neuronal subtypes and 

neuroanatomical areas while also revealing transcriptomic heterogeneity.
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Fig. 1. 
Single nucleus RNA sequencing (SNS) identified 16 neuronal subtypes over 6 neocortical 

regions. A. Overview of SNS pipeline. Post-mortem tissue from Brodmann Areas (BA) 8, 

10, 17, 21, 22, and 41/42 were dissociated to single nuclei for NeuN+ and DAPI+ sorting 

and capture on C1 chips. Resultant libraries were sequenced, mapped to the reference 

genome (pie chart showing averaged proportions) and screened for doublet removal before 

clustering and classification. BA proportions are shown. FC = Frontal Cortex; TC = 

Temporal Cortex; VC = Visual Cortex. B. Neuronal subtypes (excitatory (Ex) and inhibitory 

(In)) shown by multidimensional plotting using 10-fold or greater differentially expressed 

genes (Table S3); NoN (no nomenclature), low expression outlier cluster. C. Heatmap 

showing unique marker gene expression (Table S5).
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Fig. 2. 
SNS reveals distinct interneuron subtypes. A. Pie charts display relative proportions of 

subtypes amongst BAs, and fraction of positive (FOP) heatmaps for inhibitory (In) and 

excitatory (Ex) marker genes. B. Diagram of subpallial origins of interneurons from either 

the lateral or medial ganglionic eminence (LGE, MGE) with FOP heatmaps (see A for scale) 

for marker genes associated with cortical layer (L) (upper panel), subpallial origin (middle 

panel) and interneuron classification (bottom panel). Potential interneuron subtypes are 

indicated below. SOM, somatostatin or SST; NPY, neuropeptide Y; CB, calbindin-D-28k or 
CALB1; VIP, vasoactive intestinal peptide; RELN, reelin; nNOS, neuronal nitric oxide 
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synthase or NOS1; PV, parvalbumin or PVALB; CCK, cholecystokinin; NDNF, neuron-
derived neurotrophic factor; CRHBP, corticotropin releasing hormone binding protein. C. 
Violin plots showing select marker gene expression values by BA (colors indicated in A) for 

each inhibitory neuron subtype. nGenes, total number of genes identified.
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Fig. 3. 
Excitatory neuronal subtypes show distinct spatial organization. A. Schematic of the 

prefrontal cortex showing projection neuron layers (L) and expected axonal projection 

destinations (layer 4 granule neurons typically receive outside inputs for distribution of 

signals locally). B. FOP heatmap (see Fig. 2A for scale) for layer specific marker genes 

showing expected cortical layer identity (L2–L6b) and excitatory neuron sub-classification. 

CPN = cortical projection neuron; GN = granule neuron; SCPN = subcortical projection 

neuron; CThPN = corticothalamic projection neuron. C. Violin plots showing selected 

marker gene expression values by Ex subtype and BA represented by colors (see Fig. 2A). 

nGenes = total number of genes identified. D. RNA ISH showing layer-specific expression 

of selected markers in the temporal cortex (Allen Human Brain Atlas, Table S11).
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Fig. 4. 
Neuronal subtypes reveal heterogeneity amongst BAs. A. Multidimensional plot showing 

projection neuron subtypes distributed according to their predicted cortical layer (L) identity. 

Layer 4 Ex2 and Ex3 subtypes are indicated. B. Clusters shown in (A) colored by BA and 

with BA41/42 and BA17 subpopulations of Ex3 indicated. C. Violin plots showing 

differentially expressed genes between Ex2 and Ex3 subtypes (Table S8). D. Heatmap 

showing genes differentially expressed between BA17 and BA41/42 within the Ex3 subtype 

(Table S10).
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