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Abstract: Locomotion mode identification is essential for the control of a robotic rehabilitation
exoskeletons. This paper proposes an online support vector machine (SVM) optimized by particle
swarm optimization (PSO) to identify different locomotion modes to realize a smooth and automatic
locomotion transition. A PSO algorithm is used to obtain the optimal parameters of SVM for a better
overall performance. Signals measured by the foot pressure sensors integrated in the insoles of
wearable shoes and the MEMS-based attitude and heading reference systems (AHRS) attached on the
shoes and shanks of leg segments are fused together as the input information of SVM. Based on the
chosen window whose size is 200 ms (with sampling frequency of 40 Hz), a three-layer wavelet packet
analysis (WPA) is used for feature extraction, after which, the kernel principal component analysis
(kPCA) is utilized to reduce the dimension of the feature set to reduce computation cost of the
SVM. Since the signals are from two types of different sensors, the normalization is conducted
to scale the input into the interval of [0, 1]. Five-fold cross validation is adapted to train the
classifier, which prevents the classifier over-fitting. Based on the SVM model obtained offline in
MATLAB, an online SVM algorithm is constructed for locomotion mode identification. Experiments
are performed for different locomotion modes and experimental results show the effectiveness of
the proposed algorithm with an accuracy of 96.00% ± 2.45%. To improve its accuracy, majority
vote algorithm (MVA) is used for post-processing, with which the identification accuracy is better
than 98.35% ± 1.65%. The proposed algorithm can be extended and employed in the field of robotic
rehabilitation and assistance.

Keywords: SVM; PSO; locomotion mode identification; feature extraction; MVA;
rehabilitation exoskeleton

1. Introduction

An automatic and smooth locomotion transition is important for many kinds of robots such as
bipedal robots, lower extremity exoskeleton robots and prostheses [1–3]. In some real situations, it is
necessary to know about the locomotion mode condition and preceding corresponding movements to
complete tasks. In addition, an adaptive smooth locomotion transition can enhance safety and balance
to bring about a more natural gait pattern. To achieve a smooth transition between different locomotion
modes such as stair descent, stair ascent, ramp descent, ramp ascent, and level-ground walking,
increasing efforts have been made during the last few decades. Approaches for locomotion mode
identification can be classified according to the type of identification signals: classifiers using biological
signals, e.g., EMG and other classifiers using kinesiological signals, e.g., interaction forces. The former
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category is dependent upon the EMG signals. In the work of Joshi et al., EMG data is collected from
seven leg muscles while the subjects walk on the floor and ascend as well as the transition between them.
Through the time-frequency representation of collected EMG data, simple if-else 81 rules with prior
knowledge are applied to classify those two gait patterns and the transition [4]. Based on the collected
EMG signals, six time-domain features for correlation feature analysis are used to identify different
locomotion patterns, whose accuracy and stability are better than that using the method of principal
component analysis (PCA) and linear discriminate analysis (LDA) [5]. An approach was proposed to
detect the pattern of stair descent based on EMG to achieve the transition from level-ground walking
to stair walking for the amputee’s residual limb [6]. Although the EMG signal is produced prior
to motion, it is not sufficient to classify several locomotion modes independently [7]. The fusion of
EMG signals and ground reaction forces/moments is used as the input of a phase-dependent pattern
classifier using SVM, with which the locomotion mode identification accuracy can reach 99% in the
stance phase and 95% in the swing phase [8].Young et al. proposed to combine EMG signals and
signals from mechanical sensors such as IMU and load cells together, based on which a dynamics
Bayesian network was used to identify basic locomotion modes such as walking, slopes and stairs to
minimize the transitional error and steady state error [9]. Joshi et al. proposed to collect data with
accelerometers and EMG electrodes on the dominant leg, with which LDA and SVM were used to
classify normal gait patterns and the transitions between them [10]. Since EMG electrodes have to be
firmly attached to the skin, it is not convenient for applications in real situations [11].

The other category is based on kinesiological signals containing kinematics information such
as inclination angles and dynamics information such as force and moment signals. Ground reaction
force (GRF) is collected using a wearable plantar pressure measurement system, based on which,
LDA was used to achieve a good identification accuracy for several locomotion modes [12]. Although
GRF can be collected easily, it only represents the interaction information between the robot and the
ground, which will be invalid when the leg is located in the swing phase or on uneven surfaces [13].
The IMU can also be used to identify several gait patterns such as level ground walking, stair walking,
and ramp walking with an optimized threshold method, based on which, the controller is able to
identify gait modes in real time and properly control the actuation [14]. Based on previous sensor
information and current sensor information of load cells and 6-axis IMU, a dynamic Bayesian network
was used to identify several different gait patterns and achieve the transitions between locomotion
modes [15]. In general, signals from single kind of kinematics or dynamics sensors are not sufficient for
locomotion mode identification. Multisensory information has been widely used in locomotion mode
identification for robots, which can improve system performance as well as robustness [16]. Based
on angular positions and velocities of robots joints and interaction forces/moments between the user
and the robot, Gaussian mixture model was used to classify activity modes with features dimension
reduction using LDA [17]. Two foot pressure insoles and three inertial measurement units were used
to identify six kinds of locomotion modes, i.e., stair ascent, stair descent, ramp ascent, ramp descent,
level-ground walking and standing, where a LDA classifier was used with an accuracy of 99.71% [18].
Yuan et al. pointed out that a good terrain identification method should meet four requirements,
i.e., high identification accuracy, minimal sensors which should be embedded into the mechanism,
short identification delay, and low computation load [19].

For classification problems, there are several widely used algorithms such as LDA, Bayesian
network, SVM, boosting, C4.5 decision trees, random forests, and neural network. SVM models are
based on the statistical learning theory to achieve structural risk minimization and are a set of related
supervised learning methods used for classification and regression [20]. SVM models possess the
well-known ability of approximating any multivariate function to any desired degree of accuracy.
In order to obtain the optimal hyper-parameters setting in the SVM training, several optimization
methods such as grid search [21], genetic algorithm [22], PSO [23] are used with success. The PSO
technique is a population-based search algorithm based on the simulation of the bird flocking and
exploits the model of social sharing of information [24], which has been used widely in the optimization
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of SVM. A hybrid PSO optimized SVM (PSO-SVM) model was used as automated learning tool, trained
in order to predict other parameters such as optical density, dissolved oxygen concentration, pH, nitrate
concentration and phosphate concentration [25].

In this paper, we propose to use the SVM algorithm optimized by PSO to identify five kinds of
locomotion modes, i.e., level-ground walking, stair descent, stair ascent, ramp ascent, ramp descent,
and transitions between them. The source signals are collected from foot pressure sensors placed
in the wearable shoes and AHRSs attached on the mechanical leg segments. Since GRFs measured
by pressure sensors are invalid during the swing phase, the proposed identification algorithm is
dependent upon phase events detection. The collected signals are processed by the following steps,
i.e., noise eliminating with low-pass filter, feature extraction using WPA, feature dimension reduction
using kPCA and normalization into the interval of [0, 1]. During the training process of the SVM,
five-fold cross validation is used to prevent over-fitting. The model produced by the SVM is trained
offline in MATLAB, based on which, the online SVM algorithm can predict the locomotion mode
according to the signals measured by sensors in real time. The majority vote algorithm is used to
improve its identification accuracy. To verify the proposed algorithms, experiments on different
terrains are performed.

The remainder of this paper is organized as follows: the robotic exoskeleton system is presented
and the signal processing is described in the second section. In the third section, the locomotion modes
are identified with SVM optimized by PSO. Experiments using the proposed approach and results
analysis are presented in the fourth section. Conclusions are drawn in the fifth and final section.

2. Data Collection and Processing

2.1. Exoskeleton System Description

The lower extremity exoskeleton has two seven degrees of freedom (DOF) mechanical links
attached to human limbs, placed on the thigh, knee and ankle joints, respectively. Figure 1 shows the
structure of the exoskeleton robot, with its three main components: (1) wearable shoes connected with
the shanks, each of which contains six pressure sensors to collect ground reaction force information;
(2) leg segments including shanks and thighs, which are attached to the human user’s legs by the
interaction cuffs placed on the thigh segment of each leg. The knee joint is active while the hip joint
is passive. The actuator of the knee joint consists of a DC actor and a screw, which helps legs walk
and support the weight of system when the leg is located in the phase of stance; (3) trunk, which
is used to package the control system, the power supplies and the loads to be carried. The trunk is
connected with the leg segments on the back of the user. We take into consideration safety and comfort
during the design of the whole exoskeleton system. To ensure safety in use, some mechanical limit
braces, which are mounted on the movement joints, are utilized to insure that movement of joints is
located in an appropriate zone. For comfort consideration, some elastic elements are utilized to resist
impact. There are springs installed on the connection parts between the trunk and the leg segments.
Besides, some soft materials are affixed into the mechanical braces of corresponding joints. Some
mechanical parameters of the exoskeleton system are shown in Table 1. Table 1 describes the length
and mass of thigh and shank of each leg. In addition, the range of movement of hip and knee joints is
also presented.

Table 1. Parameters of the mechanical prototype.

Property-Part Thigh Shank

Mass (kg) 0.82 0.6
Length (mm) 431 390

Range of DoF (◦) −37~70 0~75
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Figure 1. Mechanical structure of the exoskeleton. A: battery power source; B: control system 
enclosure; C: carried load; D: springs connecting the backpack with the waist part; E: waist part; F: 
thigh segment; G: shank segment; H: wearable shoes which have pressure sensors; I: optical 
encoder on the hip joint; J: actuation system consisting of DC motor, gear ratio and screw; K: 
connection cuff interacting with human limbs; L: optical encoder on knee joint; M: ankle joint; N: 
signal transfer for foot pressure. 

2.2. Data Collection System 

In different locomotion modes, the postures of the leg segment and the foot are the most 
important information. The movement in the sagittal plane contains the most valuable information 
for locomotion mode identification. In this paper, two kinds of sensors are used to collect the GRF 
information and the inclination angles of foot and shank. The GRF information is measured by an 
integrated insole with embedded force sensors. The GRF sensor can measure the weight up to  
100 kg and has a resolution of 0.1 N. The inclination angles of the foot and the shank are measured 
by AHRS sensors. This kind of AHRS can measure the rotation angle directly with a resolution of 
0.01°. Due to the existence of the measurement noises, the GRF information and the inclination 
angle are processed by a low-pass filter with a cut-off frequency of 50Hz. The installation 
architecture of sensors is shown in Figure 2.  

As Figure 2 shows, GRF signals are collected by pressure sensors placed in the insole of the 
wearable shoes and the inclination angles of foot and shank are measured by AHRSs attached to the 
foot and the shank of legs. The GRF measurement insoles are self-made, based on the distribution 
measurement by the pressure insole produced by Tekscan (Boston, MA, USA) [26]. When the 
human walks on the floor, there are three zones under greater force distribution. The selected 
sensor can output the voltage signal proportional to the applied force. This kind of sensor has a 
high enough resolution to record the GRF changes during the stance period. In addition, this kind 
of sensor is small and thin enough to be embedded into the wearable shoes and to ensure the 
comfort. The proposed wearable shoe is shown in Figure 3.  

Figure 1. Mechanical structure of the exoskeleton. A: battery power source; B: control system enclosure;
C: carried load; D: springs connecting the backpack with the waist part; E: waist part; F: thigh segment;
G: shank segment; H: wearable shoes which have pressure sensors; I: optical encoder on the hip joint;
J: actuation system consisting of DC motor, gear ratio and screw; K: connection cuff interacting with
human limbs; L: optical encoder on knee joint; M: ankle joint; N: signal transfer for foot pressure.

2.2. Data Collection System

In different locomotion modes, the postures of the leg segment and the foot are the most important
information. The movement in the sagittal plane contains the most valuable information for locomotion
mode identification. In this paper, two kinds of sensors are used to collect the GRF information and the
inclination angles of foot and shank. The GRF information is measured by an integrated insole with
embedded force sensors. The GRF sensor can measure the weight up to 100 kg and has a resolution of
0.1 N. The inclination angles of the foot and the shank are measured by AHRS sensors. This kind of
AHRS can measure the rotation angle directly with a resolution of 0.01◦. Due to the existence of the
measurement noises, the GRF information and the inclination angle are processed by a low-pass filter
with a cut-off frequency of 50 Hz. The installation architecture of sensors is shown in Figure 2.Sensors 2016, 16, 1408 5 of 20 
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The GRF sensor has a sensing area of 4.52 cm2 and has a measurement ranging from 0 kg to  
100 kg. MEMS-based AHRS sensors (AHRS II, SkyLark, HongKong, China) are used to collect the 
movement information of the leg segment, especially when the leg is in the swing phase, during 
which the GRF has extremely small outputs. The AHRS includes gyroscopes, accelerometers and 
magnetometers and is capable of outputting three-axis (Roll, Pitch and Yaw) rotation posture, 
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The accuracy of measurement can be improved by the compensation of the information fusion 
algorithm, e.g., extended Kalman filter. In this kind of used AHRS, the extended Kalman filter is 
used to deal with the problem of time drift and output accurate data in real time. The AHRS can 
output the measurement angles directly with a measurement range of (−180°, 180°), (−180°, 180°) 
and (−90°, 90°) in the Roll angle, the Yaw angle and the Pitch angle, respectively. The output of the 
AHRS can be transferred to the host computer through a standard RS-232 connector. The sampling 
frequency is 40 Hz and the baud rate is set as 115,200. The Roll angle is used for the measurement of 
the human limb gait trajectory. The AHRS, which are fixed on the middle of the shank and the side 
of the foot, are applied to measure the inclination angle of the shank and the foot. 

During a single sampling interval, the information of the GRF sensors and the AHRS sensors is 
collected and transferred to the PC. The signals collection structure is described in Figure 4. AHRS 
sensors can collect the inclination angles in sagittal plane, which are sent to the PC through USB. 
Pressure sensors are placed in the insole of the wearable shoes to collect GRF during walking, 
which is transferred to the PC through a standard RS232 bus. A lithium battery (12 V, DC) is 
utilized to provide power for the system. Sampling rates of those sensors are 40Hz. Signals 
processing and identification algorithms run in the PC. The PC sends the identified locomotion 

 

Figure 2. Mechanical structure of the robot used in this study. A and H: wearable shoes where three
pressure sensors are placed in each; B and G: AHRS sensors which collect the inclination angles of foot
for double legs; C and F: AHRS sensors which are attached to the leg segments to collect the inclination
angles of shanks; D and E are motors with screws for the system; I: the central control system which
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As Figure 2 shows, GRF signals are collected by pressure sensors placed in the insole of the
wearable shoes and the inclination angles of foot and shank are measured by AHRSs attached to the
foot and the shank of legs. The GRF measurement insoles are self-made, based on the distribution
measurement by the pressure insole produced by Tekscan (Boston, MA, USA) [26]. When the human
walks on the floor, there are three zones under greater force distribution. The selected sensor can
output the voltage signal proportional to the applied force. This kind of sensor has a high enough
resolution to record the GRF changes during the stance period. In addition, this kind of sensor is small
and thin enough to be embedded into the wearable shoes and to ensure the comfort. The proposed
wearable shoe is shown in Figure 3.

Sensors 2016, 16, 1408 5 of 20 

 

 
Figure 2. Mechanical structure of the robot used in this study. A and H: wearable shoes where three 
pressure sensors are placed in each; B and G: AHRS sensors which collect the inclination angles of 
foot for double legs; C and F: AHRS sensors which are attached to the leg segments to collect the 
inclination angles of shanks; D and E are motors with screws for the system; I: the central control 
system which collects data and produces control signals.  

 
Figure 3. The placement of GRF sensors in the wearable shoe. Two GRF sensors are arranged on the 
forefoot and one sensor is placed on the heel. The labels 1, 2 and 3 represent the three sensors.  

The GRF sensor has a sensing area of 4.52 cm2 and has a measurement ranging from 0 kg to  
100 kg. MEMS-based AHRS sensors (AHRS II, SkyLark, HongKong, China) are used to collect the 
movement information of the leg segment, especially when the leg is in the swing phase, during 
which the GRF has extremely small outputs. The AHRS includes gyroscopes, accelerometers and 
magnetometers and is capable of outputting three-axis (Roll, Pitch and Yaw) rotation posture, 
speed, and acceleration. The rotation angle can be obtained through the integration of angle speed. 
The accuracy of measurement can be improved by the compensation of the information fusion 
algorithm, e.g., extended Kalman filter. In this kind of used AHRS, the extended Kalman filter is 
used to deal with the problem of time drift and output accurate data in real time. The AHRS can 
output the measurement angles directly with a measurement range of (−180°, 180°), (−180°, 180°) 
and (−90°, 90°) in the Roll angle, the Yaw angle and the Pitch angle, respectively. The output of the 
AHRS can be transferred to the host computer through a standard RS-232 connector. The sampling 
frequency is 40 Hz and the baud rate is set as 115,200. The Roll angle is used for the measurement of 
the human limb gait trajectory. The AHRS, which are fixed on the middle of the shank and the side 
of the foot, are applied to measure the inclination angle of the shank and the foot. 

During a single sampling interval, the information of the GRF sensors and the AHRS sensors is 
collected and transferred to the PC. The signals collection structure is described in Figure 4. AHRS 
sensors can collect the inclination angles in sagittal plane, which are sent to the PC through USB. 
Pressure sensors are placed in the insole of the wearable shoes to collect GRF during walking, 
which is transferred to the PC through a standard RS232 bus. A lithium battery (12 V, DC) is 
utilized to provide power for the system. Sampling rates of those sensors are 40Hz. Signals 
processing and identification algorithms run in the PC. The PC sends the identified locomotion 

 

Figure 3. The placement of GRF sensors in the wearable shoe. Two GRF sensors are arranged on the
forefoot and one sensor is placed on the heel. The labels 1, 2 and 3 represent the three sensors.

The GRF sensor has a sensing area of 4.52 cm2 and has a measurement ranging from 0 kg to
100 kg. MEMS-based AHRS sensors (AHRS II, SkyLark, HongKong, China) are used to collect
the movement information of the leg segment, especially when the leg is in the swing phase,
during which the GRF has extremely small outputs. The AHRS includes gyroscopes, accelerometers
and magnetometers and is capable of outputting three-axis (Roll, Pitch and Yaw) rotation posture,
speed, and acceleration. The rotation angle can be obtained through the integration of angle speed.
The accuracy of measurement can be improved by the compensation of the information fusion
algorithm, e.g., extended Kalman filter. In this kind of used AHRS, the extended Kalman filter
is used to deal with the problem of time drift and output accurate data in real time. The AHRS can
output the measurement angles directly with a measurement range of (−180◦, 180◦), (−180◦, 180◦)
and (−90◦, 90◦) in the Roll angle, the Yaw angle and the Pitch angle, respectively. The output of the
AHRS can be transferred to the host computer through a standard RS-232 connector. The sampling
frequency is 40 Hz and the baud rate is set as 115,200. The Roll angle is used for the measurement of
the human limb gait trajectory. The AHRS, which are fixed on the middle of the shank and the side of
the foot, are applied to measure the inclination angle of the shank and the foot.

During a single sampling interval, the information of the GRF sensors and the AHRS sensors is
collected and transferred to the PC. The signals collection structure is described in Figure 4. AHRS
sensors can collect the inclination angles in sagittal plane, which are sent to the PC through USB.
Pressure sensors are placed in the insole of the wearable shoes to collect GRF during walking, which is
transferred to the PC through a standard RS232 bus. A lithium battery (12 V, DC) is utilized to provide
power for the system. Sampling rates of those sensors are 40Hz. Signals processing and identification
algorithms run in the PC. The PC sends the identified locomotion mode into the Programmable Multi
Axis Controller (PMAC, Delta, Atlanta, GA, USA), which conducts motion planning for the robot.
The applied force sensors and AHRS sensors are depicted in Figure 5.

Three GRF sensors are placed on the insole to measure the GRF and the data can be collected
by standard RS-232 bus. AHRS sensor signals can be directly collected through a USB connection.
The collected GRF signals and the inclination angle are processed with the Kalman smoother, which
has two main functions, i.e., (1) eliminate the high frequency noise signals as the general low-pass filter
does and (2) predict the signals forward for a step and smooth the collected signals. The processing
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results are depicted in Figure 6. Compared with the original signals, the Kalman smoother is capable
of smoothing the signals. Only the flexion and extension DOF of the knee joint is actuated in the
mechanical legs of the robotic exoskeleton. In the process of the data collection, the motor of the
actuation system is removed from the integrated actuation system and all the damping components
embedded in the joints are also removed to make sure that the user can move freely wearing the
robotic exoskeleton. In the stage of data collection, the exoskeleton system is not controlled actively.
All collected data are processed by low pass filters before they are saved.
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2.3. Feature Extraction and Dimension Reduction

2.3.1. Feature Extraction

Since the GRF is close to zero in the swing phase, the collected signals include the GRF in the
stance phase and the inclination angles of the leg segment. The combination signal is denoted as:

x = [Fs1, Fs2, Fs3, θTs, θAs, θT , θA] (1)

where Fs1, Fs2 and Fs1 are the three GRFs of the stance leg, θTs and θAs are the inclination angles of the
thigh and the foot in the stance leg and θT and θA are the inclination angles of the other leg. Based
on the phase identification, the features of the classifier are composed of GRF signals in the swing
phase and the inclination angles of the leg segments. The simple amplitude of signals and its phase
sequence are limited to identify locomotion modes. Feature extraction is the process of extracting
useful information from the filtered signals. Features can be extracted from a time series of sensor
signals. A time series is a series of observations of sensors shown as follows:

xi(t), i = 1, . . . , m; t = 1, . . . , n (2)

where m is the number of observations of sensors and n is the length of the data from the windows.
Features are extracted over the entire window and output at the end of the window. Windows of
150–250 ms for EMG have been suggested as the optimal tradeoff between the classification accuracy
and the delay, while 100–250 ms windows can be used for mechanical sensors [27]. There are several
feature extraction methods for a time series observations of sensor signals including time-domain,
frequency-domain and time-frequency domain [28]. Time-domain features are mainly descriptive
statistics and models features. Frequency-domain features are usually derived by a fast Fourier
transform (FFT), which cannot deal with non-stationary signals. Time-frequency domain features can
obtain features in time and frequency domain at the same time. The most widely used approach is the
WPA, in which features are obtained by calculating from the approximation or detail coefficients at
specific decomposition levels.

In this paper, a three-layer WPA is adopted to extract features from a time series of observations
including signals collected from the pressure sensors and the AHRS sensors due to the fact that wavelet
analysis can describe the signal properties in time-frequency domain. The method is a generalization of
wavelet decomposition that offers a richer range of possibilities for signal analysis. In wavelet analysis,
a signal is split into an approximation and a detail part. Then the approximation part is again split
into a second-level approximation and another detail part, so does the detail part, which is repeated
to produce more branches like a tree. Wavelet transform (WT) can be used to decompose a signal
into sub-bands with low frequency (approximate components) and sub-bands with high frequency
(detail components) [29]. The structure of WPD is similar to WT. Both of them have the framework
of multi-resolution analysis (MRA) [30]. The main difference between the two techniques is that the
WPD can simultaneously break up approximation and detail versions, while WT only breaks up as an
approximation version [31]. Based on this theory, the wavelet generating function δ(t) is determined
by the scaling function φ(t), which should meet the double-scaling equations [32]:

φ(t) =
√

2 ∑
k∈N

hkφ(2t− k), δ(t) =
√

2 ∑
k∈N

gkφ(2t− k) (3)

where hk and gk are the quadrature mirror filters associated with the predefined scaling function
and the mother wavelet function respectively. The double scaling equations are only necessary but
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insufficient conditions; therefore, more constraints should be added to determine hk and gk of different
wavelets. Define the function set {vm(t)|m ∈ N} as follows:

vm(t) =


√

2 ∑
k∈N

hkvm/2(2t− k), i f m is even
√

2 ∑
k∈N

gkv(m−1)/2(2t− k), i f m is odd
(4)

and:
v0(t) = φ(t), v1(t) = δ(t) (5)

The wavelet packet coefficients are given by:

Cn,m
p = 2n/2

∫ +∞

−∞
x(t)vm(2nt− p)dt (6)

where x(t) is the signal, and n, p and m represent the scale, position and surge parameter respectively.
In actual application, the resolution ability of high frequency band signal is expected to be

improved. However, the wavelet transform cannot meet the resolution requirement, so WPA is
introduced to solve this problem [33]:

x(t) = Ci,0 + Ci,1 + · · ·+ Ci,j (7)

As discussed above, the windowing and the features extraction for a time series observations are
shown in Figure 7. This decomposition tree of the wavelet packet is shown in Figure 8.
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Figure 7. Windowing and feature extraction for a time series of observations. W(T) is the window
of the T interval and F(T) is the corresponding output features. In the case of half overlap, there is a
feature set output at each half window, F(T,2) is the features produced due to overlap.
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Figure 8. Three layers wavelet packet analysis. A(i,j) represents the j-th approximation coefficient in
the i-th layer. D(i,j) is the j-th detail coefficient in the i-th layer.

As depicted in Figure 9, each parent node is divided into two orthogonal subspaces. The features
set can be obtained by the three-layer WPA. Those features can show the original signal completely.
The three layers wavelet analysis will obtain 14 coefficients. Figure 8 shows the eight coefficients
produced by three layers wavelet packet. The wavelet packet decomposition can generate more
signal details. For a further analysis of the signal, the energy value of detail signal of wavelet packet
decomposition is presented as:

Ei,j =
∫ ∣∣Ci,j

∣∣2dt (8)

where Ei,j denotes the energy of the decomposition coefficients Ci,j. The feature vectors set can be
constructed based on the energy. The feature set can be represented as follows:

Fea =
[
Ei,0, Ei,1, · · · , Ei,j

]
(9)

To analyze the energy conveniently, the mean energy is used to normalize the feature set in
Equation (9), which is depicted as follows:

Emean = ∑ Ei,j, F′ea =
[
Ei,0/Emean, Ei,1/Emean, · · · , Ei,j/Emean

]
(10)

where Emean is the mean energy of those features and F′ea is the new feature set. In this paper, three
pressure sensors and four AHRSs are used for the locomotion mode identification. Then the extracted
features using WPA for a time series of observations from one single sensor are shown as the following:

F = (||A(2, 1)||, ||A(3, 2)||, ||D(3, 2)||, ||A(2, 2)||, ||A(3, 4)||, ||D(3, 4)||)T (11)

where ||·|| is the norm.
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Figure 9. Coefficients of a time series of GRF measured from the heel. The x-axis denotes the number
of the length of data while the y-axis denotes the amplitude of those coefficients.
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2.3.2. Feature Set Composition

In the classification process using the algorithms such as SVM, it will take a long time to provide an
accurate classification when the number of training samples is substantial. Meanwhile, the classification
accuracy significantly decreases as the number of features increases [34]. The problems discussed
above are related to the curse of dimensionality [35]. As discussed previously, there are six features
for each sensor and totally there are 42 features for the feature set. The use of techniques for feature
selection, which constructs a smaller features set, will tackle this issue and provide support for accurate
classification algorithms. PCA is known as one of the methods that can be used for feature selection,
where PCA tries to maximize the variance of original feature vector and aligns the feature vector
according to eigenvalues of variance matrix. However, PCA performs a linear separation of data in the
original space [36]. Kernel PCA uses the same basic idea as the PCA.

It seeks to project the original features set into a high dimensional space to achieve a nonlinear
mapping. Assuming F∈Rn is the feature vector of a time series xi(t). Let Π be the covariance matrix of
F, then:

Π = AΩAT (12)

where Ω = diag([λ1, . . . ,λn]), λ1 ≥ λ2 ≥ . . . ≥ λn, are the eigenvalues of Π, A is a matrix whose
columns are the orthonormal eigenvectors of Π, AAT = In. General detailed computation process of
PCA can be shown in [37]. Let Φ be a nonlinear mapping from the original space F to the final feature
space Fs, namely Φ: F→Fs. Assuming the kernel matrix K is a symmetric and positive semi-definite
matrix according to Mercer theorem, with the inner product of Φ(xi) and Φ(xj) in original space:

Ki,j = (Φ(xi)·Φ(xj)) = k(xi, xj), i, j = 1, . . . , n. (13)

where the kernel function is chosen as Gaussian radial basis function (RBF). Let Φ be the center of the
final feature space, then:

(K̃)ij = ((Φ(xi)−Φ)·(Φ(xj)−Φ)) (14)

Combined with (13), K̃A = ΩA. Then, the following steps of kPCA are similar to those of the
ordinary PCA. Before we apply kPCA, the data in F must be centered. This centering can be conducted
as the following:

xi,η → xi,η −∑
η

xi,η/S (15)

where i and η represent residues and the state labels respectively, and S is the total number of the data
points. Similar to linear PCA, the ability of reducing the dimensionality of the features set depends
on the first few principal components dominating the variance. The direction along the maximum
variance can be approximated well with dominant principal components.

3. Locomotion Mode Identification Using SVM Optimized by PSO

3.1. SVM for Classifier

Support vector machine (SVM) is a general supervised learning method, which is used to solve
problems of classification and regression [20]. SVM is considered as a highly efficient classifier and can
replace the multi-layer perceptron, RBF neural network, the polynomial network and other existing
learning algorithms [38]. The main paradigm for classification problem is to find an optimal separating
hyper-plane as a decision boundary, with which the margin of separation among classes can be
maximized. As Figure 10 shows, two classes classification problem by SVM is presented. There are
two classes labeled +1 and–1, which are represented by “cross” and “circle” respectively. The target of
SVM is to find the support vector to separate those two classes. The binary classifier can be extended
for multi-classes classifier. For a k-class problem, these methods design a single objective function
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for training all k-binary SVMs simultaneously and maximize the margins from each class to the
remaining ones.
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The optimization problem solved by SVM can be presented as follows [37]:

minimize
w,b

1
2

wTw + C
N

∑
i=1

max(0, 1− yi(wTΦ(xi) + b)) (16)

where w and b are the parameters of the hyper-plane. This formulation expressed by Equation (16) can
be transformed into the following type:

minimize 1
2 ||w||

2 + C∑
∣∣∣∣ξi + ξ∗i

∣∣∣∣
subject to


yi − 〈w, Φ(xi)〉 − b ≤ ε + ξi
〈w, Φ(xi)〉+ b− yi ≤ ε + ξ∗i
ξi, ξ∗i ≥ 0

(17)

where C is a constant, 〈w, xi〉 denotes the dot product, (xi, yi) is the pair for input and output, ξi, ξ∗i are
slack variables, and Φ is the kernel function, which has multiple forms such as linear kernel, Gaussian
RBF kernel, multi-layer perceptron kernel and spline kernel. We can solve Equation (17) by using KKT
optimality conditions namely the dual Lagrange method [39]:

minimize − 1
2

N
∑

i=1

N
∑

j=1
yiyjaiajΦ(xi)Φ(xj) +

N
∑

i=1
ai

subject to
N
∑

i=1
yiai = 0, 0 ≤ ai ≤ C, ∀i

(18)

where ai is Lagrange multiplier, and N is the number of input features. Let a* be the minimization of
this dual problem and suppose the hyper-plane of SVM as H(w*,b*). Define [40]

IS := {i : a∗i > 0} , S := {xi : i ∈ Is} (19)

The vectors from S are called support vectors and the parameters w* and b* of the hyper-plane are
shown as follows: 

w∗ = ∑
i∈Is

a∗i yixi

b∗ = yi − ∑
i∈Is

a∗i yiΦ(xi)Φ(x)
(20)
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Then the hyper-plane is found based on Equation (20). The Φ(x) is defined as the Gaussian RBF
kernel function as follows:

Φ(x) = k(xi, xj) = exp(−σ
∣∣∣∣xi − xj

∣∣∣∣2) (21)

where σ is the parameter determining the kernel’s behavior. With the dataset collected, the classifier
can be trained to find optimal w* and b*. The hyper-parameters of SVM have an important influence
on its performance. The hyper-parameter vector can be defined as θ =

[
a∗i , σ

]T . The determination
of the hyper-parameter vector has a significant effect on the performance of the SVM. In this work,
the original dataset includes the GRF signals measured by the force sensors and the posture information
collected by the AHRS. There are five locomotion modes to be identified, i.e., level-walking, walking
downstairs, walking upstairs, walking down ramp and walking up ramp.

3.2. PSO-Based SVM

The PSO is similar to the genetic algorithm (GA), both of which apply evolution to find the
optimal solution with the initial solution, while the PSO does not have the crossover and mutation
operator. In general, the PSO converges to the optimal solution more quickly than the GA [41].
The origin of the PSO is from the concept of the predation on bird populations, one of which is called
a particle. All particles mapped into the space evolve with each iteration to obtain the maximum
fitness value of the objective function, moving towards the optimal solution. The PSO system is
initialized with a population of random solutions and searches for the optima by updating generations.
In PSO, the potential solutions, called particles, fly through the problem space by following the
current optimum particles. Each particle keeps track of its coordinates in the problem space which are
associated with the best solution called pbest. Another best value called lbest which is tracked by the
particle swarm optimizer, is obtained so far by any particle in the neighbors of the particle. In PSO,
the process of velocity updating is shown as follows [26]:

vk+1
id = w · vk

id + c1 · α(pk
id − xk

id) + c2 · β(pk
gd − xk

id). (22)

where vk+1
id is the i-th particle’s velocity of the next moment, w is the inertial weight, c1 and c2

are the constants which describe the searching ability for local and global optimization separately,
xk

id represents the k-th particle, pk
id and pk

gd are best values currently and among all particle in the
population respectively, α and β are random values between 0 and 1. Based on the updated velocities,
each particle changes its position according to the following equation:

xk+1
id = xk

id + γvk+1
id . (23)

where γ is a constant coefficient.
For multi class classification problems, the SVM parameters with soft margins will have significant

effects on its accuracy, especially on the penalty constant C and the width of the kernel function Φ.
Based on the previous discussion, the process of SVM using PSO is illustrated in Figure 11.
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As Figure 11 shows, the determination coefficient, namely the fitness function represented by
accuracy of SVM, is a statistical measurement of how well a regression curve approximates real data
points. The locomotion mode identification using SVM is relevant to the walking phases, which are
segmented into four phase events, i.e., heel strike, stance, heel off and swing. Since the GRF is invalid
during the swing phase, the locomotion mode identification is valid only in the phases of heel strike,
stance and heel off.

The PSO-SVM process can be stated as the following steps: (1) Processing the time series of original
data to remove noises with a low-pass filter. The collection and the preprocessing are conducted on
the central PC; (2) Extracting features from the given data set by WPA. The time series include the GRF
signals in the stance phase and the posture information of the double legs; (3) Selecting an optimal
feature set with the overall contribution rate of 95%by kPCA to reduce the dimensionality; (4) Labeling
the corresponding features set and training the PSO-SVM with 5-fold cross validation to find the
optimal hypermeters vector; (5) Obtaining the final trained SVM with a higher testing accuracy;
(6) Predicting the locomotion mode label according to the trained SVM online. During the PSO,
the fitness function is the training accuracy of SVM and initial generation is set as 10, the maximum
generation is 200, c1 = c2 = 2, and the parameters to be optimized are located in the intervals [0.1, 250]
and [0.1, 1200].

3.3. Post-Processing Using Majority Voting Algorithm (MVA)

To make sure the classification results are stable, the majority vote algorithm (MVA) is used,
which tries to determine whether there is a choice with more occurrences than others in any given
sequence of choices, and if so, determine this choice. Supposing the given classification labels sequence
is L(n) = (l1,l2, . . . ,ln), where li is a label representing a locomotion mode. The object of the algorithm
is to find the majority number defined as the number that appears most times. The majority voting
algorithm is widely used in classification problems to make sure that the classification labels keep
consistent during a sequence of fixed size to improve the accuracy of classifier. In this paper, five
locomotion modes, i.e., level ground walking, stair ascent, stair descent, ramp ascent and ramp descent,
need to be identified, which are labeled as 1, 2, 3, 4, and 5, respectively. The sensor data measured by
the sensor in real time can be applied in the online algorithm. The predictive label can be obtained
online to illustrate the real locomotion mode. The MVA is applied to improve the identification
accuracy of the predictive labels.
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4. Experiment Protocol and Results Analysis

4.1. Experiment Protocol

To evaluate the performance of the proposed method, three healthy (male) subjects participated
in the experiment, which is shown in Figure 12. Those three subjects have an average height of
1.70 ± 0.25 m, an average weight of 60 ± 5.6 kg and an average age of 25 ± 1.5 years old. Before the
experiments, the sensor system should be checked to make sure all the sensors work well. Then the
subjects wear the exoskeleton without actuation and walk on different terrains. The PC will acquire
and save the observations of the foot pressure sensors and the AHRS. Before the training dataset was
collected, the actuation system on the knee joint was removed from the exoskeleton. Those three
subjects were required to walk on the different terrains. Since the transition among those locomotion
modes started from the level walking and ended on the floor, e.g., in the case of stair ascent, the wearer
walked on the floor initially, performed stairs walking and stopped on the floor finally.Sensors 2016, 16, 1408 14 of 20 
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Each human subject performed two kinds of experiments. The first kind of experiment was to
walk in different locomotion modes, i.e., stair descent, stair ascent, ramp descent, ramp ascent and
level-ground walking. Each locomotion mode included 10 experimental trials for one human subject.
The second kind of experiment is that each experimenter walked from the level ground walking to
the other locomotion modes, or vice versa. The second kind of experiment includes eight transitions,
of which each transition included 10 experimental trials.

The process of the proposed PSO-SVM method is shown in Figure 13. Once the training dataset
was obtained, the model of PSO-SVM can be trained offline. We separately label several gait patterns,
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i.e., stair descent, stair ascent, ramp descent, ramp ascent and level-ground as 1, 2, 3, 4 and 5. The stair
is 300 cm in width, 36.4 cm in depth, and 15 cm in height while the inclination angle of the 3.5 m
long ramp is about 12◦. Locomotion mode identification was performed online in real time on the
embedded PC and the identified mode can be transferred to the individual PC through the wireless.
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The trained SVM is obtained offline in MATLAB and the online testing is conducted in Visual Studio.

4.2. Performance Evaluation

Two kinds of indexes, i.e., average identification accuracy (AIA) and identification delay (ID),
are used to make reasonable evaluations of identification performance. The first performance index,
AIA, is used to evaluate the accuracy of the classifier, which is defined as:

AIA =
Ncorrect

Ntotal
(24)

where Ncorrect is the number of correct identification while Ntotal is the total number of test events.
The usage of the confusion matrix is helpful to quantify the error distribution of the identification,
which is defined as the following:

C =


c11, c12, c13, c14, c15

c21, c22, c23, c24, c25

c31, c32, c33, c34, c35

c41, c42, c43, c44, c45

c51, c52, c53, c54, c55

 (25)

where each element of the confusion matrix is defined as:

cij =
mij

mi
× 100% (26)

where mij is the number of events in the i-th locomotion mode that is classified as j-th locomotion
mode and mi is the total numberof events in the i-th locomotion mode. It is notable that the diagonal
elements of the confusion matrix C are the identification accuracy and the off-diagonal elements denote
the errors. To evaluate whether the transition can be identified in time, the critical moment is defined
as the moment when one foot is located in stance phase and the other foot strikes the floor. The ID is
defined as:

ID =
Ti − Tc

Tgait
× 100% (27)

where, Ti is the moment when the locomotion mode transition is identified correctly for the first time,
Tc is the critical moment and Tgait is the total time in the walking gait cycle.
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4.3. Results Analysis

Here are some abbreviations representing several locomotion modes, e.g., D-S: stair descent;
U-S: stair ascent; D-R: ramp descent; U-R: ramp ascent and W: level-ground walking. The three
human subjects are required to walk on different terrains at natural speeds. In the control software,
the predictive locomotion mode labels are recorded by three different ways, i.e., SVM, PSO-SVM
and PSO-SVM with MVA. As discussed previously, the confusion matrix can be used to show the
identification accuracy. Three confusion matrices are shown in Tables 2–4.

Table 2. Confusion matrix for experimental results of SVM without PSO.

D-S U-S D-R U-R W

D-S 86.4% ± 1.2% 4.73% ± 0.6% 0.15% ± 0.04% 1.5% ± 0.13% 7.22% ± 1.1%
U-S 25.3% ± 0.85% 72.1% ± 1.56% 0.0% ± 0.0% 0.0% ± 0.0% 2.62% ± 0.2%
D-R 10.98% ± 1.1% 3.28% ± 0.2% 75.9% ± 1.24% 4.34% ± 0.03% 5.5% ± 0.23%
U-R 17.72% ± 1.05% 5.54% ± 0.04% 0.94% ± 0.25% 63.97% ± 2.56% 11.84% ± 0.42%
W 7.3% ± 0.25% 2.07% ± 0.13% 0.07% ± 0.01% 1.61% ± 0.13% 88.96% ± 2.1%

Table 3. Confusion matrix for experimental results of PSO-SVM.

D-S U-S D-R U-R W

D-S 97.6% ± 0.85% 1.05% ± 0.05% 0.15% ± 0.03% 0.06% ± 0.0% 0.06% ± 0.01%
U-S 2.45% ± 0.1% 97.4% ± 0.56% 0.0% ± 0.0% 0.0% ± 0.0% 0.18% ± 0.06%
D-R 1.64% ± 0.22% 0.67% ± 0.1% 95.4% ± 1.14% 0.39% ± 0.01% 1.93% ± 0.15%
U-R 1.87% ± 0.03% 0.6% ± 0.0% 0.26% ± 0.02% 93.8% ± 0.25% 3.5% ± 0.24%
W 1.94% ± 0.11% 0.6% ± 0.02% 0% ± 0.0% 0.54% ± 0.02% 96.9% ± 0.86%

Table 4. Confusion matrix for experimental results with MVA under PSO.

D-S U-S D-R U-R W

D-S 99.5% ± 0.05% 0.0% ± 0.0% 0.0% ± 0.0% 0.05% ± 0.05% 0.0% ± 0.0%
U-S 0.34% ± 0.01% 98.3% ± 0.62% 0.0% ± 0.0% 0.85% ± 0.05% 0.51% ± 0.02%
D-R 0.01% ± 0.01% 0.58% ± 0.08% 97.3% ± 0.45% 0.0% ± 0.0% 2.02% ± 0.05%
U-R 0.77% ± 0.1% 0.0% ± 0.0% 0.51% ± 0.12% 97.36% ± 0.66% 2.13% ± 0.13%
W 0% ± 0% 0.0% ± 0.0% 0.0% ± 0.0% 0.47% ± 0.11% 98.66% ± 0.24%

The elements of confusion matrices are presented by the format of mean and standard error.
As Table 1 shows, the maximum identification accuracy happens in the mode of level ground walking
at 88.96% and the minimum identification accuracy is about 63.97% during the upstairs walking.
Table 2 shows the identification accuracy of the case of PSO-SVM. As Table 2 shows, all locomotion
modes have the identification accuracy over 93.8%. The locomotion mode of walking downstairs has
the maximum identification accuracy at 97.6%. Compared with Table 1, it is obvious that PSO-SVM
has a higher accuracy of the identification. Table 3 shows the identification results by using MVA for
the PSO-SVM. The minimum identification accuracy is 97.3% and the maximum is 99.5%. It can be
concluded that the application of MVA is effective to improve the identification accuracy. The average
identification accuracy can be shown in Figure 14. Figure 14a shows that the post-processing for
the identification labels can improve the accuracy and Figure 14b depicts that the optimized SVM
is superior. The proposed PSO-SVM with MVA has high identification accuracy. Figure 15 shows
the identification result of one human subject using the proposed method. Five locomotion modes
can be identified well except several misidentifications. Some instances of D-S are misidentified as
U-R, and some instances of U-S are misidentified as D-S, and some instances of D-R are misidentified
as D-S or W, and some instances of U-R are misidentified as D-S or W, and some instances of W are
misidentified as D-S.
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Figure 15. The classification result using PSO-SVM with MVA. Those five instances along the sample
axis are those five locomotion modes. Misidentification happens when the actual instances (the circle
point) misalign with the prediction instances (the star point).

The performance index of ID is used to evaluate the real-time capability of the proposed
identification strategy. In this paper, the transition between locomotion modes happens from the
level-ground walking to others, vice versa. Hence, there are eight kinds of transition for locomotion
modes, i.e., W to D-S, D-S to W, W to U-S, U-S to W, W to D-R, D-R to W, W to U-R, and U-R to W.
The IDs of those transitions are shown in Table 5. As Equation (27) shows, the ID is determined by
the Ti, Tc and Tgait. As Table 5 shows, the negative ID shows the Ti is smaller than the Tc, while the
positive ID shows the Ti is larger than the Tc. The transition of W to D-S or D-S to W has the largest ID,
while the transition of W to U-R, U-R to W has the smallest ID. If the ID is large, the corresponding
transition is easy to be misidentified.
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Table 5. DIs of locomotion mode transitions with the proposed strategy.

Transition ID

W to D-S 48% ± 2.8%
D-S to W 46.8% ± 4.5%
W to U-S −10.4% ± 1.2%
U-S to W −6.4% ± 0.8%
W to D-R 31.5% ± 2.45%
D-R to W 40.5% ± 5.2%
W to U-R 2.5% ± 0.8%
U-R to W 4.5% ± 1.8%

5. Discussion

An online SVM algorithm with PSO was proposed to identify different locomotion modes in real
time for a robotic rehabilitation exoskeleton. In the proposed algorithm, a majority vote algorithm
was applied to improve the identification accuracy. Experiments were performed on three human
subjects and the experimental results validated that the proposed method is effective for locomotion
mode identification.

The proposed method needs six GRF sensors in the wearable shoes and two AHRS sensors on
the mechanical parts and there is no need to mount any sensors on the human body, which is very
convenient in actual applications. Some work in the locomotion mode identification cares about the
steady identification accuracy [12]. This work presents both of steady locomotion mode identification
and the transition between them as [18,19] do. In [18], six locomotion modes are identified and the
identification accuracy is 99.71% ± 0.05%. Four pressure sensors and three IMUs are placed in the
insole and one the leg segment, respectively. However, the experiments are performed on the human
subject without any mechanical structure. The accuracy of locomotion mode identification in [19] is
98.74% ± 0.32% and the average identification delay is 9.06% ± 3.46%. The proposed method could
achieve accuracy of 98.35% ± 1.65% for different locomotion modes, which is nearly close to the
identification accuracy in [19]. The proposed method used WPA to generate a feature set and kPCA
to reduce the dimension of the features. Those sensors are placed on mechanical links to reduce the
subject fatigue, which is appropriate for long time use. The analysis of identification delay shows that
the proposed method can correctly identify all the studied eight transitions between five locomotion
modes and the average identification delay is 19.25% ± 2.44% of one gait cycle, which is far less than
one step. In general, the transitions between those locomotion modes can be obtained in advance and
can control the robotic exoskeleton system to react immediately.

The proposed method should be improved to solve some problems. The identification delay of
the transitions between level ground and stair descent and between level ground and ramp descent is
over 30%, which is relatively long and may cause lagging adjustment of the rehabilitation exoskeleton
control. The robotic exoskeleton did not consider the speed variation and the transitions between stair
descent and stair ascent. In future, the method of identifying the locomotion modes may be applied
and extended in the real robotic exoskeleton.

6. Conclusions

In this paper, we have proposed to use an online optimal SVM algorithm with PSO to identify
five kinds of locomotion modes. With the GRF signals and the AHRS signals, the WPA was used
to extract features from the combination time series signals. The experiments were performed
on three healthy subjects in the laboratory and the results verified the proposed approach. Two
indexes, i.e., identification accuracy and identification delay, were used to illustrate the performance of
the proposed method. This paper proposed to combine the GRFs measured by the force sensors
in the wearable shoes and the postures of the foot and the shank to be the signal sources for
locomotion mode identification. Only two kinds of sensors were applied. The SVM with PSO can
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improve the identification accuracy by about 20% compared with that only using SVM. Meanwhile,
the improvement of accuracy with MVA is nearly 3%.
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