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A role for Rtt109 in buffering gene-dosage imbalance during DNA replication
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ABSTRACT
Chromatin can function as an integrator of DNA-related processes, allowing communication, for
example, between DNA replication and gene transcription. Such communication is needed to
overcome the gene-dosage imbalance introduced during DNA replication, when certain genes are
replicated prior to others. Increased transcription of early replicating genes could alter regulatory
balances. This does not occur, suggesting a mechanism that suppresses expression from newly
replicated DNA. Critical to this buffering is Rtt109, which acetylates the internal K56 residue of newly
synthesized histone H3 prior to incorporation onto DNA. H3K56ac distinguishes replicated from
non-replicated DNA, communicating this information to the transcription machinery to ensure
expression homeostasis during S phase.
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Chromatin as an integrator of different
DNA-Related processes

DNA serves as a template for multiple processes,
including gene transcription, DNA replication and
DNA repair. As such, it needs to comply with differ-
ent, often competing, requirements. For example, gene
transcription is tightly regulated, requiring easy access
of RNA polymerase to specific genomic regions, while
preventing polymerase binding to others. DNA repli-
cation, on the other hand, requires that DNA polymer-
ase accesses origins of replication, and proceeds to
access each and every part of the genome. The repair
machinery of DNA damage requires localized access
to random regions. The genome is therefore co-opti-
mized for multiple DNA-dependent processes, which
interact and influence each other through the use of
the same template, and occasionally the same regula-
tory proteins.

Access to DNA is largely regulated by the chroma-
tin environment in which DNA is embedded. DNA is
wrapped around histone octamers (nucleosomes),
which form the basic units of chromatin. The histones
can be modified on multiple residues by the addition
of chemical groups, such as acetyl or methyl.1 These

modifications modulate the electrostatic attraction,
and thereby the binding strength between histones
and DNA. Further, specific modifications directly
recruit regulatory factors to enable specific functions.2

Differential modification of histones along the
genome can potentially influence all DNA-related pro-
cesses. This modification pattern, termed the ‘epige-
netic landscape’ is shaped by chromatin modifiers that
modify histones at specific positions both in prepara-
tion to processes such as gene transcription or DNA
replication, or as a consequence of these same pro-
cesses.3 As such, histone modification provides a
means for communication and cross-regulation
between different DNA regulated processes (Fig. 1A).

DNA replication and gene transcription

Particularly notable is the mutual interplay between
DNA replication and gene transcription. In eukar-
yotes, replication initiates from multiple genomic loci
called origins of replication, with each origin produc-
ing 2 replication forks that progress in opposite direc-
tions.4 In most eukaryotic cells, the process of DNA
replication occupies a small part of the cell cycle,
reaching ~20-30% in rapidly dividing yeast or human
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cells.5,6 Therefore, the epigenetic landscape is largely
defined by processes that are related to gene expres-
sion, which occur throughout the cell-cycle. DNA rep-
lication, however, largely perturbs this landscape.
First, specific modifications are used to define

replication origins, or are deposited during the course
of DNA polymerase progression.7,8 In addition, histo-
nes must be removed from the DNA template to
enable replication fork progression and then restored
in the wake of the fork.9

Figure 1. Histone modification as a means for communication and cross-regulation between different DNA regulated processes. (A)
Histone modifications can serve as a platform for communication between the different DNA-dependent processes: DNA-related pro-
cesses are coupled to changes in histone modifications and histone turnover. These include the eviction and assembly of histones
during DNA replication and transcription, the modification of histones, in preparation and during these processes, and the recruit-
ment of specific proteins (e.g. DNA repair machinery following DNA damage). We propose that through the platform of histone
modifications, one process can pass information needed for the regulation of other DNA-dependent processes. (B) H3K56ac as a
signal of communication between DNA replication and transcription: During replication, newly synthesized histones are acetylated
by Rtt109 and Asf1 on H3K56. These histones are incorporated in replicated loci, allowing the discrimination between replicated
and non-replicated regions. In turn, this information deposited by a replication-associated process, allows tuning expression to
buffer changes in DNA dosage.

376 Y. VOICHEK ET AL.



The most notable impact of DNA replication on the
epigenetic landscape is probably the use of newly syn-
thesized histones for wrapping the newly replicated
DNA.10 These new histones lack position-specific
modifications, but instead are generally modified on
multiple residues. Several regulatory factors partici-
pate in this pre-deposition modification, some being
dedicated to this task. For example, the histone acetyl-
transferase Rtt109 acetylates newly synthesized H3 on
the internal K56 residue prior to its incorporation
onto DNA.10 Other residues that are acetylated prior
to incorporation include H4K5 and H4K12.11,12 By
contrast, modifications typically associated with active
transcription, such as histone tri-methylation,13 are
absent from newly synthesized histones. Further, in a
recent study we provided evidence that a specific mod-
ification, H3K9ac, is deposited ahead of the replication
fork, in an apparent preparation for DNA replica-
tion.14 This modification appears as a wave that pre-
cedes the replication fork by ~5Kb, perhaps enabling
smoother fork progression. The replication-dependent
deposition is strictly dependent on Rtt109, while
Gcn5, the second enzyme catalyzing H3K9 acetyla-
tion, fully accounts for expression-dependent
H3K9ac.14

The epigenetic landscape is therefore perturbed by
DNA replication. Potentially, this could be used for
encoding novel regulatory programs that could modu-
late gene expression. Yet, some modifications should
be recovered to relax the genome back to (presum-
ably) expression-optimized state. In some cases, a
modification remaining on one copy may be used to
define the modification on another copy, either
directly or by recruiting appropriate factors, forming
an epigenetic memory.15 In other cases, modifications
may be relaxed back passively, deposited back pro-
gressively through the same regulatory factors or pro-
cesses that deposited it to begin with, prior to
replication.14,16

It is generally difficult to distinguish cases of epige-
netic memory from passive retrieval. Still, general
trends can be deduced by analyzing the dynamics with
which modifications are retrieved following replica-
tion. Mass-spectrometry analysis of histones during
and post replication in HeLa-cells, for example,
reported that most residues, including H3K27,
H3K36, and H3K9 monomethylations, recover rap-
idly, while H3K9 and H3K27 tri-methylation post-
replication deposition is slow, and largely delayed,

with full deposition requiring several cell cycles.17 We
recently studied the dynamics of retrieval by following
the genome-wide pattern of multiple histone modifi-
cations during and after replication using ChIP-Seq in
budding yeast.14 Also here, some modifications
appeared on replicated DNA quite immediately (e.g.
H4K16ac, H3K4me1), whereas all tri-methylation
were deposited with a significant delay that extended
for over 20 min. Notably, this delayed deposition was
largely correlated with gene transcription strength and
gene promoter structure, so that actively transcribing
genes were tri-methylated significantly faster than
low-expressing ones. Thereby, replication-indepen-
dent processes, rather than active epigenetic memory
account for the recovery of histone tri-methylation
pattern following DNA replication.

Maintaining expression homeostasis during DNA
replication

In addition to the changes in the epigenetic landscape,
DNA replication could potentially perturb gene
expression by the mere fact that gene dosage is pro-
gressively modified. That is, genes that replicate early
in S phase increase in dosage prior to genes that repli-
cate in late S. This gene dosage imbalance could
potentially perturb cellular functions. Indeed, while
cells are typically insensitive to dosage of individual
genes, duplication of some genes can have deleterious
effects, as exemplified by disease-associated genes
such as SNCA in Parkinson disease and NSD1 in
growth retardation.18 Further, whole chromosome
duplication (aneuploidy) exerts deleterious effects on
growth.19,20 How do cells handle the transient dosage
imbalance during DNA replication?

In bacteria, replication-induced dosage imbalance is
immediately translated into imbalanced expression.21

In fact, bacteria use this imbalance as means for regu-
lation, capitalizing on this effect for tuning expression
with growth rate, inducing specific processes in slow-
growing cells, or up-regulating DNA repair genes in
response to drugs that slowdown replication.22,23 In
sharp contrast, studies in multiple eukaryotic cells
suggested the ability to buffer these dosage changes
during DNA replication. Classical studies reported
that total mRNA synthesis rate does not increase spe-
cifically during S phase.24–26 Further, more recently, it
has been shown that individual genes do not increase
in expression as cells enter S phase using smFISH or
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live imaging.27,28 Rather, while transcription can now
occur from both copies of the DNA, the rate by which
transcripts are made is reduced by about 2-folds, largely
maintaining the pre-replication transcription rate.

How general is the buffering of gene dosage during
S phase? While lack of correlation between overall
mRNA synthesis and DNA replication may suggest
genome-wide buffering, it still allows the alternative
interpretation that some process, other than DNA is
limiting for gene transcription. For example, if RNA-
Pol II levels are limiting, total mRNA synthesis would
not increase during DNA replication, yet the distribu-
tion of polymerases between the genes would change,
biasing transcription toward early replicating genes.
We therefore examined whether buffering occurs as a
global phenomenon by following genome-wide tran-
scription of cells synchronously progressing through S
phase.29 Comparing transcription of early replicating
genes to that of late replicating ones supported buffer-
ing: mRNA levels of early replicating genes remained
largely constant (increasing by only 10-15%) during S
phase, despite a significant increase in their DNA con-
tent (reaching ~60-70%). Therefore, the increase in
gene dosage during S phase is largely suppressed to
maintain expression homeostasis.

Expression homeostasis during DNA replication
depends on replication-associated chromatin
modification

How gene-dosage imbalance accompanying DNA rep-
lication is buffered at the molecular level? Key to buff-
ering is the ability to distinguish replicated from non-
replicated DNA, suggesting that chromatin modifica-
tion may be involved. Searching for buffering-related
factors would optimally involve assaying expression of
all chromatin associated mutants as they progress syn-
chronously through S phase. As a surrogate for this
effort, we analyzed a dataset published by the lab of F.
Holstege, reporting the transcription profile of 165
chromatin-associated mutants.30 Despite using asyn-
chronous cultures, in which only ~25% are actively
replicating, the resolution of the data enabled detect-
ing mutants in which expression of early replicating
genes increased relative to that of late replicating ones,
indicating loss of buffering.

Two related factors were identified as critical for
buffering the gene dosage imbalance during S phase:
the acetyltrasferase Rtt109 and its associated chaperone

Asf1.31,32 This requirement, detected in asynchronous
cells, was validated using time course experiments. In
fact, in cells deleted of Rtt109, mRNA synthesis of early
replicating genes increased to the same extent as the
increase in their DNA content. Both factors are period-
ically expressed in G1/S-phase and acetylate histone
H3 on the internal K56 residue and the tail K9 residue.
To define the specific modification mediating buffering,
we examined histone mutants incapable of undergoing
this modification.33 Unmodifiable H3K9 had no effect
on buffering, while H3K56 was required. In fact, buff-
ering was fully lost in the 2 mutants changing H3K56
to mimic either constantly non-acetylated (H3K56A)
or to constantly acetylated (H3K56Q) form.

We therefore conclude that Rtt109-dependent
H3K56ac mediates the buffering of gene dosage dur-
ing DNA replication (Fig. 1B). This modification is
indeed optimally suited for this task: it is added to H3
prior to its incorporation onto DNA, and marks the
newly replicated DNA.10,34 This modification is
removed at the end of S phase by the 2 deacetylases
HST3 and HST4,35 thereby retrieving wild-type tran-
scription and allowing cells to prepare for the next
replication cycle.

The role of Rtt109 as modulator of gene
expression

The loss of expression homeostasis during S phase
in cells deleted of Rtt109, or in cells that cannot
acetylate H3K56ac, suggests that this modification
suppresses transcription. Yet, previous studies
which analyzed the role of Rtt109 in gene tran-
scription suggested that it in fact acts to enhance,
rather than repress gene expression.36–38 While
these studies focus on individual genes, and could
potentially be explained as specific effects (e.g.,
Snf5, implicated in activation of histone genes
through H3K56ac,36 was included in the Lenstra
et al. data set but did not show loss of buffering),
experiments which analyzed the genome-wide pat-
tern of H3K56ac found no correlation between the
abundance of this modification and gene expres-
sion.39,40 What could be the cause of these
differences?

The role of Rtt109/H3K56ac in expression homeo-
stasis is specific to S phase, the time in which this
modification is most apparent on the genome. By con-
trast, the potential role of this modification in gene
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activation did not distinguish this phase. Notably, rep-
lication-specific effects of H3K56ac on chromatin
structure were described: while H3K56ac promotes
nucleosome disassembly during transcription activa-
tion,37 it in fact promotes nucleosome assembly dur-
ing DNA replication (as well as during DNA damage
repair).10,41 This role in nucleosome assembly,
observed during DNA replication, may shift the bal-
ance toward a more closed chromatin structure, con-
sistent with the suppression of gene expression.
Alternatively, H3K56ac may also recruit regulatory
factors specifically during S phase.42,43 For example,
during DNA replication, H3K56ac shows increased
affinity to the assembly factors Rtt106 and Caf1.10,43

Supporting this replication-specific effect, H3K56ac
abundance in wild-type cells correlates with changes
in gene expression during replication in Drtt109 but
not in WT cells.29

Conclusion

Distinguishing replicated from non-replicated regions is
critical for buffering the transient gene dosage imbalance
during DNA replication. This information is communi-
cated from the replication process to affect transcription
through the replication-associated modification
H3K56ac. We hypothesize that this role of chromatin as
a communication platform between different DNA
related processes may extend further. For example, a
histone modification added during DNA damage may
limit gene expression from genes in the damaged region.
Similarly, modifications that are specific to highly
expressing genes may signal to influence replication fork
progression to limit possible collisions between RNA
and DNA polymerase. It would be interesting to explore
these, or similar avenues of communication, which
could help understand how the genome is co-optimized
for multiple, parallel processes.

Finally, it is worthwhile noting that the involve-
ment of Rtt109 in the homeostasis mechanism
described was first observed in a published dataset
that was reported for different purposes. This empha-
sizes the great potential and possibilities that are now
presented with the accumulation of high quality
genome-wide data that is open access to all.44
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