
Estimating differences and ratios in median times to event

Elizabeth T. Rogawski1, Daniel J. Westreich1, Gagandeep Kang2, Honorine D. Ward3, and 
Stephen R. Cole1

1Department of Epidemiology, University of North Carolina – Chapel Hill, North Carolina

2Division of Gastrointestinal Sciences, Christian Medical College, Vellore, India

3Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston

Abstract

Time differences and time ratios are often more interpretable estimates of effect than hazard ratios 

for time-to-event data, especially for common outcomes. We developed a SAS macro for 

estimating time differences and time ratios between baseline-fixed binary exposure groups based 

on inverse probability weighted Kaplan-Meier curves. The macro uses pooled logistic regression 

to calculate inverse probability of censoring and exposure weights, draws Kaplan-Meier curves 

based on the weighted data, and estimates the time difference and time ratio at a user-defined 

survival proportion. The macro also calculates the risk difference and risk ratio at a user-specified 

time. Confidence intervals are constructed by bootstrap. We provide an example assessing the 

effect of exclusive breastfeeding during diarrhea on the incidence of subsequent diarrhea in 

children followed from birth to 3 years in Vellore, India. The SAS macro provided here should 

facilitate the wider reporting of time differences and time ratios.

INTRODUCTION

In longitudinal observational studies of the occurrence and timing of health outcomes, 

analyses often make extensive use of Cox proportional hazards models1 to estimate adjusted 

hazard ratios. Hazard ratios have several methodological limitations,2 and may be difficult to 

interpret when applied to common outcomes. For example, because almost all children will 

have multiple diarrhea episodes during the first few years of life, an estimate of increased 

relative hazard comparing two exposure conditions cannot be interpreted as a relative 

difference in the number of children experiencing the outcome between groups since the 

overall risk is near 100%. Here, estimates of the difference in timing of outcomes may be 

more relevant.

While the time ratio measure can be estimated parametrically using accelerated failure time 

models,3,4 these models have the disadvantage of requiring parametric assumptions if there 
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is no strong evidence that the data follow a particular distribution. Bayesian models can 

provide adjusted means and credible intervals of median times and ratios,5 and censored 

quantile regression provides an option to semiparametrically estimate contrasts in survival 

times using the Kaplan-Meier estimator.6 However, these methods are not widely used by 

epidemiologists. Here, we offer here an additional method in a SAS macro to estimate time 

differences and time ratios between baseline-fixed binary exposure groups based on inverse 

probability weighted Kaplan-Meier curves.

METHODS

Inverse probability weighting is a parametric approach to standardize functionals of the 

observed data to the total population distribution of confounders7,8 and results in marginal 

effect estimates. Each stabilized exposure weight (SWi
E) is the marginal probability of a 

subject’s observed exposure divided by the probability of her observed exposure conditional 

on her observed covariates, or

where Xi is subject i’s exposure and Zi is subject i’s covariates.

Censoring weights (SWi,t
C)9,10 are constructed over time as the marginal probability of a 

subject’s censoring status divided by the probability of her censoring status conditional on 

her observed baseline covariates. This quantity is multiplied by the same quantity at all 

previous time intervals, such that

where Ci,t is an indicator for censoring at time t, and t is the time interval ranging from 0 

(baseline) to the interval of subject i’s event or censoring. Final inverse probability of 

exposure and censoring weights are calculated for each time interval as the product of the 

time-fixed exposure weight and the time-varying censoring weight, or . 

The weights can be truncated by resetting the values of weights outside extreme percentiles 

of the weight distribution to their values at specified percentile cut-offs. Further details on 

constructing inverse probability weights are available.11

Time differences are defined as the difference in the time each exposure group reaches a 

given survival percentile p, t1,p and t0,p, and can be calculated by subtracting these times as 

read off the Kaplan-Meier curves, t1,p − t0,p. Time ratios are similarly defined as the ratio of 

these two times, . Figure 1 shows schematically how to calculate a median time 

difference and ratio (i.e. p=0.5) from two sample curves.
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Macro

Based on the above, the SAS macro provided here performs an analysis by calculating 

inverse probability of exposure and censoring weights for a binary exposure, drawing 

Kaplan-Meier curves based on the weighted data, and then estimating the effect measures 

requested by the user. First, the macro uses a logistic regression model (fit with PROC 

LOGISTIC) to calculate inverse probability of exposure weights stabilized by the marginal 

probability of exposure for a binary exposure.12 Inverse probability of censoring weights9,10 

are then calculated by segmenting the time-scale into deciles based on the distribution of 

drop-out times. Probability of censoring is calculated in each time decile using pooled 

logistic regression (fit with PROC LOGISTIC) and censoring weights (SWt
C) are 

constructed within time deciles. Final weights, calculated as the product of the exposure and 

censoring weights, are truncated at percentiles specified by the user.

Inverse probability-weighted Kaplan-Meier curves are drawn for exposed and unexposed 

groups (using PROC PHREG),9,12,13 and the time difference (t1,p − t0,p) and time ratio 

 at p% survival are calculated. The macro also calculates the risk difference (R1,t 

− R0,t) and risk ratio  at time t = q, where R1 and R0 are the risks in the exposed 

and unexposed groups, respectively. The macro constructs 95% confidence intervals (CI) by 

non-parametric bootstrap with a user-defined number of simple random resamples each of 

the original sample size.14 Two confidence intervals are produced:15 directly using the 2.5th 

and 97.5th percentiles of the effect estimate distribution and using the standard deviation 

(SD) of the effect estimates to calculate Wald-based confidence limits 

. Comments in the eAppendix provide users with guidance on 

choosing confidence intervals and the number of bootstrap resamples.

To run the macro, the user inputs the dataset name, a subject ID variable, binary exposure 

indicator, list of covariates, time at outcome, binary outcome indicator, indicator for macro 

to include censoring weights (default is 1=yes), binary dropout indicator, low and high 

percentiles for truncating weights (default is 0 and 100 corresponding no truncation), 

survival proportion to calculate time differences/ratios (default is 0.5, corresponding to the 

median survival time), time to calculate risk differences/ratios, number of bootstrap 

resamples (default is 2000), and a seed for random sampling (see eAppendix for further 

information and annotated code).

Example

We provide an example using combined data from three prospective observational cohort 

studies of diarrhea among children from Vellore, India conducted between 2002 and 

2013.16–18 The studies were approved by the Institutional Review Boards of the Christian 

Medical College, Vellore, India and Tufts University Health Sciences campus, Boston, USA. 

The data set includes 982 children who were followed weekly or twice-weekly from birth to 

3 years of age. We assessed the effect of exclusive breastfeeding during diarrhea on the 

incidence of subsequent diarrhea. The exposure was exclusive breastfeeding at a child’s first 

diarrhea episode, defined as feeding with breast milk only with the exception of vitamins, 
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mineral supplements, and medicines.19 The event of interest was an incident second diarrhea 

episode, defined as at least three loose or watery stools in a 24-hour period.20 Covariates 

were age and malnutrition status at first episode, child sex, low birth weight (<2.5 kg), 

socioeconomic status (based on the modified Kuppuswamy scale21), maternal education, and 

household hygiene (based on a composite score of water, food, and personal hygiene 

practices). 24 (2.4%) missing low birth weight values were set to the mean value. Censoring 

weights were not included since there were only 4 drop-outs. The inverse probability-

weights were truncated11 at the 0.5th and 99.5th percentiles with a mean of 0.92 and range 

from 0.46 to 9.85.

RESULTS

More than half of children stopped exclusively breastfeeding before their first diarrhea 

episode (n=548, 56%), and almost all children experienced a second diarrhea episode 

(n=848, 86%). Crude and inverse probability-weighted Kaplan-Meier curves are shown in 

Figure 2. After weighting, which largely adjusted for confounding by age, there was little 

evidence of an effect at all time points. The macro estimated that children who were 

exclusively breastfed at their first diarrhea episode had their second episode 2 weeks later 

than children who were not exclusively breastfed (weighted median time difference: 2 

weeks, 95% CI: −2, 5). Median time ratio, 6-month risk difference, and risk ratio results are 

also shown in the Table. Both the crude and adjusted results were similar when using age as 

the timescale to account for confounding by age (Table, eFigure 1). For comparison with the 

estimated time difference of 2 weeks, the hazard ratio from a marginal structural Cox model 

with weights for the same baseline covariates was 0.95 (95% CI: 0.82, 1.1) and was 0.87 

(95% CI: 0.73, 1.1) from a Cox model conditional on baseline covariates.

DISCUSSION

Time difference and ratio measures derived from inverse probability-weighted Kaplan-Meier 

curves provide highly interpretable summaries of time-to-event data, especially for common 

outcomes. Because the use of weighted Kaplan-Meier curves allows for adjustment for 

covariates without reliance on a proportional hazards assumption, several of the main 

disadvantages of the Cox model are circumvented.2 The weighted survival curves presented 

here allow a visual representation of the potentially changing relationship between exposed 

and unexposed survival curves. Instead of being averaged over the duration of follow-up, 

time differences and ratios at a given survival proportion can be calculated at any survival 

proportion, or at several. Similarly, risk differences and risk ratios can be calculated at any 

time over follow-up. However, we recommend that clinically important proportions and 

times are chosen a priori to prevent selectively reporting results in which the magnitude of 

estimates is greatest. Presentation of adjusted Kaplan-Meier curves also eliminates the 

inherent selection bias of the hazard ratio2 by focusing on survival, which accumulates with 

time and therefore does not continually restrict the samples under comparison.

The macro presented here is limited by the crude handling of measured informative 

censoring by calculating censoring weights within deciles of the time scale. This strategy 

allows users to input continuous time data with minimal dataset management. However, if 
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censoring is common, discretizing time (e.g. into person-weeks) and calculating weights in 

smaller intervals will allow for finer control of selection bias. We provide a version of the 

macro for discrete time data (e.g., with one observation per person-week) in the eAppendix. 

The weights presented can be extended to further account for time-varying exposure.13

Adjusted Kaplan-Meier curves9,12,13 and time differences and ratios should be reported 

more often as summary measures of effect; our hope is that the SAS macro provided here 

will facilitate their wider use.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic showing the calculation of the median time difference and time ratio from inverse 

probability-weighted Kaplan-Meier curves.
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Figure 2. 
Inverse probability-weighted Kaplan-Meier curves for time to second diarrhea episode by 

exclusive breastfeeding at the first episode among 982 children in birth cohorts from Vellore, 

Tamil Nadu, India 2002–2013. A – Crude (unweighted by covariates); B – Weighted by age 

at first episode, malnutrition status at first episode, child sex, low birth weight, 

socioeconomic status, maternal education, and household hygiene.

Rogawski et al. Page 8

Epidemiology. Author manuscript; available in PMC 2017 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Rogawski et al. Page 9

Ta
b

le
 1

E
st

im
at

ed
 e

ff
ec

t o
f 

ex
cl

us
iv

e 
br

ea
st

fe
ed

in
g 

at
 th

e 
fi

rs
t d

ia
rr

he
a 

ep
is

od
e 

on
 ti

m
e 

to
 s

ec
on

d 
ep

is
od

e 
am

on
g 

98
2 

ch
ild

re
n 

in
 b

ir
th

 c
oh

or
ts

 f
ro

m
 V

el
lo

re
, T

am
il 

N
ad

u,
 I

nd
ia

 2
00

2–
20

13
.

C
ru

de
W

ei
gh

te
da

E
st

im
at

e
95

%
 C

Ib
95

%
 C

Ic
E

st
im

at
e

95
%

 C
Ib

95
%

 C
Ic

T
im

es
ca

le
: 

ti
m

e 
si

nc
e 

fi
rs

t 
ep

is
od

e

  M
ed

ia
n 

tim
e

di
ff

er
en

ce
 (

w
ee

ks
)

−
3

−
5,

 1
−

6.
0,

 −
0.

0
2

−
2,

 5
−

2.
0,

 6
.0

  M
ed

ia
n 

tim
e 

ra
tio

0.
8

0.
7,

 1
.1

0.
7,

 1
.0

1.
15

0.
9,

 1
.5

0.
9,

 1
.5

  6
-m

on
th

 r
is

k
di

ff
er

en
ce

0.
08

0.
03

, 0
.1

4
0.

03
, 0

.1
4

−
0.

04
−

0.
12

, 0
.0

5
−

0.
13

, 0
.0

4

  6
-m

on
th

 r
is

k 
ra

tio
1.

1
1.

0,
 1

.2
1.

0,
 1

.2
0.

94
0.

83
, 1

.1
0.

83
, 1

.1

  H
az

ar
d 

ra
tio

1.
2

1.
1,

 1
.4

d
0.

95
0.

82
, 1

.1
d

T
im

es
ca

le
: 

ag
e

  M
ed

ia
n 

tim
e

di
ff

er
en

ce
 (

w
ee

ks
)

1
−

5,
 5

−
4.

4,
 6

.4
1

−
5,

 5
−

4.
4,

 6
.4

  M
ed

ia
n 

tim
e 

ra
tio

1.
1

0.
7,

 1
.5

0.
7,

 1
.6

1.
1

0.
7,

 1
.5

0.
7,

 1
.6

  6
-m

on
th

 r
is

k
di

ff
er

en
ce

−
0.

03
−

0.
13

, 0
.0

6
−

0.
13

, 0
.0

6
−

0.
03

−
0.

12
, 0

.0
7

−
0.

13
, 0

.0
6

  6
-m

on
th

 r
is

k 
ra

tio
0.

96
0.

86
, 1

.1
0.

85
, 1

.1
0.

96
0.

85
, 1

.1
0.

85
, 1

.1

a W
ei

gh
te

d 
by

 a
ge

 a
t f

ir
st

 e
pi

so
de

, m
al

nu
tr

iti
on

 s
ta

tu
s 

at
 f

ir
st

 e
pi

so
de

, c
hi

ld
 s

ex
, l

ow
 b

ir
th

 w
ei

gh
t, 

so
ci

oe
co

no
m

ic
 s

ta
tu

s,
 m

at
er

na
l e

du
ca

tio
n,

 a
nd

 h
ou

se
ho

ld
 h

yg
ie

ne
; w

ei
gh

ts
 tr

un
ca

te
d 

at
 0

.5
th

 a
nd

 9
9.

5t
h 

pe
rc

en
til

es

b C
on

fi
de

nc
e 

in
te

rv
al

 u
si

ng
 th

e 
2.

5t
h  

an
d 

97
.5

th
 p

er
ce

nt
ile

s 
of

 2
00

0 
bo

ot
st

ra
p 

re
pl

ic
at

es

c W
al

d-
ba

se
d 

co
nf

id
en

ce
 in

te
rv

al
 w

ith
 2

00
0 

bo
ot

st
ra

p 
re

pl
ic

at
es

d W
al

d-
ba

se
d 

co
nf

id
en

ce
 in

te
rv

al
 f

ro
m

 C
ox

 p
ro

po
rt

io
na

l h
az

ar
ds

 m
od

el

Epidemiology. Author manuscript; available in PMC 2017 November 01.


	Abstract
	INTRODUCTION
	METHODS
	Macro
	Example

	RESULTS
	DISCUSSION
	References
	Figure 1
	Figure 2
	Table 1

