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Abstract

Purpose—An understanding of the pharmacokinetic (PK) and pharmacodynamic (PD) principles 

that determine response to antimicrobial therapy can provide the clinician with better-informed 

dosing regimens. Factors influential on antibiotic disposition and clinical outcome are presented, 

with a focus on the primary site of infection. Techniques to better understand antibiotic PK and 

optimize PD are acknowledged.

Methods—PubMed (inception – April 2016) was reviewed for relevant publications assessing 

antimicrobial exposures within different anatomical locations and clinical outcomes for various 

infection sites.

Findings—A limited literature base indicates variable penetration of antibiotics to different target 

sites of infection, with drug solubility and extent of protein binding providing significant PK 

influences in addition to the major clearing pathway of the agent. PD indices derived from in vitro 
and animal models determine the optimal magnitude and frequency of dosing regimens for 

patients. PK/PD modeling and simulation has been shown an efficient means of assessing these 

PD endpoints against a variety of PK determinants, clarifying the unique effects of infection site 

and patient characteristics to inform the adequacy of a given antibiotic regimen.

Implications—Appreciation of the PK properties of an antibiotic and its PD measure of efficacy 

can maximize the utility of these life-saving drugs. Unfortunately, clinical data remains limited for 

a number of infection site-antibiotic exposure relationships. Modeling and simulation can bridge 

preclinical and patient data for the prescription of optimal antibiotic dosing regimens, consistent 

with the tenets of personalized medicine.
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Introduction

Antibiotics are a key component of modern medicine, utilized in over half of all US 

hospitalizations, with over 250 million additional treatment courses provided in the 

outpatient setting per year.1,2 Along with other classes of anti-infectives, they represent a 

uniqueness in pharmacotherapy, where one patient’s prescription can have a direct effect on 

others’, as antimicrobial utilization remains the primary driver of organism resistance.3,4 

Despite antibiotic resistance having long been declared a major threat to global public 

health,3,5,6 the landscape of antimicrobial development has remained arid, with no agents 

with novel mechanisms of action against resistant Gram-negative organisms currently in 

late-stage clinical trials.7-9 It is abundantly clear that optimization of antibiotic prescribing is 

necessary to preserve our current armamentarium. While stewardship practices focusing on 

the restriction of use and shortening of treatment duration are well-cited,10,11 further 

research on antibiotic pharmacokinetic (PK) and pharmacodynamic (PD) properties that 

maximize the probability of successful outcome is needed.

This review serves to provide the clinician with the principal PK/PD considerations for the 

most common antibiotics encountered in US hospital settings (beta-lactams, vancomycin, 

fluoroquinolones, and aminoglycosides). The information contained herein can assist in 

producing dosing regimens that maximize clinical benefit while minimizing the risk of 

toxicity. While these concepts remain salient to antifungals and antivirals, such agents are 

beyond the scope of this review. Particular emphasis will be placed on the site of infection 

when applying these concepts to patient care. This review is by no means exhaustive, and the 

interested reader is encouraged to access the provided references and available 

textbooks12,13 for a more in-depth discussion of antimicrobial PK/PD. Instead, the goal is to 

discuss the key principles related to rational selection of an antibiotic dosing regimen, which 

remain applicable to agents not discussed here in addition to new agents as they enter 

clinical practice.

Methods

PubMed (inception – April 2016) was searched for relevant publications using combinations 

of the search terms “antibiotic”, “penicillin”, “cephalosporin”, “carbapenem”, 

“vancomycin”, “fluoroquinolone”, “aminoglycoside”, “penetration”, “blood”, 

“bloodstream”, lung”, “epithelial lining fluid”, “soft tissue”, “interstitial fluid”, “bone”, 

“central nervous system”, “cerebrospinal fluid”, “pharmacodynamic”, and “outcome”. 

Reference lists of identified publications were also reviewed for relevant articles.
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Antimicrobial Pharmacokinetics

General Considerations

The kinetics of a drug refer to its rate of change as it traverses through a biological system, 

and is governed by the four essential processes of absorption, distribution, metabolism, and 

excretion. While antibiotic PK is often considered in terms of the body’s effect on the drug, 

the agent’s physicochemical properties must also be considered to predict its disposition. 

Chief among them is the relative solubility of the antimicrobial, which can have a significant 

impact on its volume of distribution, and thus may prove key in selecting agents expected to 

attain adequate penetration to the site of infection.14,15 Also influential is the extent of 

protein binding the antibiotic exhibits, as only free, unbound drug is capable of exerting 

antimicrobial effects.16-19 As albumin is the primary plasma binding protein for the majority 

of antibiotics, its concentrations should be considered when implementing and adjusting 

dosing regimens, with highly protein bound agents being most affected.14,20-22 Finally, the 

agent’s major route of elimination warrants appreciation, particularly in times of changing 

clinical condition where development of end-organ dysfunction or critical illness can greatly 

enhance (renal failure)23,24 or reduce (augmented renal clearance) antibiotic exposures.25-27 

Table 1 summarizes these properties for the most commonly utilized parenteral antibiotics in 

the US hospital setting.

Site-Specific Considerations

With these PK properties in mind, it becomes clear that the primary infection site is a crucial 

variable in considering whether sufficient antibiotic exposures are likely to be attained for a 

given agent and dosing regimen. Indeed, the differing physiology of anatomical sites where 

bacteria can reside often result in variable degrees of antibiotic penetration and thus 

concentration at the site where pharmacologic effect occurs.14 The sections that follow 

examine the relationship between antibiotic PK and exposures in the blood, lung, soft tissue, 

bone, and central nervous system (CNS); a summative table outlining hypothetical dose 

alterations based on antimicrobial PK properties and infection site is provided in Table 2.

Blood—The bloodstream is perhaps the simplest infection site to consider, as it comprises 

the central compartment from which systemically administered drug distributes to the 

tissues. When treating a bacteremic patient, the clinician must account for the likelihood of 

the proposed antibiotic agent – and more importantly its proposed dosing regimen – to 

maintain sufficient exposures within the blood to rapidly clear the organism, as delays in 

appropriate therapy are associated with increased mortality.28-31 Of course, the factors 

described here must also be reconciled with identification of the primary source of infection, 

optimizing antimicrobial therapy for that site in parallel with blood to prevent recrudescence 

and the possibility of antibiotic resistance.

In addition to the underlying pathology of sepsis resulting in significant fluid extravasation 

and a high probability of augmented renal clearance,32,33 standard therapy bundles that 

include volume resuscitation and inotrope support are likely to further alter antibiotic PK, 

with hydrophilic, renally-cleared agents (beta-lactams, vancomycin, aminoglycosides) being 

most susceptible.34-37 Indeed, recent data has suggested that currently prescribed doses of 
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beta-lactams are prone to underexposure in the critically ill, yielding a lower probability of 

achieving positive clinical outcomes.38-41 Similar findings of suboptimal exposure for 

vancomycin26,36 and aminoglycosides42,43 have been observed, correlating with illness 

severity.44 In contrast, the lipophilic fluoroquinolones are minimally affected by changes in 

volume status, owing to their considerable permeability across membranes.34,45 While it 

could be inferred that the presence of augmented renal clearance would result in lower 

exposures of ciprofloxacin and levofloxacin, the evidence supporting this theory is, to date, 

lacking.

The presence of endocarditis necessitates the additional consideration of antibiotic 

penetration within the vegetation, as a high bacterial inoculum and production of biofilm can 

result in suboptimal concentrations and treatment failures.46,47 Work performed in vitro and 

in animals has demonstrated the general need for higher doses to attain sufficient 

exposures,48,49 though clinical evidence remains scarce for the agents under consideration 

here. Nevertheless, current clinical practice guidelines advocate the use of dosing regimens 

at the high end of the licensed dosing range (beta-lactams) or measured therapeutic range 

(vancomycin) to optimize treatment outcomes.46,50

Lung—The lung represents an additional infection site associated with high bacterial 

densities and variable antimicrobial penetration.14 The epithelial lining fluid (ELF) is 

considered the target site for the treatment of pneumonia caused by extracellular pathogens, 

representing an available matrix for the measurement of antibiotic concentrations.51,52 

While sparse, literature does exist describing ELF penetration of various antimicrobials in 

the clinical setting; the data provided below is focused on infected patients wherever 

possible.

Beta-lactams display a wide variability in ELF-to-plasma penetration ratio, ranging from 

0.21 for ceftazidime53 to 1.04 for cefepime.54 Piperacillin represents perhaps the most 

studied agent, with a reported ELF:plasma ratio of ~0.50 (with corresponding tazobactam 

values ranging from 0.65 to 1.21).55-57 A single report on ampicillin lung penetration found 

an ELF:plasma ratio of 0.53 (corresponding sulbactam value, 0.61).58 Preliminary data in 

healthy volunteers suggests an ELF:plasma ratio of 0.23 for ceftaroline,59 whereas a Phase I 

trial of ceftolozane produced a value of 0.48 (corresponding tazobactam value, 0.44).60 In 

the ceftolozane study of healthy volunteers, it is important to note the considerably lower 

degree of tazobactam penetration versus that observed in critically ill patients,55-57 which 

could be ascribed to an increase in paracellular permeability that accompanies 

inflammation;14 indeed, this study reported a demonstrably lower value for piperacillin as 

well (0.26). Counterintuitively, the opposite is found when considering meropenem, with 

lower ELF:plasma ratios reported for severely ill patients (~0.25)61,62 versus healthy 

volunteers (0.65),63 further indicating a critical need for antibiotic penetration studies in the 

target population. A singular study for ertapenem64 in critically ill patients suggests an 

ELF:plasma ratio of 0.30, whereas studies of doripenem65 and imipenem66 in healthy 

individuals report values of ~0.34, and 0.44, respectively. These findings indicate a relatively 

lower extent of ELF penetration for carbapenems versus penicillins in infected patients, 

whereas penetration ratios for cephalosporins remain highly variable. This, along with an 

inability to correlate penetration to extent of protein binding, emphasizes the need for careful 
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consideration of agent and regimen selection when treating patients for pneumonia.67,68 

Unfortunately, data is lacking for other commonly used beta-lactams such as cefazolin, 

ceftriaxone, and oxacillin/nafcillin.

Despite its high degree of utilization, the permeability of vancomycin into ELF has been 

severely understudied, with only a few reports to guide therapeutic decision.69-71 From this 

limited literature base, best estimates for ELF:plasma penetration range from ~0.18-0.50, 

with most authors recommending higher doses to achieve sufficient lung exposures. In stark 

contrast, lung penetration of ciprofloxacin, levofloxacin, and moxifloxacin has been 

extensively studied, with the high volume of distribution of fluoroquinolones producing 

ELF:plasma ratios exceeding 1.72-78 For aminoglycosides, lung disposition appears more 

complex, with gentamicin and tobramycin ELF:plasma ratios <1 early in the dosing interval, 

but >1 after 6-8 hours: this apparent PK hysteresis could be explained by the considerable 

hydrophilicity of these compounds, resulting in slow rates of movement across biological 

membranes.79-81 It must be cautioned, however, that in none of these studies were exposures 

examined over an entire dosing interval, thus the possibility of redistribution from ELF to 

plasma remains a significant and unresolved issue.

Soft tissue—Much like ELF for the lung, the interstitial fluid (ISF) concentration of an 

antibiotic provides the most appropriate measurement of target site exposure for 

extracellular infections of the soft tissue.82 Utilizing microdialysis techniques, which consist 

of implanting a perfused semipermeable membrane into the desired tissue and measuring 

drug concentrations within the dialysate, the most robust quantification of unbound (free) 

antibiotic in ISF can be achieved.83,84 The physicochemical properties of the antibiotic and 

its degree of protein binding largely dictate the extent of soft tissue penetration, as the 

vascular endothelium remains highly permeable to these small molecules.85 Importantly, 

then, the clinician must remain cognizant of the infected patient’s relative proportions of 

adipose and muscle, as lower exposures of some hydrophilic agents in the ISF of adipose 

relative to muscle tissue have been observed.35,86-88 Further, the expected increased volume 

of distribution of lipophilic agents with increased adipose may result in suboptimal 

concentrations to treat these infections. While the appreciable influence of obesity is beyond 

the scope of this review, general measures of body composition (fat free mass, percentage of 

ideal body weight) may be considered additional factors when determining suitable 

antibiotic dosing regimens for soft tissue infections.89,90

Bone—The composition of bone is unique, consisting of a matrix of collagen and 

hydroxyapatite that often provides a protected site for bacteria, evading the effects of the 

immune system and many antibiotics.14 With osteomyelitis being associated with a high 

relapse rate and protracted antibiotic courses, emphasis should be placed on optimization of 

dosing regimens and a better understanding of PK properties that can influence exposure at 

the target site.91,92 While again the literature is sparse, some overarching patterns can be 

discerned, albeit the majority of data has been derived from non-infected patients.92,93

As may be expected based on discussions of previous infection sites, beta-lactams display 

variable penetration into bone, with ratios compared to serum ranging from ~0.1 for 

oxacillin to ~1 for cefepime.94,95 Most beta-lactams, however, manifest bone:serum ratios 
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between 0.1 and 0.3, consistent with their hydrophilic nature.96-102 Similar variability and 

point estimates have been found for vancomycin in infected patients, with an average 

bone:serum ratio of ~0.20.100,103 Higher doses would thus be necessary if mirroring drug 

exposures in the blood is desired. Fluoroquinolones, maintaining high volumes of 

distribution secondary to their lipophilicity, achieve higher bone:serum ratios than beta-

lactams or vancomycin, ranging from ~0.35 (ciprofloxacin) to ~0.75 for levofloxacin.104-106 

Though studies are lacking for aminoglycosides, their high degree of hydrophilicity would 

be hypothesized to severely limit the penetration of these agents across the bone matrix.

CNS—The combination of tight junctions and active transport systems that form the blood-

brain barrier (BBB) create a substantial impendent to the penetration of most antibiotics into 

the cerebrospinal fluid (CSF).107-109 As such, here perhaps more than any other infection 

site are the agents’ PK properties determinant of attaining sufficient pharmacologic 

exposures. Also of critical impact is the presence of inflammation within the meninges, as 

this significantly alters the permeability of the BBB, profoundly increasing CSF exposures 

for the majority of antibiotics.107,108,110

Degree of lipophilicity appears the most influential characteristic associated with an 

antibiotic’s CSF penetration, as this property affords passive diffusion across the otherwise 

impervious cerebral membranes.111-113 Indeed, fluoroquinolones achieve far higher 

CSF:plasma ratios than other antimicrobial classes, with values averaging ~0.50,114-116 

versus ~0.10 for beta-lactams (range, 0.007 – 0.25),117-123 ~0.15 for vancomycin,124 and 

~0.20 for aminoglycosides108 in intact meninges. With inflammation, however, the tight 

junctions that connect cerebral endothelial cells become more porous, allowing up to an 

order of magnitude higher CSF penetration for hydrophilic compounds.108,124-128 This 

knowledge must be reconciled clinically with the frequent use of corticosteroids to decrease 

meningeal inflammation, which in addition to blunting the immune system’s response to 

infection can decrease the CSF exposure of first-line agents, thus larger doses are likely 

necessary to ensure antimicrobial success, consistent with guideline 

recommendations.128,129 As would be expected, the effect of inflammation on CSF 

penetration is attenuated with fluoroquinolones, though enhancements have been reported in 

a limited number of patients.130,131

Collectively, these findings make it clear that target site penetration is an important factor for 

reconciling PK differences between and within antibiotic classes, and interpreting published 

literature on antimicrobial effect. It is also apparent that the study of antibiotic exposures at 

the site of infection is deficient, with much of the evidence base from trials conducted 

decades ago, hindered by suboptimal experimental designs, limited numbers of observations, 

and outdated methodologies. Importantly, while published studies often observe infection 

site concentrations above the minimum inhibitory concentrations (MICs) of common 

pathogens despite various barriers to entry, as will be presented in the following section, 

these PK snapshots are ill-suited for drawing definitive conclusions on the adequacy of a 

given antibiotic regimen.
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Antimicrobial Pharmacodynamics

Guiding Principles

The MIC represents the most elemental PD measure for antibiotics; however, this value 

simply reflects the potency of the given agent, providing no information regarding the time 

course of antimicrobial effect nor whether the rate of bacterial killing may be altered by 

changing drug exposure.132 Far more informative is the incorporation of PK information to 

assess the ability of a given antibiotic and its chosen dosing regimen to kill the infecting 

pathogen and predict clinical outcome. Three major PD indices – the percent of time that 

free drug remains above the MIC over a 24-hour period (fT>MIC), the ratio of free drug area 

under the concentration-time curve to MIC over a 24-hour period (fAUC:MIC), and the ratio 

of maximum concentration to MIC (Cmax:MIC) – sufficiently link the kinetics of 

antimicrobial disposition to efficacy.132-134 An additional factor is the agent’s post-antibiotic 

effect (PAE), which quantifies the persistence of bacterial suppression after short exposure to 

the drug, thus adding to the overall duration of antimicrobial effect.135 Consideration of 

these metrics is essential in appropriately selecting and adjusting antibiotic regimens in 

clinical practice, and should be done in concordance with individual patient status and 

suspected site of infection. Representative PD and dosing characteristics for the 

antimicrobial classes discussed previously are provided in Table 3; while the field of 

antimicrobial PD was borne from in vitro and animal study, for which a rich literature 

exists,132,134,136,137 the focus here will be on recent clinical applications and appraisals. 

Thus, alternative PD measures associated with the minimization of antimicrobial resistance 

such as the mutant prevention concentration (MPC) will not be discussed, as they at current 

have not been assessed in the clinic, though remain an important focus for future 

research.138,139 Further, owing to less overall evidence supporting their use, alternative PD 

indices including measures related to percent of time free drug remains above a low multiple 

of the MIC (e.g. fT>4 × MIC),140 and minimum free drug concentration to MIC ratio 

(fCmin:MIC)141 are beyond the scope of this review.

fT>MIC

Beta-lactams serve as the archetypal class of time-dependent antibiotics, whereby 

substantially increasing drug concentrations have minimal effects on the overall rate and 

extent of bacterial killing. Instead, maintaining a free drug concentration above the MIC of 

the organism for a portion of the dosing interval has been shown to best predict 

microbiologic efficacy.142-145 The magnitude of this PD index varies by beta-lactam 

subclass, with typical fT>MIC values of ≥60-70% for cephalosporins, ≥50% for penicillins, 

and ≥40% for carbapenems providing maximal bactericidal effect.132,133

Clinically, these PD targets have been evaluated in a surprisingly limited number of studies, 

with the majority focusing on antipseudomonals.41,146-152 For these agents, a broad range of 

fT>MIC values from >45-100% have been reported as necessary for achievement of favorable 

clinical or microbiological outcomes, a likely consequence of heterogeneous patient 

populations, infecting organisms, and study designs. However, the most robust evidence 

remains in line with in vitro and animal estimates, with cefepime fT>MIC values of >53-74% 

being associated with up to a 10-fold higher likelihood of favorable outcome.149,151,152 
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Indeed, in a large study assessing the adequacy of contemporary beta-lactam dosing 

regimens in critically ill patients, the inability to attain a fT>MIC >50% was associated with a 

32% decreased likelihood of a positive clinical outcome.41 Extended infusion regimens of 

certain beta-lactams have become a widespread means of maximizing fT>MIC in specific 

clinical scenarios.153,154 While likely not warranted in all patients, studies have shown 

average reductions in mortality of 33-50% when piperacillin/tazobactam and cefepime are 

dosed over 3-4 hours versus standard intermittent infusions (0.5-1 hour), with the largest 

benefits seen in critically ill patients and those with multidrug-resistant organisms.155,156 

Extending this concept further, continuous infusions of beta-lactams have also been 

studied,155-157 though employment is likely to be reserved only for extreme cases secondary 

to logistical issues in maintaining dedicated intravascular access for administration. Despite 

the recent advances in our ability to derive optimized dosing regimens for beta-lactam 

agents, studies linking PD target attainment and clinical outcomes are limited, an issue that 

must be reconciled to ensure patients receive the best antimicrobial therapy based on 

infecting organism, infection site, and clinical status.

fAUC:MIC

Measures of free drug exposure over a 24-hour period (fAUC) in relation to the organism 

MIC are correlative with the antimicrobial efficacy for most antibiotic classes, with 

vancomycin and the fluoroquinolones having accrued the most data.132-134 Importantly, this 

metric affords a fair amount of flexibility in dosing regimen, as simultaneously adjusting 

both the magnitude of the dose and the frequency with which it is administered will result in 

identical fAUC values. Consequently, this PD index incorporates components of both time 

(vancomycin) and concentration (fluoroquinolones) dependence in determining the rate and 

extent of bacterial killing.133,134 Despite initial preclinical data showing maximal bacterial 

killing over a wide range of total drug AUC:MIC values for vancomycin, the threshold of 

≥400 is ubiquitously used.158 Early animal and in vitro work indicate total drug AUC:MIC 

values of ≥30-100 are necessary to achieve maximum kill for fluoroquinolones, based on the 

infecting organism.132,159 Correcting for protein binding of these respective agents produces 

equivalent fAUC:MIC values of ≥200 for vancomycin and ≥21-70 for fluoroquinolones.

Secondary to the dramatic rise of methicillin-resistant Staphylococcus aureus (MRSA) over 

the past two decades, optimization of vancomycin therapy has received much attention in 

recent years. Though current practice guidelines recommend the measurement of trough 

concentrations as a surrogate of total drug AUC:MIC, this may yield overexposure in some 

patients and thus an increased risk of adverse effects.50,160,161 Evaluation of total drug 

AUC:MIC thresholds predictive of favorable outcomes have been conducted in various 

clinical settings, with results ranging from 211 in patients with complicated MRSA 

bacteremia and endocarditis to 578 in patients with septic shock due to MRSA; assuming 

50% protein binding for vancomycin, equivalent fAUC:MIC values are ~106-289.162-167 In 

studies that assessed mortality, 2 to 4-fold reductions were observed with attainment of these 

AUC:MIC thresholds,163,164,166 emphasizing the need for careful selection of dosing 

regimens. Notably, recent data suggests that higher total drug AUC:MIC values within the 

first 48 hours of therapy may be most associated with clinical outcome, with thresholds 

upwards of 600 (fAUC:MIC ~300) being necessary.168,169 Unfortunately, achievement of 
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such high vancomycin exposures is likely limited to the most sensitive of isolates, as large 

dosing requirements produce high likelihoods of toxicity.170,171

In some of the first studies to assess PD indices and clinical outcomes, fluoroquinolone 

AUC:MIC values of ≥125 for ciprofloxacin and ≥34 for levofloxacin were significantly 

associated with clinical and microbiologic cure.172,173 Assuming ~30% protein binding for 

each, this corresponds to fAUC:MIC values of ≥88 and ≥24, respectively, in line with 

preclinical estimates. Interestingly, later investigations174,175 reported the necessity of higher 

values to attain similar outcomes, which may be a consequence of infecting pathogen and 

severity of infection. In these studies, AUC:MIC values of ≥250 for ciprofloxacin and ≥87 

for levofloxacin were predictive of favorable outcome, corresponding to fAUC:MIC values 

of ≥175 and ≥61, respectively. Overall, the evidence shows a 2-28-fold higher probability of 

favorable outcome when these respective PD index values were reached.174,175

Cmax:MIC

Aminoglycosides serve as the exemplar antimicrobial class for which bacterial kill is 

maximized by attaining higher maximal concentrations.132 Here, maintaining concentrations 

above the organism MIC for an extended period of the dosing interval is unnecessary, and in 

fact discouraged due to an increased risk of adverse effects.176-178 While preclinical studies 

originally established AUC:MIC as the most predictive PD index for aminoglycosides,136 it 

must be recognized that employment of once-daily doses will yield a high degree of 

collinearity between measures of Cmax and 24-hour AUC.178 As such, the focus here will be 

on Cmax:MIC, which remains the clinically targeted metric, and for which clinical outcomes 

data exist. Additionally, there have been trials with fluoroquinolones that discern the 

influence of peak concentrations in their overall killing capacity.

Studies of gentamicin and tobramycin in patients being treated for sepsis and nosocomial 

pneumonia have established a Cmax:MIC ≥8-10 as the PD target associated with clinical 

response.179-181 For endocarditis caused by Enterococcus species, current guidelines 

indicate aminoglycosides are to be given as lower, multiple daily doses instead of the typical 

once-daily regimen, albeit the evidence to support such dosing is scant.46 Nevertheless, it 

may be anticipated that a measure of total drug exposure (i.e. AUC:MIC) rather than 

Cmax:MIC would be a distinct correlate to efficacy for these patients, though such studies 

have yet to be conducted. While their PD index is often represented by fAUC:MIC, the 

concentration-dependent nature of bacterial killing by fluoroquinolones also results in 

Cmax:MIC as a predictive parameter for response.182,183 Values ≥8 for ciprofloxacin and 

≥12.2 for levofloxacin were associated with significantly improved clinical and 

microbiologic outcomes, though as noted in the respective studies and supported by in vitro 
data, this index is likely most important when faced with an organism capable of rapidly 

developing resistance, such as Pseudomonas aeruginosa.184,185

PAE

When considering antimicrobial dosing regimens, the selected agent’s PAE, in determining 

the overall duration of action, can have a significant influence. In general, all antibiotics 

exhibit some degree of PAE against susceptible Gram-positive organisms, with values 
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ranging from <2 hours for beta-lactams to nearly 5 hours for vancomycin against S. aureus, 
though point estimates vary considerably.135,186 Agents that alter protein or nucleic acid 

synthesis, such as aminoglycosides and fluoroquinolones, tend to display a prolonged PAE 

against any susceptible organism, as it takes considerably longer for bacteria to regenerate 

these elements than components of the cell wall.132,134 PAE values derived from animal 

models for these agents are on average between 2 and 6 hours (range, 1.2-12.8 hours for 

aminoglycosides; 1.9-7.5 hours for fluoroquinolones), thus longer intervals between doses 

are possible without compromising treatment efficacy.135,187,188 On the contrary, beta-

lactams maintain virtually no PAE against Gram-negative pathogens (<1 hour), often 

requiring multiple daily doses to ensure adequate coverage.135 An exception here is the 

carbapenem subclass, whose agents have shown prolonged PAEs of ~2-4 hours against 

Enterobacteriaceae and P. aeruginosa, consistent with their lower fT>MIC requirement 

versus other beta-lactams.189-191

Modeling and Simulation

The relative paucity of clinical evidence confirming in vitro and animal model PK/PD 

observations speaks to the difficulty in conducting such trials, necessitating an integrative, 

efficient, and scientifically valid approach. In silico modeling of PK data and simulation of 

treatment course provides a powerful means of assessing the adequacy of current 

antimicrobial dosing regimens, and deriving those that optimize PD indices.192 These 

techniques are being increasingly employed both as a means of bringing new agents to 

market and for the evaluation of existing antimicrobials, minimizing industry risk on the one 

hand while maximizing clinical utility on the other.68,193,194 Through the leveraging of 

PK/PD data from preclinical models of infection and application of advanced 

pharmacostatistical modeling, measures of exposure and response can be obtained for 

various pathogen-antibiotic-infection site combinations. Imputing patient-level data into 

these models and performing Monte Carlo simulations, which account for interindividual 

differences in PK parameters and antimicrobial susceptibility, predictions of PD target 

attainment are possible. This has been shown for numerous agents, with optimal dosing 

regimens often inferred as those that eclipse the specified PD target (for example, a fT>MIC 

≥50% or a fAUC/MIC ≥100) with a 90% or higher probability.195-204 Indeed, much of the 

aforementioned literature on antimicrobial penetration and efficacy has applied population 

PK modeling and Monte Carlo simulation to predict exposure-response relationships in 

patients and infer optimal dosing regimens for the clinical population under study. 

Extrapolation of the simulation results beyond this should be done with caution, as differing 

pathogens, infection types, and illness severities are likely to yield differing rates of target 

attainment for a given drug and dosing regimen; ideally, studies for each combination of 

antimicrobial agent, infecting pathogen, and clinical scenario should be performed. 

Additionally, such platforms can be utilized to study the effects of antibiotic resistance205,206 

and rare infections,207,208 situations where accruing an adequate number of patients in 

clinical trials is not feasible. Modeling and simulation can thus enhance the translation of 

preclinical in vitro and animal studies to clinical practice, informing trial design to optimize 

the results of future clinical studies in addition to being directly applicable to contemporary 

patient care.
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Summary and Conclusions

Rising rates of antimicrobial resistance and a limited drug development pipeline underscore 

the need for preserving the utility of currently available agents. An appreciation of the 

PK/PD determinants of a given antibiotic can foster more rational and individualized dosing 

regimens, improving patient outcomes while simultaneously limiting the spread of resistance 

(Figure 1). Anticipating the extent of distribution to the site of infection is of primary 

importance for ensuring adequate drug exposures; however, significant knowledge gaps 

remain. To truly understand the pharmacology of antimicrobials, we must go beyond MICs, 

employing metrics that account for the rate of bacterial killing, and the effects different 

dosing regimens have on it. Use of PK/PD modeling and simulation can maximize the 

amount of clinically useful information derived from limited numbers of patients, guiding 

optimal therapy and fully aligning with the goals of personalized medicine.
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Figure 1. 
Approach to the Infected Patient for the Provision of Optimal Antibiotic Therapy.
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Table 1
Representative PK Properties of Commonly Administered Antibiotics

Antibiotic Solubility Plasma Protein Binding Clearance

Beta-lactams
a Hydrophilic Low-moderate Renal

Vancomycin Hydrophilic Moderate Renal

Fluoroquinolones
b Lipophilic Low-moderate Renal

Aminoglycosides Hydrophilic Low Renal

a
Exceptions: cefazolin (highly protein bound), ceftriaxone (highly protein bound), ertapenem (highly protein bound), nafcillin/oxacillin (highly 

protein bound, hepatically cleared)

b
Exception: moxifloxacin (hepatically cleared)
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Table 2
Infection Site, PK Considerations, and Adaptation of Dosing Regimen

Infection Site PK Alteration Potential Change to Dosing Regimen

Blood Expanded Vd, Enhanced CL Provision of LD, Increase frequency

Lung
Impaired permeability

a
Increase dose

a

Soft Tissue Contingent on body composition Increase dose in obesity

Bone Impaired permeability Increase dose, duration of therapy

CNS Impaired permeability Maximal dose

CL = clearance; LD = loading dose; Vd = volume of distribution

a
Of hydrophilic agents (beta-lactams, vancomycin, aminoglycosides)
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Table 3
PD and Dosing Characteristics of Commonly Administered Antibiotics

Antibiotic PD Index PAE
a Dosing Paradigm

Beta-lactams fT>MIC Minimal
b Higher frequency; prolonged infusions

Vancomycin fAUC:MIC -- Flexible

Fluoroquinolones fAUC:MIC, Cmax:MIC Prolonged Flexible; high dose

Aminoglycosides Cmax:MIC, fAUC:MIC Prolonged
High dose, low frequency

c

PAE = post-antibiotic effect; fT>MIC = percent of time free drug remains above the minimum inhibitory concentration; fAUC:MIC = ratio of free 

drug area under the concentration-time curve to minimum inhibitory concentration; Cmax:MIC = ratio of maximum concentration to minimum 

inhibitory concentration

a
For Gram-negative pathogens only

b
Exception: carbapenems (Prolonged)

c
Exception: enterococcal endocarditis (lower dose, higher frequency)
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