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Abstract

Motivation: Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq)

is the standard method to investigate chromatin protein composition. As the number of

community-available ChIP-seq profiles increases, it becomes more common to use data from

different sources, which makes joint analysis challenging. Issues such as lack of reproducibility,

heterogeneous quality and conflicts between replicates become evident when comparing datasets,

especially when they are produced by different laboratories.

Results: Here, we present Zerone, a ChIP-seq discretizer with built-in quality control. Zerone is pow-

ered by a Hidden Markov Model with zero-inflated negative multinomial emissions, which allows it

to merge several replicates into a single discretized profile. To identify low quality or irreproducible

data, we trained a Support Vector Machine and integrated it as part of the discretization process.

The result is a classifier reaching 95% accuracy in detecting low quality profiles. We also introduce

a graphical representation to compare discretization quality and we show that Zerone achieves out-

standing accuracy. Finally, on current hardware, Zerone discretizes a ChIP-seq experiment on

mammalian genomes in about 5 min using less than 700 MB of memory.

Availability and Implementation: Zerone is available as a command line tool and as an R package.

The C source code and R scripts can be downloaded from https://github.com/nanakiksc/zerone. The

information to reproduce the benchmark and the figures is stored in a public Docker image that

can be downloaded from https://hub.docker.com/r/nanakiksc/zerone/.

Contact: guillaume.filion@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

One of the major challenges of biology is to understand how tran-

scription factors and chromatin proteins coordinate transcription,

replication and repair. In front of this colossal task, the community

invests massive research efforts into collecting protein-genome inter-

action data. Chromatin immunoprecipitation followed by high

throughput sequencing (ChIP-seq) has become the standard method

to identify the targets of a transcription factor or a histone modifica-

tion in a cell population. However, ChIP is not fully understood and

artifacts are still discovered more than 10 years after its adoption as

a standard (Park et al., 2013; Teytelman et al., 2013). Besides, the

constant improvement of sequencing technologies makes analysis of

ChIP-seq profiles difficult to standardize. There is thus a need to

continuously develop and improve computational tools to analyze

ChIP-seq data.

One of the most common analyses performed on ChIP-seq pro-

files is to discretize the signal, i.e. identify the loci where the tran-

scription factor (or other feature) is present. This makes the signal

simpler to interpret, it removes part of the experimental noise, it

simplifies downstream analyses and it allows comparing or
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combining profiles of different natures. This raises a challenge at the

computational level because discretization has to be carried out uni-

formly for signals that may be very different. For instance, lamins

bind in megabase-scale domains covering 40% of the genome

(Guelen et al., 2008), whereas transcription factors may bind as few

as 6 bp with a coverage below 1%.

Large consortia such as ENCODE have brought to light severe

issues related to the quality of ChIP-seq data. Conflicts between rep-

licates are common, and sometimes laboratory effects are clearly de-

tectable in the data, even when experimentalists use the same

material and follow the same protocol (our unpublished observa-

tions). The most popular remedy is to use a metric called IDR

(Irreproducible Discovery Rate, Li et al., 2011), which allows weed-

ing out poorly reproducible signal. This approach is a significant

step forward, but the IDR is undefined when more than two repli-

cates are available. Besides, keeping only the reproducible ChIP-seq

peaks is not always the best option. If one of the replicates is misla-

belled, for instance, it is more appropriate to reject the dataset than

to keep the common peaks. In summary, how to integrate ChIP-seq

data from different sources and with variable qualities is still an

open problem.

Here, we propose an approach to discretize ChIP-seq data where

conflict resolution and quality control are integrated in a tool that

we called Zerone (Pronounced /zi’roUn/ or /’zi:ron/, i.e. as inserting

‘ear’ in ‘zone’.). The key idea of Zerone is to combine an arbitrary

number of ChIP-seq replicates in a single discretized profile, where

conflicts are resolved by maximizing the likelihood of the underlying

statistical model. Following discretization, Zerone controls the qual-

ity of its output in order to detect potential anomalies, and when ap-

plicable rejects the output as a whole. Internally, the first step

implements a Hidden Markov Model (HMM) with zero-inflated

negative multinomial (ZINM) emissions, and the second implements

a Support Vector Machine (SVM) trained using ENCODE ChIP-seq

data. HMM-based discretization is agnostic about the shape of the

signal (broad domains or sharp peaks) and the ZINM distribution

captures the essential features of the read count distribution in

ChIP-seq data.

Zerone is designed for large volume pipelines aiming to combine

many ChIP-seq profiles with little human intervention. To this end,

it is compatible with the standard BED, SAM/BAM and GEM for-

mats, it produces congruent window-based outputs, and it can pro-

cess hundreds of experiments per day on average hardware. We

benchmarked Zerone against MACS (Zhang et al., 2008),

BayesPeak (Spyrou et al., 2009) and JAMM (Ibrahim et al., 2015)

on the core task of discretizing ChIP-seq profiles of CTCF and

H3K36me3. Our results show that Zerone is competitive in terms of

speed and accuracy.

2 Methods

2.1 Model and parameter estimation
It is natural to model read counts per genomic window by an un-

bounded discrete distribution. The Poisson distribution is an obvi-

ous candidate, but it is a poor choice because the variance of read

counts is usually higher than the mean for ChIP-seq data. The reason

is that windows are nonhomogeneous, which increases the disper-

sion. More specifically, windows do not have the same copy num-

bers, they are not equally PCR-prone and they are not equally

mappable. The negative binomial (NB) distribution is thus a better

choice because it allows some variation between windows. However,

genomes are fraught with repeats, which creates an excess of windows

where reads cannot be mapped. Since such windows will always have

0 read count, a natural choice for this distribution is the zero-inflated

negative binomial (ZINB), i.e. the mixture of a negative binomial dis-

tribution and a distribution concentrated at 0 (Rashid et al., 2011).

Figure 1 shows that the ZINB distribution gives a better fit to ChIP-

seq data than Poisson and NB distributions.

The ZINB distribution has three parameters that can be fitted by

maximum likelihood. Zerone uses a custom solver based on the

Newton-Raphson method, which converges much faster than the

popular routine zeroinfl (Zeileis et al., 2008) from the R package

pscl (Jackman, 2015).

The NB distribution can be interpreted as a Gamma-Poisson

process, which gives a straightforward extension to a multivariate

distribution called the Negative Multinomial (NM) and to the zero-

inflated version of it called Zero-Inflated Negative Multinomial dis-

tribution (ZINM, see supplementary material for detail). In this

model, windows have an intrinsic ChIP-seq bias due to their se-

quence composition, mappability and other inherent properties,

which gives a baseline variation present in all ChIP-seq experiments

performed in the same cells and the same conditions. Note that the

biases are not modelled explicitly from local features of the genome

(e.g. GþC content), but implicitly by adjusting the variance of the

distribution. Also, the ZINM distribution models the statistical de-

pendence between replicates and thus yields more accurate probabil-

ities than assuming independence.

Given that the genome contains n windows, each observation

yi ¼ ðyi;1; . . . ; yi;rÞ is a vector of r read counts (one per replicate),

where 1 � i � n. The associated probability under the ZINM dis-

tribution with parameter h ¼ ðp; a; p0; . . . ; prÞ is

gðyijhÞ ¼
pþ ð1� pÞpa

0 if yi ¼ 0

ð1� pÞCðaþ yi;1 þ � � � þ yi;rÞ
CðaÞyi;1! � � � yi;r!

pa
0p

yi;1

1 . . . pyi;r
r otherwise:

8><
>:

In the definition above, C denotes Euler’s gamma function and

yi¼0 stands for the multiple equality yi;1 ¼ � � � ¼ yi;r ¼ 0. p is the

zero-inflation or mixture parameter (the proportion of unmappable
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Fig. 1. Using the ZINB distribution to model ChIP-seq data (color version of the

figure available online). Reads from a mock control dataset were mapped onto

the human genome and pooled in 300 bp windows after removing duplicates.

The histogram of the read counts is shown in black (no immunoprecipitation

was performed in this experiment, so this variation corresponds to the ‘base-

line’). The colored histograms show the maximum likelihood fit of the Poisson,

Negative Binomial (NB) and Zero-Inflated Negative Binomial (ZINB) distribu-

tions. The fit of the Poisson distribution is poor. The NB distribution gives a

good fit at the tail, but not for windows with 0 and 1 read. The ZINB distribution

gives a good fit over the whole range. Data from ENCODE file ENCFF000VEK

(Color version of this figure is available at Bioinformatics online.)
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windows), a is a shape parameter dictating the distribution of reads

and p0; . . . ; pr are probabilities linked by the equality p0 þ p1 þ � � �
þpr ¼ 1 and dictating the average number of reads per window for

each replicate.

Discretization is performed by fitting an HMM with ZINM

emissions. The HMM has three states corresponding to ‘low’, ‘me-

dium’ and ‘high’ abundance of the given chromatin feature. In many

ChIP-seq profiles, the baseline signal shows piece-wise variations of

low amplitude but large size (typically 10–100 kb). This will some-

times be the dominant signal and a two-state HMM will identify

these blocks instead of the targets. Dedicating two states to fit the

baseline is a way to make sure that the ‘high’ state corresponds to

the targets of the chromatin feature. In what follows, targets always

correspond to the ‘high’ state.

Assuming that xi takes one of these three values, the log-

likelihood of a sequence of states ðx1; . . . ;xnÞ given the observations

ðy1; . . . ; ynÞ is

log�ðx0Þ þ loggðy0jx0Þ þ
Xn

i¼1

logQðxi�1;xiÞ þ loggðyijxiÞ:

In the above, � denotes the initial probabilities of the states, Q is

the 3�3 transition matrix of the model, and gðyijxiÞ is the probabil-

ity of the emission yi if the state is xi (the parameter vector h depends

on the state of the HMM). Discretization amounts to finding the se-

quence of states and the model parameters that maximize the value

above. Zerone achieves this with the Baum-Welch algorithm (Baum

and Petrie, 1966), which is a special case of the EM algorithm

(Dempster et al., 1977). The emission parameters p and a are state-

independent since they represent the baseline distribution of reads in

the genomic windows. For this reason they are fitted from the nega-

tive control profiles before the Baum-Welch cycles (as a side note,

fitting them with the Baum-Welch algorithm slows convergence and

sometimes leads to aberrant solutions). The other parameters are

state-dependent since they represent the amount of reads per win-

dow in each replicate, depending on the abundance of the chromatin

feature. Overall, the total number of estimated parameters is 3rþ 9,

where r is the number of replicate experiments.

The fitting process resolves conflicts between replicates. Say that

a ChIP-seq peak is present in only one of them; the signal will be lo-

cally high only for this replicate and low for the others. Because of

the conflict, the local log-likelihood will be low for all the possible

states but there will still be an optimum that corresponds to the

‘least unlikely’ state. The final call depends on whether the weight of

evidence is higher for the presence of the peak or for its absence. If

the conflict is strong, the confidence in the final call will be weak,

which can lead to a rejection of the profile as a whole if such cases

are too frequent (see Section 2.3).

Transition parameters are updated through the forward-

backward algorithm (Rabiner, 1989), and emission parameters are

updated by solving maximum likelihood equations with the

Newton-Raphson method (see Supplementary Material for detail).

The state calls are computed by finding the most likely segmentation

given the value of the parameters through the Viterbi algorithm

(Viterbi, 1967).

2.2 ChIP-seq preprocessing
Mapped reads are binned in fixed-step windows (default 300 bp) by

their mid-point and PCR duplicates (i.e. reads mapping to the same

location in the same orientation) are removed. The window size

should not be smaller than the sonication fragment length and it

should be set so that there are on average more than 3-4 mapped

reads per window. Zerone decompresses on the fly input files com-

pressed by gzip or bgzf (BAM format). There is no upper limit to the

number of input files to discretize simultaneously, but there must be

at least one negative control and one ChIP-seq experiment (at least

two for the quality control to be meaningful, see below).

2.3 Quality control
We used a machine learning strategy to identify discretization fail-

ures. The true status (success or failure) of experimental ChIP-seq

data is not known because success is partly subjective and because

there is no gold standard for protein binding in live cells. We pre-

pared an experimental dataset where we labelled the output of

Zerone as positive (success) or negative (failure) based on empirical

criteria (see associated Docker image for detail). The definition of

success is thus subjective, but the training is performed on represen-

tative data.

We discretized 96 replicated ChIP-seq experiments together with

their respective input control (see associated Docker image). Based

on visual inspection and on the available literature, we determined

that discretization was successful in 91 cases that consituted the

positive examples of our training set. The most common cases of

poor data quality in ChIP-seq correspond to low signal-to-noise

ratio (e.g. when the antibody is not specific), and lack of reproduci-

bility between replicates (e.g. when samples are swapped). We cre-

ated 91 negative cases obtained by discretizing controls without

immunoprecipitation, or nonreplicate profiles (e.g. by treating

CTCF and Pol2 profiles as replicates). Thus, a total of 182 cases (91

positive and 91 negative) were used to build a balanced dataset. We

extracted 5 features from the output of Zerone to train a classifier:

the transition matrix entry Q2;0 (indicating the size of the targets),

the minimum value of the ratios p2ð2Þ=p2ð1Þ; . . . ; prð2Þ=prð1Þ (indi-

cating the signal to noise ratio), the amount of targets, the fraction

of variance explained by the discretization and the correlation be-

tween replicates.

To separate the points in the feature space (Fig. 2), we used a

Support Vector Machine (SVM, Chang and Lin, 2011; Meyer et al.,

2014) with a radial basis function kernel, as they allow nonlinear

classification, are fast to train and require only two hyperparameters

to be fitted. We trained the SVM and selected the hyperparameters

that maximized the prediction performance on test sets using a 10-

fold cross-validation scheme. The average prediction accuracy on

these sets was 95%. Unlike quality control methods based on indi-

vidual peaks (such as the IDR for instance) the quality control
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Fig. 2. Scaled Principal Component Analysis of the training dataset (color ver-

sion of the figure available online). Each symbol represents a discretization

performed by Zerone. The five features extracted from each discretization are

projected onto the first three principal components. The two groups overlap,

which creates an ambiguous zone where failures and successes are hard to

distinguish (Color version of this figure is available at Bioinformatics online.)
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implemented in Zerone is ‘all-or-none’, i.e. the profile is rejected or

accepted as a whole.

2.4 Benchmark datasets and conditions
To train the SVM, we used all the ChIP-seq fastq files produced by

the ENCODE Consortium on the human leukemia cell line K562.

Reference assembly UCSC hg19 was used throughout. The data was

downloaded from the repository http://hgdownload.cse.ucsc.edu/

goldenPath/hg19/encodeDCC in November 2013. We mapped all

the raw reads on the human genome with GEM (gem-mapper ver-

sion 1.376 beta, gem-indexer version 1.423 beta, Marco-Sola et al.,

2012), using the options—unique-mapping and -q ignore. We

converted the mapped files to SAM format with gem-2-sam version

1.423 beta.

To compare Zerone to other discretizers, we analyzed two differ-

ent ChIP-seq datasets: CCCTC-binding factor (CTCF) and tri-

methylated histone H3 at lysine 36 (H3K36me3). Each dataset con-

sists of a mock or input profile without immunoprecipitation and

two replicate ChIP-seq profiles. The ENCODE accession numbers

for these four datasets are ENCSR000DWE and ENCSR000DWD

respectively. Table 1 gives a global overview of the datasets used for

benchmarking.

We tested MACS callpeak version 2.1.0.20140616, BayesPeak

version 1.20.0 and JAMM version 1.0.7rev1. All tests were per-

formed on an 8-core Intel Xeon E5606 machine with 48 GB of

DDR3-RAM at 1333 MHz. All programs were run on a single core

with the recommended options. Specifically, on the H3K36me3

dataset, JAMM was run with the option -r region and MACS with

the -broad option. For the rest of the datasets and programs, the de-

fault options were used. When using IDR, we ran MACS with a

relaxed q-value cutoff set to 0.05 to obtain a higher number of

peaks. For JAMM, we took the top ranking 300 000 peaks as input

for IDR. The IDR analysis proper was conducted using the R script

batch-consistency-analysis.r, available at https://sites.google.com/

site/anshulkundaje/projects/idr. For MACS, peaks scoring lower

than 0.05 were kept. For JAMM, the top n peaks in the joint discret-

ization were kept, where n is the number of peaks scoring lower

than 0.05 in separate discretizations. For the CTCF benchmark, all

peaks were resized to 500 bp from the center of the window.

The CTCF motif was obtained from the JASPAR database ver-

sion 5.0_ALPHA (motif ID MA0139.1, Mathelier et al., 2014).

Subsequently we used FIMO (Grant et al., 2011) from the MEME

suite version 4.10.1 (Bailey et al., 2009) to identify and map CTCF

motif occurences in the human genome. The positions of

Transcription Start Sites (TSS) were extracted from the knownGene

table of the UCSC Genes annotation (Karolchik et al., 2004). RNA

counts in section 3.2.2 were obtained from the ENCODE dataset

EH000163 (already mapped bigWig files).

The quality control of Zerone was compared to a method based

on IDR to flag replicates with low consistency or low quality

(described in https://sites.google.com/site/anshulkundaje/projects/idr).

Briefly, this method uses the script batch-consistency-analysis.r to per-

form pairwise comparisons between all the replicates to check that

the number of reproducible peaks is similar between them. The same

comparisons are also performed between random splits of each repli-

cate, and between random splits of a pooled profile. Experiments that

do not satisfy minimal criteria are flagged as faulty.

A full replay of the benchmark including all the necessary data-

sets and scripts is available from the associated Docker image.

3 Results

3.1 Automatic quality control
The most novel feature of Zerone is an embedded automatic quality

control step taking place after the discretization. It not only ensures

that the discretization is sensible, but also that the replicates are

similar to each other and that the ChIP-seq profiles are not too simi-

lar to the mock controls. Our approach is based on the idea that dis-

cretizations from overly noisy or divergent profiles should have a

signature that can be picked up by a specially trained classifier.

We identified five summary statistics that characterize the qual-

ity of the discretization and trained an SVM to recognize failures.

We thus obtained a classifier able to identify a failed discretization

with 95% accuracy (see Section 2.3).

This feature is essential for high throughput automatic pipelines.

For instance, when discretizing ENCODE ChIP-seq profiles ob-

tained in human H1 ES cells, we noticed that the lysine-demethylase

JARID1A did not pass the quality control. Further investigation im-

mediately revealed the nature of the issue. In one of the replicates,

the signal is lacking entirely, as if the immunoprecipitation failed

(Fig. 3). Once aware of the issue, users can handle it properly (for in-

stance, by discarding the protein or by working with a single repli-

cate). Without automatic quality control, the low quality of the first

replicate would have been missed.

Low quality profiles can also be detected using IDR. We ran ei-

ther Zerone or MACS followed by IDR-based flagging on a test set

of 30 chromatin features from H1 ES cells. The agreement between

Table 1. Summary statistics of the datasets used for benchmarking

Dataset Read size Sequencing depth Mapped reads

Input 36 18 123 856 18 064 246

CTCF(1) 36 32 740 518 15 698 068

CTCF(2) 36 27 953 212 12 971 023

H3K36me3(1) 36 18 174 968 13 847 015

H3K36me3(2) 36 18 495 290 14 419 200

Numbers in parentheses are used to distinguish replicates.
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Fig. 3. ChIP-seq profiles of JARID1A in H1 ES cells (300 bp windows). The first

replicate is not similar to the second, and it does not contain any target
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the two methods was 85% (see Section 2.4 and associated Docker

image). We excluded five cases where either MACS or IDR failed to

run. Among the 8 cases of disagreement, Zerone accepted three and

rejected five, suggesting that it is slightly more stringent than

MACSþ IDR. It is important to note that the quality control of

Zerone is more general than IDR-based flagging since it applies to

all types of signal without upper limit on the number of replicates.

In contrast, IDR is a tool for pairwise comparisons and it does not

apply to profiles with broad domains. Also note that IDR-based

flagging in itself can represent a significant computational burden

when there are many replicates or many targets sites (Section 3.3

shows some examples of the computational cost of IDR).

3.2 Accuracy
The purpose of discretizers is to identify the targets of a transcrip-

tion factor or a histone mark, i.e. the sites of the genome where it is

present. Intuitively, good discretizers capture a large fraction of the

ChIP-seq signal within few targets. The number of targets and the

amount of reads they represent are therefore critical characteristics

of a discretization. Unfortunately, there is no gold standard to esti-

mate the trade-off between false positives and false negatives in

ChIP-seq experiments, and thus there is no objective way to rank

discretizers (Szalkowski and Schmid, 2011). However, we can com-

pare them with a partial order as follows: when arranging genomic

windows from high to low amount of ChIP-seq reads, the cumula-

tive number of reads forms a Pareto front. It represents the largest

amount of reads that can be captured by the given amount of targets

(Fig. 4). A discretization can be represented as a point of this plane.

By construction, no discretization can lie on the left of the Pareto

front, and those on the front represent an optimum. Others are sub-

optimal, since it is possible to capture more reads with the same

amount of targets (or the same amount of reads with less targets).

We benchmarked Zerone against three ChIP-seq discretizers. We

included MACS as the standard method for ChIP-seq peak calling,

BayesPeak because it is powered by an HMM with ZINB emissions

similar to the model implemented in Zerone, and JAMM because it

can perform joint discretization of experimental replicates. We used

datasets of similar size that represent two major types of ChIP-seq

signal (Table 1). The CTCF signal consists of sharp peaks at the

transcription factor binding site and the H3K36me3 signal consists

of broad domains.

This representation reveals that discretizing the CTCF profile

yields similar outputs regardless of the software (Fig. 5, left panel).

On the other hand, discretizing the H3K36me3 profile yields very

distinct outputs. In all the cases, Zerone produces the discretization

capturing the most reads. For CTCF it lies on the Pareto front. For

H3K36me3, it lies somewhat off the Pareto front, but at a sensible

location. As detailed below, H3K36me3 is deposited on transcribed

genes (Kimura, 2013; Pokholok et al., 2005) so the coverage of tar-

gets should be higher than for transcription factors and for other

profiles with sharp peaks. Taken together, these results show that

Zerone produces discretizations that are sensitive and adapted to the

profile being discretized.

3.2.1 Identification of CTCF binding sites

CTCF binds a 20 bp consensus sequence that is highly conserved in

vertebrates. In humans, nearly 80% of the CTCF binding sites con-

tain the consensus motif (Kim et al., 2007). In order to determine

the capacity of the different tools to call peaks of CTCF binding, we

compared the discretized profiles against a reference dataset con-

taining the positions of 85 690 occurences of the CTCF motif (see

Section 2.4).

Table 2 shows that for most tools, the F1 score (the harmonic

mean of precision and recall) is between 0.34 and 0.41. The excep-

tion is JAMM, achieving significantly higher precision than the

other tools at the cost of recall. On this dataset, the performance of

Zerone is fair, with a good balance between precision and recall.

3.2.2 H3K36me3-enriched domains on active genes

There is no consensus sequence to determine the location of histone

modifications. However, it is known that the bodies of active genes

are enriched in H3K36me3 (Kimura, 2013; Pokholok et al., 2005).

Therefore, the genes that contain peaks or windows determined as

enriched in H3K36me3 by the different discretizers should be more

expressed than the background.

We benchmarked the quality of the discretization with expres-

sion data obtained in the same cell. We used the number of RNA

reads as a response variable and computed the amount of variance

explained by the discretized profile of H3K36me3. The dis-

cretization produced by Zerone is the best predictor of expression
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(Fig. 6, left panel). It is also the one with highest coverage (Fig. 5,

right panel), which shows that the increased number of targets does

not come at the cost of accuracy. On the contrary, the high coverage

of H3K36me3 is confirmed by expression data.

A Venn diagram gives a graphical overview of the relationships

between the discretizations (Fig. 6, right panel). Zerone finds most

of the targets detected by the other discretizers, while discovering

enriched windows not found by the others.

3.3 Speed and memory footprint
We compared the running times of the different programs on discre-

tizing the four datasets used above, containing 18–32 million reads

(Table 1). The results were similar between experiments. Zerone

was consistently the fastest tool, with a running time of around 5

min (Fig. 7, top row). The advantage is marginal over MACS, which

ran for around 10 min, but it is substantial over JAMM and

BayesPeak which ran in hours or in days, respectively. Post-

processing the output with IDR did not significantly increase the

running time of MACS, but it did so for JAMM, increasing the total

running time by a few hours (Fig. 7, dark grey bars). The results for

peak memory usage were variable between experiments (Fig. 7, bot-

tom row). MACS achieved the best performance with a memory

footprint around 0.5 GB, followed by Zerone around 0.7 GB.

BayesPeak and JAMM each used more than 1.5 GB. The memory

usage of Zerone does not depend on the sequence depth of the ex-

periment, but solely on the number of replicates and the total num-

ber of windows in the genome. As an example, for the human

genome at 300 bp resolution, the memory footprint of Zerone is ex-

pected to be around 500 MBþ40 MB per replicate.

The benchmark is partly confounded by the fact that Zerone dis-

cretizes multiple profiles simultaneously. This makes a difference for

pipelines where all files have to be processed in parallel with the min-

imum amount of resources. In this benchmark, Zerone processed

twice as many files per run as MACS. Per processed file, Zerone is

thus four times faster than MACS while using 30% less memory.

4 Discussion and conclusions

Zerone was developed ground up for scalibility and throughput. The

result is a tool with competitive performance (Fig. 7). Part of the speed

is due to hashing methods that dramatically cut down the computation

time during the Baum-Welch cycles. Zerone also rests on sound statis-

tical bases. Theoretical arguments and experimental observations sug-

gest that the Zero-Inflated Negative Multinomial distribution is

appropriate to model ChIP-seq data (Fig. 1). This gives Zerone good

specificity and sensitivity for very different profiles (Fig. 5).

Zerone also proposes an original solution to the problem of data

heterogeneity. Firstly, the statistical model is fitted in order to harmon-

ize the replicates and solve conflicts by maximum likelihood. Secondly,

automatic quality control is performed after the discretization. The

principle of this step is somewhat similar to anomaly detection. Note

that control profiles play a key role in the process. In order to evaluate

the quality of the discretization, Zerone implicitly assumes that the

user has provided controls that properly capture systematic biases such

as batch effects, mappability and copy number variations.

The quality control implemented in Zerone goes beyond the IDR

(Li et al., 2011) in several ways. Zerone measures the quality of the

discretization and not only the consistency between replicates. Also,

the quality control of Zerone is neither limited to a specific type of

profile (e.g. sharp peaks), nor to a preset number of replicates.

Finally, issuing an ‘all-or-none’ call about the discretization is better

practice than silently ignoring the regions that differ between experi-

ments (see e.g. Fig. 3).

Table 2. Performance on the CTCF motifs dataset

Software Total Motif Precision Recall F1 score

BayesPeak(1) 45 229 25 223 0.56 0.32 0.40

BayesPeak(2) 45 192 23 637 0.52 0.30 0.38

JAMM 11 046 8777 0.79 0.11 0.20

MACS(1) 48 341 26 475 0.55 0.33 0.41

MACS(2) 41 048 23 498 0.57 0.30 0.39

MACS(1) þ IDR 25 080 17 530 0.70 0.22 0.34

MACS(2) þ IDR 25 080 17 527 0.70 0.22 0.34

Zerone 54 315 25 324 0.47 0.32 0.38

The numbers in parentheses indicate the results on the two replicates separ-

ately. True and false positives are defined as peaks with and without a CTCF

motif, respectively. Total: number of peaks found by the program. Motif: sub-

set of those containing at least one CTCF motif. Precision: Motif divided by

Total. Recall: number of motifs covered by peaks divided by the number of

motifs in the genome. F1 score: harmonic mean between Precision and Recall.

The numbers in parentheses indicate the results on the two replicates

separately.
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Here, we also introduced a way to compare discretizers with an

intuitive graphical representation (Fig. 4). On this plane, the coord-

inates of a discretization indicate the number of targets (or occu-

pancy) and the amount of reads captured by these targets. The

Pareto front captures the inherent trade-off between sensitivity and

specificity in the problem of discretizing ChIP-seq profiles. Points on

this line that are close to the bottom-left corner represent discret-

izations with high amount of reads per target (most specific) and

points that are close to the top-right corner represent discretizations

with many targets (most sensitive). The Pareto front also highlights

an unachievable region whose shape depends on the structure of the

signal, i.e. on the feature being discretized (Fig. 4). One of the chal-

lenges of discretizing ChIP-seq profiles is to find algorithms that per-

form well in all the cases.

In practice, the specificity of a discretizer is unknown because

the biological truth remains hidden. However, we can decide

whether a discretizer is more or less conservative than another by

measuring the amount of reads per target. This characteristic may

be a matter of choice, and is usually tacit in the case of ChIP-seq dis-

cretizers. Out of two equally conservative discretizers, one may be

more sensitive, i.e. discover more targets. The merit of the represen-

tation introduced here is to highlight these characteristics and to

guide users when choosing the most appropriate tool for their need.

Note, however, that the number of reads per window is not the only

criterion for calling targets, so there are cases where a discretization

lying far from the front may be preferable to one lying closer to it.

This representation naturally suggests a naive approach to discret-

ize ChIP-seq profiles. Indeed, one could sort the genomic windows by

decreasing amount of ChIP-seq reads and call ‘target’ any window

above a chosen threshold. While this method would only produce dis-

cretizations on the Pareto front, adjusting the threshold to the condi-

tions would be challenging for lack of an underlying model. This is

one of the major strengths of Zerone: the statistical model automatic-

ally adjusts conservativity and sensitivity in a sensible way.

In summary, the good performance of Zerone on different

classes of profiles, combined with the automatic quality control

meet the needs for general and robust ChIP-seq tools.
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