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Abstract

Summary: Transcription factors (TFs) regulate complex programs of gene transcription by binding

to short DNA sequence motifs. Here, we introduce rtfbsdb, a unified framework that integrates a

database of more than 65 000 TF binding motifs with tools to easily and efficiently scan target gen-

ome sequences. Rtfbsdb clusters motifs with similar DNA sequence specificities and integrates

RNA-seq or PRO-seq data to restrict analyses to motifs recognized by TFs expressed in the cell type

of interest. Our package allows common analyses to be performed rapidly in an integrated

environment.

Availability and Implementation: rtfbsdb available at (https://github.com/Danko-Lab/rtfbs_db).

Contact: dankoc@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Transcription factors (TFs) regulate complex programs of gene ex-

pression by modulating the rates of several steps early in transcrip-

tion. TFs bind degenerate DNA sequence motifs, typically 3–20 bp,

located in regulatory regions known as promoters, enhancers and in-

sulators. Identifying the coordinates of TF binding motifs within the

genome is a crucial step in many genomic analyses. However, motif

discovery is a challenging computational problem owing to the short

lengths and high degeneracy of TF binding motifs.

Using experimentally derived sources of TF binding is one strat-

egy to improve accuracy by constraining the motif discovery prob-

lem to known binding sequences. This strategy requires extensive

knowledge about the DNA sequence specificities of TFs, which have

historically been time-consuming to measure experimentally.

Recently, high throughput experimental approaches have allowed

the systematic discovery of motifs for thousands of TFs (Jolma et al.,

2013; Mathelier et al., 2014; Weirauch et al., 2014). Moreover,

strategies to impute binding motifs using TF amino-acid sequences

extend these resources to most species with a sequenced genome

(Weirauch et al., 2014). These developments make the use of known

TF binding motifs a powerful strategy in many common

applications.

Here, we introduce rtfbsdb, an open-source pipeline for tran-

scription factor binding site (TFBS) identification and analysis,

which integrates experimentally derived TF binding data for thou-

sands of TFs. Unlike other TFBS identification tools, rtfbsdb inte-

grates high-throughput measurements of gene expression for TFs

associated with each motif. For downstream TFBS scanning and

identification, rtfbsdb uses the rtfbs package (Peterson et al., unpub-

lished), a highly flexible and efficient implementation of many TFBS

scanning tasks. Many common and complex analyses can be solved

by rtfbsdb in as little as a single line of R. We demonstrate rtfbsdb

using genomic data from the ENCODE project.

2 Description

2.1 Description of the RTFBSDB package
The rtfbsdb package is an open-source package for R which auto-

mates many common tasks in TFBS discovery and analysis. The flow-

chart for a typical analysis using rtfbsdb is presented in Figure 1. To

begin an analysis, users import a large database of experimentally

defined TF binding motifs. We primarily support the Catalog of

Inferred Sequence Binding Preferences (Cis-BP) database, which inte-

grates more than 65 000 motifs from >25 distinct experimental
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sources (Weirauch et al., 2014). Cis-BP also includes imputed motifs

for non-model organisms and for paralogs of well-characterized TFs.

In addition to Cis-BP, rtfbsdb supports motifs from a variety of differ-

ent sources and integrates data seamlessly in R.

DNA binding specificities are often highly similar between differ-

ent TFs. Duplicate motifs reduce the interpretability of downstream

analyses and can inappropriately decrease statistical power when

using more stringent corrections for multiple hypothesis testing. We

provide tools to focus analyses on motifs that are directly suitable

for the user’s application. Many analyses benefit from focusing on

the subset of motifs for which the cognate TF is expressed in the cell

type of interest. For this task, rtfbsdb integrates gene expression

data collected using high-throughput sequencing approaches,

including RNA-seq, PRO-seq, or related assays. Rtfbsdb estimates

transcriptional activities of the TF associated with each motif in Cis-

BP, which contains ENSEMBL IDs for each motif, using counting

functions in the BedTools (Quinlan and Hall, 2010) and bigWig

packages. Rtfbsdb implements a statistical test to identify TFs which

are expressed in the cell type or tissue of interest relative to back-

ground (Core et al., 2008). To remove remaining redundant entries

from rtfbsdb we cluster motifs based on their DNA sequence specif-

icities using an affinity propagation clustering algorithm provided in

APCluster (Bodenhofer et al., 2011). In most cases, downstream

analyses will represent each cluster as a single motif which is a mem-

ber of that cluster. After clustering, the similarities between each

pair of motifs can be visualized as a heatmap (Supplementary Fig.

S1) and images of the motif logos within each cluster can be visual-

ized in R (Bembom, unpublished) or written to disk as a PDF file.

The result of these pruning and clustering steps is to tailor the reper-

toire of motifs analyzed for the user’s application.

After reading and filtering motifs, an rtfbsdb object can then be

used to solve two classes of problem that are common in genomics.

First, a common analysis is to identify the coordinates of known

motifs in a target genome. During this task the user provides a target

genome file (in UCSC 2-bit format) and rtfbsdb will return the co-

ordinates of motif matches to the user. Although this challenge is ad-

dressed by FIMO (Grant et al., 2011) and other applications, a

notable advantage of rtfbsdb is that a database of experimentally

derived motifs is integrated directly within the package. Moreover,

our pipeline provides users with the option to write the coordinates

of each motif directly to disk in a highly efficient compressed file for-

mat using bedops (Neph et al., 2012), enabling thousands of motifs

to be scanned efficiently across large genomes.

Second, another common analysis task is to identify motifs that

are enriched in a common set of DNA sequences compared to back-

ground. This task can provide insight into which TFs putatively

cause changes between two or more biological conditions. For ex-

ample, differences in ATAC-seq or dREG peaks between two biolo-

gical samples often reflect differences in TF binding. Motifs that are

enriched in peaks that change between conditions relative to consti-

tutive peaks can provide insight into which TFs are responsible for

causing these changes. However, these analyses can be challenging

to implement in practice. The most common challenge with such an

analysis is a systematic difference in nucleotide composition between

test and background sequences. By default, rtfbsdb uses a resam-

pling approach to identify background sequences with a similar dis-

tribution of GC content as test sequences. Additionally, rtfbsdb

identifies motifs that are robustly enriched at several motif match

score cutoff thresholds. Together, these innovations result in more

reliable discriminative TFBS identification. To our knowledge,

HOMER is the only other package that allows discriminative TFBS

identification using experimentally derived TF binding motifs

(Heinz et al., 2010). Compared to HOMER, rtfbsdb provides a

larger repertoire of motifs, rigorously integrates TF expression levels

using genomic data, and supports clustering motifs with similar

DNA sequence specificities. Together, these advantages are likely to

make rtfbsdb a more powerful and reliable tool for discriminative

TFBS identification in many applications.

2.2 Using multiple GC content groups

decreases accuracy
A common step in TFBS identification is to divide loci into separate

groups based on GC content and use a separate background model

for each group. This strategy is assumed to accommodate systematic

differences in GC content across the genome, and thus improve the

specificity of motif matches. However, whether this practice results

in superior TF binding site predictions has not been tested directly.

We created an empirical test using publicly available data from the

ENCODE project to determine whether dividing sequences into

multiple GC content groups improves the accuracy of TFBS predic-

tions. We used motif match scores to classify high-confidence

DNase-I hypersensitive sites (DHS), defined as the intersection of

DHS discovered using Duke and UW assays (Danko et al., 2015), as

bound or unbound to its cognate TF. Chromatin immunopercipita-

tion and sequencing (ChIP-seq) peaks from 21 TFs were used as a

gold-standard set. Surprisingly, a background model constructed

using all available sequences performs more accurately than dividing

sequences into four separate groups by GC content in almost 90%

of cases (median AUC¼0.771 [1 GC group], 0.741 [4 GC groups]

Supplementary Fig. S2; Supplementary Table S1). The largest differ-

ences were observed for ZBTB7A and E2F6 for which binding site

discrimination was 12.9 and 11.1% more accurate with only one

GC content group. Thus, we conclude that using a single GC
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Fig. 1. Schematic illustrating the rtfbsdb workflow. Motifs are loaded into a

CisBP.db object in R using an automated web scraper that imports data dir-

ectly from the Cis-BP database. The set of motifs is reduced to those most ap-

plicable for analysis (right side) by removing TFs that are not expressed in the

cell system of interest, and subsequently grouping motifs recognizing similar

DNA sequences by clustering. The final set of motifs can be used to complete

several common tasks in genomics (bottom row), including testing a set of

DNA sequences for enriched motifs, scanning a target genome, or visualizing

motifs as sequence logos
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content group results in superior performance for the majority of

TFs, though individual differences were relatively small. A single

GC content group is the global default in rtfbsdb.

3 Example

To demonstrate the utility of rtfbsdb we used motifs in Cis-BP to

search ChIP-seq peaks discovered by ENCODE for TFBS. We

focused on ChIP-seq data profiling 97 TFs and co-factors in K562

cells. Forty-one of these are not represented by a motif in available

databases, and these are largely comprised of either transcriptional

co-repressors (e.g. HDAC1, EZH2 and KAP1) or general transcrip-

tion factors (e.g. GTF3C2 and TAF1) without intrinsic sequence-

specific DNA binding. Of the remaining 56 TFs the expected motif

was recovered in 52 cases (93%), and was the most strikingly en-

riched motif in 41 (73%; Supplementary Table S2). For example,

the motif corresponding to the transcriptional repressor REST was

more than 50-fold enriched in ENCODE REST ChIP-seq peaks

(Supplementary Fig. S3). In the 27% of cases where the expected

motif was not the most enriched, rtfbsdb often recovered a motif

corresponding to a known cofactor which may recruit the expected

TF to ChIP-seq peaks by protein–protein interactions, in a process

known as tethering. For example, peaks binding SP1 and SP2 were

enriched for NFYA and NFYB binding motifs, which represent a

known TF tethering interaction (Roder et al., 1999). Similarly, al-

though EP300 contains a motif in CisBP, it is a transcriptional co-

activator which is recruited to DNA by other TFs (Goodman and

Smolik, 2000). We thus conclude that rtfbsdb returns the expected

motif in real world test cases.
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