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Abstract

Motivation: Mutations in human genome are mainly through single nucleotide polymorphism,

some of which can affect stability and function of proteins, causing human diseases. Several meth-

ods have been proposed to predict the effect of mutations on protein stability; but most require fea-

tures from experimental structure. Given the fast progress in protein structure prediction, this work

explores the possibility to improve the mutation-induced stability change prediction using low-

resolution structure modeling.

Results: We developed a new method (STRUM) for predicting stability change caused by single-

point mutations. Starting from wild-type sequences, 3D models are constructed by the iterative

threading assembly refinement (I-TASSER) simulations, where physics- and knowledge-based en-

ergy functions are derived on the I-TASSER models and used to train STRUM models through gra-

dient boosting regression. STRUM was assessed by 5-fold cross validation on 3421 experimentally

determined mutations from 150 proteins. The Pearson correlation coefficient (PCC) between pre-

dicted and measured changes of Gibbs free-energy gap, DDG, upon mutation reaches 0.79 with a

root-mean-square error 1.2 kcal/mol in the mutation-based cross-validations. The PCC reduces if

separating training and test mutations from non-homologous proteins, which reflects inherent cor-

relations in the current mutation sample. Nevertheless, the results significantly outperform other

state-of-the-art methods, including those built on experimental protein structures. Detailed ana-

lyses show that the most sensitive features in STRUM are the physics-based energy terms on I-

TASSER models and the conservation scores from multiple-threading template alignments.

However, the DDG prediction accuracy has only a marginal dependence on the accuracy of protein

structure models as long as the global fold is correct. These data demonstrate the feasibility to use

low-resolution structure modeling for high-accuracy stability change prediction upon point

mutations.

Availability and Implementation: http://zhanglab.ccmb.med.umich.edu/STRUM/

Contact: qiang@suda.edu.cn and zhng@umich.edu

Supplementary information: Supplementary data are available at Bioinformatics online.
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1 Introduction

Mutation and evolution in the human genome are mainly through

single nucleotide polymorphisms (SNPs). With the developments of

high-throughput array-based genotyping methods and the next gen-

eration sequencing technologies, a large volume of SNP data has

been recently accumulated. It is estimated that around 58% of the

exonic SNPs in the human genome can result in change in protein

amino acid sequences, called ‘non-synonymous’ SNP or nsSNP

(Tennessen et al., 2012). In many cases, the nsSNP mutations have

little or no discernible effect on protein functions, but others are

known to be responsible for many human diseases (Yates and

Sternberg, 2013). Experimental measurements showed that nearly

one-third of nsSNP mutations are deleterious to human health

(Tokuriki and Tawfik, 2009). Recognizing such deleterious nsSNP

mutations is of critical importance to both protein function annota-

tion and disease diagnosis.

In the viewpoint of thermodynamics, the effects of the mutations

can be assessed through changes on the thermal stability of protein

systems. The stability of proteins can be quantitatively characterized

by a simple two-state model (folded and unfolded, Fig. 1), where the

difference in Gibbs free energy between the unfolded (Gu) and the

folded (Gf ) states, DG ¼ Gu �Gf , is used to specify the fold stabil-

ity. The higher and more positive DG is, the more stable the protein

is against denaturation. When a mutation occurs, the free energy

landscape and the stability can change, where the free energy gap

difference between wild type (DGm) and mutant protein (DGw),

DDG ¼ DGm � DGw, is a measure of how mutation affects protein

stability. Figure 1 illustrates an example where the mutation destabi-

lized the protein by reducing the free energy gap between folded and

unfolded states. In general, a DDG below zero means that the muta-

tion causes destabilization; otherwise, it induces stabilization.

Although mutagenesis studies are important approach to experi-

mentally characterizing the thermodynamic and physiological effects

of nsSNPs, it is often too expensive and time-consuming for large-

scale mutation studies. Computational mutation prediction becomes

increasingly important with the rapid accumulation of sequence mu-

tation data. Current computational approaches can be generally

categorized into sequence-based and structure-based methods. One

of the most popularly used sequenced-based methods is SIFT, which

predicts whether an amino acid substitution affects protein function

based on the degree of conservation of amino acid residues in mul-

tiple sequence alignments (MSAs) that are derived from closely

related sequences. A Pearson correlation coefficient (PCC) of 0.55

was obtained by SIFT between the residue conservation and the

number of experimentally determined deleterious mutations (Kumar

et al., 2009; Ng and Henikoff, 2001). INPS (Fariselli et al., 2015) is

another sequence-based method recently developed on SVM regres-

sion. By appropriate combination of evolutionary information, a

PCC of 0.52 was obtained by INSP when tested in the protein-level

cross-validations.

Recent studies have demonstrated considerable advantages in ex-

ploiting information of protein 3D structures in the mutation-induced

stability change prediction. For instance, FoldX used a full atomic de-

scription of protein structure to estimate the importance of the inter-

actions contributing to the stability of proteins and protein

complexes, which generated DDG predictions with a correlation 0.73

to the experimental data for 625 single point mutations (Guerois

et al., 2002). FoldX was recently exploited by BindProf (Brender and

Zhang, 2015), which shows that it can improve the prediction accur-

acy of mutation effects on protein binding interactions when com-

bined with structure-based interface profiles. I-Mutant trained the

stability models on the neighboring residue types within a 9 Å radius

sphere and achieved an increase in the correlation of predicted and

measured DDG by 14% compared with the model based on sequence

features alone (Capriotti et al., 2005). PoPMuSiC went further to take

the spatial descriptors from the native structure of the wild-type pro-

tein and had the DDG calculated by a linear combination of 13

knowledge-based terms on the protein structure, which resulted in a

correlation of 0.8 between predicted and measured stability changes

after exclusion of 10% outliers (Dehouck et al., 2009, 2011).

ProMaya considered a meta-server approach to combine the structure

features with DDG predicted from different programs, which resulted

in improved correlation of 0.79 on the validation datasets (Wainreb

et al., 2011). More recently, NeEMO used residue connection net-

works in 3D structure to assess residue stability, achieving a PCC of

0.77 (Giollo et al., 2014). mCSM considered a similar idea of distance

maps of vicinity atoms from the wild-type protein structure, which

was combined with the pharmacophore counts to estimate the impact

of mutations and achieved improved correlation over several compet-

ing methods (Pires et al., 2014).

Despite the advantage of the structure-based prediction, the ma-

jority of the methods were trained and benchmarked on the experi-

mental structure of the target proteins. Some methods, e.g. ProMaya

(Wainreb et al., 2011), require specifically the X-ray crystal structures

as crystallography features such as B-factor are used. However, ex-

perimental structures are often not available for proteins; in fact, only

<0.2% of proteins in the UniProt have a 3D structure in the PDB

library. The lack of experimental structures renders many of the

structure-based methods unfeasible for the practical application.

Given the fast progress in protein structure prediction as witnessed by

the community-wide CASP experiment (Moult et al., 2014), here we

explore the possibility to use low-resolution models from non-

homologous structure prediction to improve the mutation-induced

stability change predictions. A new structure modeling approach,

STRUM, is developed to combine various physics-based and

knowledge-based energy terms, built on the I-TASSER predicted mod-

els, with the various sequence and template-based conversation scores

to generate the stability change predictions. To examine the strength

and weakness of the proposed method, multiple datasets are collected

from experimental mutation databases, which will be used to care-

fully benchmark STRUM with other state of the art methods. The on-

line server and standalone package of STRUM are freely available at

http://zhanglab.ccmb.med.umich.edu/STRUM/.

2 Methods

2.1 Dataset construction
ProTherm (Kumar et al., 2006) is a protein mutation database that

documents experimentally determined thermodynamic parametersFig. 1. Definition of stability change upon mutation in a two-state model
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published in the literature. To facilitate the training and testing of

our methods, as well as the comparison to other methods that are

most trained on experimental protein structures, we collected a rep-

resentative dataset from ProTherm (updated on February 22, 2013).

This set contains records from single-point mutations and having

the protein structure experimentally solved in the PDB; it constitutes

3421 mutations involving 150 proteins, called Q3421 set. The WT

sequences of the 150 proteins are listed at http://zhanglab.ccmb.

med.umich.edu/STRUM/benchmark/Sequence.

Because the stability change DDG can be obtained from multiple

measurements at different experimental conditions, we calculated

the average DDG value for each mutation, using a weight scheme

similar to Dehouck et al (2009), in which a higher weight is given to

the DDG value measured at the pH close to 7, temperature close to

25�C, and with less additives, i.e.

DDG ¼
Pn

i¼1 wpH
i wT

i wadd
i DDGiPn

i¼1 wpH
i wT

i wadd
i

1ð Þ

where n is the number of experiments on the same mutation, DDGi

is the value by the ith experiments. wpH
i ½¼ 1� jpHi � 7j=7],

wT
i ½¼ maxð0; 1� jTi � 25j=25Þ� and wadd

i ½¼ Pki

j¼1ð1� Cij=C
max
j Þ, if

ki � 1; or¼1, if ki ¼ 0] are weighting parameters, where pHi, Ti, ki

are the pH value, temperature, number of additives of ith experi-

ment, Cij is the concentration of jth additive in the ith experiment,

and Cmax
j is the maximum concentration for the jth additive.

Figure 2 shows the histogram distribution of DDG in the Q3421

dataset, where 2618 (or 77%) mutations have DDG < 0 and 763

(or 22%) have DDG > 0, which means that the majority of muta-

tions have destabilized the protein fold.

Two other datasets (Dehouck et al., 2009) collected from the old

versions of ProTherm were used as well. The first is S2648 that con-

tains 2648 single-point mutations involved in 131 proteins; the se-

cond one, S350, contains 350 mutations in 67 proteins that is a

randomly selected subset of the S2648 database. These two datasets

have often been used in the previous studies, the use of which can fa-

cilitate comparison with other methods.

Since many studies used S2648 as training set, we constructed a

new set, Q306, for more stringent tests, which contains 306 point

mutations from 32 proteins that have a sequence identity < 60% to

any proteins in the S2648. A detailed list of the Q3421 and Q306

datasets with mutation sites, DDG, temperature, and pH values are

downloadable at http://zhanglab.ccmb.med.umich.edu/STRUM/

benchmark/benchmark.tar.bz2.

2.2 STRUM pipeline and feature design
STRUM is a machine learning-based mutation stability change pre-

dictor that was trained through gradient boosting regression on

three groups of features (see Fig. 3). The first group of 37 features is

derived from sequence composition and MSAs (called ‘sequence-

based’); the second group of five features is from threading template

alignments (or ‘threading-based’); and the last group of 78 features

is built on the I-TASSER full-length structure prediction (or ‘I-

TASSER-based’). A detailed list of all the 120 features is given in

Supplementary Table S1. We first outline the feature extraction

below.

2.2.1 Sequence-based features

Three types of the sequence-based features were derived. The first

type contains 10 physicochemical properties of the wild type

and mutant residues, including the amino acid identity, volume,

weight, hydrophobicity scale and isoelectric point (Supplementary

Table S1).

The second type of sequence-based features is a position spe-

cific conservation score derived from MSAs. Three tools are used

to collect the MSA matrices. The first is from PSI-BLAST (Altschul

et al., 1997) search through the NCBI non-redundant sequence

database with three iterations and E-value cutoff 0.001; the second

is from HHblits (Remmert et al., 2012) which generates MSAs by

iterative profile-profile based hidden Markov model alignments

through the UniProt sequence database (Bairoch et al., 2008); the

third is from SIFT (Ng and Henikoff, 2001) that first uses PSI-

BLAST to search through UniProt database and then has the MSAs

reconstructed by iteratively adding conserved motifs from consen-

sus sequence pairs.

The three MSAs from PSI-BLAST, HHblits and SIFT are com-

bined into a unified matrix according to their alignment on the

query sequence. A position specific scoring matrix (PSSM) is then

constructed by (Altschul et al., 1997; Ng and Henikoff, 2001)

Sia ¼
N

N þ Bi
fia þ

Bi

N þ Bi
cia 2ð Þ

where N is the number of sequences in the composite MSAs. fia is

the weighted frequency counts of the amino acid a at ith position of

MSAs using the Henikoff-Henikoff scheme (Henikoff and Henikoff,

1994), i.e.

fia ¼
XN
j¼1

wjdðAij 2 aÞ þ 1

20

XN
j¼1

wjdðAij 2 gapÞ

wij ¼

XL

i¼1

1

ni
� 1

qijXN

t¼1

XL

i¼1

1

ni
� 1

qit

8>>>>>>>>><
>>>>>>>>>:

(3)

where Aij is the amino acid type at ith position of jth sequence, L is

the length of query, ni is the number of the distinct amino acid types

at the ith position, qij is the number of times of Aij appearing at the

ith position. cia in Equation (2) is the pseudo-count designed to off-

set the deficiency of statistics by

cia ¼

P20
t¼1 fit � B t;að Þ

1
20

P20

d¼1
B t;dð Þ

� �
P20

u¼1

P20
t¼1 fit � B t;uð Þ

1
20

P20

d¼1
B t;dð Þ

� � 4ð Þ

where B(t, a) is the mutation probability from amino acid t to a in

BLOSUM62 (Henikoff and Henikoff, 1992). The total number ofFig. 2. The histogram distribution of DDG in the dataset Q3421
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pseudo-count Bi is calculated by Bi ¼ exp
P20

a¼1 rafia

� �
, where ra is

the rank of amino acid a in an ordered list from the highest to lowest

score from the substitution matrix BLOSUM62 for the reference

amino acid with the highest frequency at the ith position.

At each position i, the 20 PSSM scores are used as the training

feature of STRUM. In addition, the overall conservation score

Ri ¼ log220þ
X20

a¼1

Sialog2Sia (5)

is also used as the training feature (see Table S1).

The third type of sequence-based features is the local structure

features derived from the target sequence. These include secondary

structure prediction by PSSpred (Yan et al., 2013), specified by three

states of coil, helix and strand; solvent accessibility by MUSTER

(Wu and Zhang, 2008 b), and the backbone torsional angle (/; w)

by ANGLOR (Wu and Zhang, 2008a).

2.2.2 Threading template-based features

Starting from the wild-type sequence, multiple template structures are

identified from the PDB library by LOMETS, a meta-server threading

program that consists of 9 locally installed threading algorithms (Wu

and Zhang, 2007). To filter out homologous contaminations, all tem-

plates with a sequence identity above 30% to the target or detectable

by PSI-BLAST with an E-value below 0.05 are excluded from the tem-

plate library. Based on the LOMET alignments, a set of N top tem-

plates is selected to construct the multiple template alignment (MTA)

by mapping the template residues onto the query sequence. Here,

N¼30 for the Easy targets that have at least one significant template

for each threading program; and N¼50 for the rest of the Hard tar-

gets that have fewer or no significant hits.

Five different features are derived from the LOMETS based on

MTA. The first two features describing residue conservations in

threading alignments (listed as wBLSUM and mBLSUM in

Supplementary Table S1) are calculated by

S Aið Þ ¼
1

N

XN
j¼1

Tj � BðAi;AijÞ

S A
0
i

� �
¼ 1

N

XN
j¼1

Tj � BðA0

i;AijÞ

8>>>>><
>>>>>:

(6)

where Ai and A
0
i are the wild-type and mutant amino acids at ith pos-

ition of the query, respectively; Aij is the amino acid type at ith pos-

ition of jth template at MTA; and B(Ai, Aij) is the BLOSUM62

mutation matrix as defined in Equation (4). Tj is the weighting fac-

tor of jth template based on the consensus TM-score by

Tj ¼
1

N � 1

XN�1

k¼1

TMðj;kÞ (7)

where TM(j, k) is the TM-score between jth and kth LOMETS tem-

plates that is normalized by the length of the query protein (Zhang

and Skolnick, 2004).

The third to fifth features are derived from the normal mode ana-

lysis (NMA) of the LOMETS template structures with the assump-

tion that the mutations with sensitive stability changes can affect the

motion and fluctuation of the target residues. First, full-length back-

bone models are quickly constructed by MODELLER (Sali and

Blundell, 1993) from each LOMETS template for both wild-type

Fig. 3. Flowchart of STRUM for mutation-induced stability change prediction. Three sources of features from sequences (orange lines), threading alignments

(green), and I-TASSER models (blue) are trained by gradient boosting regression for DDG prediction. The final output is an all-to-all DDG table and a visible muta-

tion profile specifying the mutation probability to different amino acids at each position
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and mutant sequences. The structure models are submitted to Bio3D

(Skjaerven et al., 2014) for NMA based on a ‘C-alpha force field’

derived from fitting to the Amber94 all-atom potential. Features

from NMA adopted by STURM include

F Aið Þ ¼
1

N

XN
j¼1

Tw
j � fijðSj

wÞ

F A
0
i

� �
¼ 1

N

XN
j¼1

Tm
j � fijðSj

mÞ

R ¼ 1

N

XN
j¼1

Tw
j þ Tm

j

2
� rj Sj

w; S
j
m

� �

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(8)

where fijðSj
wÞ and fijðSj

mÞ are the conformational fluctuations relative to

the equilibrium state for ith residues on jth MODELLER models from

wild-type (Sj
w) and mutant (Sj

m) sequences, respectively. rjðSj
w; S

j
mÞ

is the root mean square inner product of the 10 lowest normal modes

between Sj
w and Sj

m. Tw;m
j is similar to what was defined by Equation

(7) but with TM-score calculated between the MODELLER models.

2.2.3 I-TASSER model-based features

I-TASSER is a hierarchical approach to protein structure prediction,

which constructs full-length models by iteratively reassembling the

structure fragments excised from the threading templates (Roy

et al., 2010; Yang et al., 2015). We use the I-TASSER program to

generate atomic structure models for the wild-type protein sequence.

The structural model for the mutant sequence is reconstructed by

SCWRL4 (Dunbrack and Cohen, 1997) by replacing the side-chain

rotamers according to the mutated amino acids, followed by

atomic-level FG-MD refinement simulations (Zhang et al., 2011).

Again, all homologous templates with sequence identity>30% to

the target or detectable by PSI-BLAST are excluded from the tem-

plate library to avoid homology contaminates.

Three groups of energy potentials are used to evaluate the atomic

interactions based on the wild-type and mutation I-TASSER models.

The first group of energy potentials is the knowledge-based atomic con-

tact potentials by RW/RWplus (Zhang and Zhang, 2010) and Dfire/

dDfire (Yang and Zhou, 2008; Zhou and Zhou, 2002). Both potentials

are based on the statistics on the PDB structures but with different refer-

ence states. RW/RWplus derives the non-interaction reference state

from an ensemble of random-walk chain conformations, while Dfire/

dDfire does it from ideal gas states. Meanwhile, RWplus and dDfire

consider the orientations of local structures involved in contacts while

RW and Dfire are orientation independent. In addition, dDfire specified

the interactions between hydrogen-bonded atoms (dDfire1), polar-

nonpolar atoms (dDfire2), polar-polar atoms (dDfire3), and the total

energy (dDfire) (Yang and Zhou, 2008).

The second group of energy potential is physics-based from

AMBER force field (Duan et al., 2003). It contains 18 energy terms

counting for bond-length, bond-angle, dihedral, van der Waals, elec-

trostatic, 1–4 van der Waals, 1–4 electrostatic, polar solvation, non-

polar solvation, total gas phase free energy, total solvation free en-

ergy, and the total energy.

The third group is an empirical force field from FoldX (Guerois

et al., 2002), which consists of 14 empirical terms from the van der

Waals contribution of all atoms, solvation energy for apolar and

polar groups, water bridge hydrogen bonding between water and

protein, intra-molecule hydrogen-bonding, electrostatic contribution

of interactions between charged groups, entropy costs for fixing

main-chain and side-chain atoms in a particular conformation, and

the penalty from atomic steric overlaps.

Each of the energy terms from the three groups is calculated for

both wild-type and mutant proteins, which are used as training fea-

tures in STRUM. These constitute 78 training features used by

STRUM (see bottom of Supplementary Table S1)

2.2.4 Model training through gradient boosting regression

Given the 120 features describe above, the predictive model in STRUM

is built using the Gradient Boosted Regression Trees (GBRT), which has

shown to have the advantage to overcome the over-fitting effect com-

pared with many other machine learning methods (Friedman, 2001).

The Scikit-learn toolkit (Pedregosa et al., 2011) is used to implement

the GBRT training, with the hyper parameters tuned through grid-

based search. To further reduce over-fitting, we control the tree size,

and set both the maximum depth (max_depth) and the minimum

required number of samples at a leaf (min_samples_leaf) as 3 for each

tree, with the total number of regression trees (n_estimators) being

3000. When looking for the best split at each stage, the number of ran-

domly selected features to consider is set as equal to the square root of

the total number of training features, which aims to enhance the robust-

ness of training against the overcapacity of the base learner. The least

square function is selected as the loss function of regression due to its su-

perior computational properties.

Training features often do not contribute equally to the predic-

tion of the target response. Since individual decision trees intrinsic-

ally perform feature selection by selecting appropriate split points,

the Scikit-learn program uses the number of times of a specific fea-

ture appearing at the split points as the importance, i.e. the more

often a feature is used at the split points of a tree, the more import-

ant that feature is. For decision tree ensembles, the importance of a

specific feature is calculated by the average of the importance scores

of the feature through all the trees (Pedregosa et al., 2011).

It is worth mentioning that GBRT builds the prediction model in

the form of an ensemble of weak decision trees, in which an interior

node represents one feature with edges to the child nodes corresponding

to the possible values of the input features. This protocol allows

STRUM to specify the energy terms from wild-type or mutant as the in-

put features, where the GBRT training can automatically identify the re-

lationship of the difference between the wild-type and mutant energy

terms. We have examined the training process using the separated en-

ergy terms or energy terms from mutation only. It was found that, based

on the same datasets, the model using separated energy training outper-

forms that trained on the mutant energy, with PCC/root mean sequence

error being 0.54/1.25 and 0.45/1.58, respectively, for these two models

(definitions seen below).

2.3 Evaluation criterions
The performance of the stability change prediction upon single point

mutation is evaluated by

c ¼
n
Xn

i¼1

xiyi �
Xn

i¼1

xi

Xn

i¼1

yiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
Xn

i¼1

x2
i �

Xn

i¼1

xi

 !2
vuut

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
Xn

i¼1

y2
i �

Xn

i¼1

yi

 !2
vuut

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

xi � yið Þ2

n

vuuut
9ð Þ

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

where n is the number of single-point mutations in the test set; xi and yi

represent the predicted and experimental values of DDG for the ith
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mutation, respectively. c and r thus measure the PCC and the root

mean square error (RMSE) between the model prediction and

experiment.

STRUM is tested mainly through a 5-fold cross validation pro-

cedure in which the experimental mutation sample is randomly div-

ided into 5 subsets of equal size. Four subsets are used to train the

prediction model by GBRT and the remaining subset is used as val-

idation of the model. For each sample, such test is repeated five

times each with a different selection of the training and testing sub-

sets. Since the results often have small fluctuation between the ran-

dom sample splits, the training/testing process was repeated 50

times, with the average values of c and r finally reported.

Three types of sample divisions are conducted: the first divides

the mutations regardless what protein they are from, which is called

‘mutation-level’ cross-validation; the second is called ‘protein-level’

that splits the samples based on proteins; the third is ‘position-level’

that divides the samples based on the position of mutation along the

sequence. One purpose for the multiple-level sample divisions is to

eliminate possible bias caused by the correlation between training

and testing samples. In this study, we have confirmed that identical

proteins with different PDB IDs were filtered out in all the datasets.

For protein-level validation, in particular, a sequence identity cutoff

at 60% was applied on Q306 to filter out possible homologies asso-

ciated with the training set (S2648).

3 Results

3.1 Testing STRUM on the Q3421 dataset
STRUM was first tested on the Q3421 dataset that contains 3421

experimental mutations from 150 proteins. In Figure 4, we present

the predicted versus experimental DDG in the testing dataset, which

shows a strong correlation with c equal to 0.79. The RMSE of the

prediction is 1.2 kcal/mol.

STRUM has used three groups of 120 individual features to dis-

criminate the stability changes on single-mutations. To examine the

sensitivity of different features to the mutation stability, we listed in

Column 4–7 of Supplementary Table S1 the distributions of the fea-

ture values on mutations that stabilize (DDG > 0) and destabilize

(DDG < 0) protein folds in dataset Q3421. Column 8 lists the P-

value of the difference between stabilizing and destabilizing

mutations in the Mann-Whitney test. It is shown that most of the

features (78 out of 120) have the P-value below 0.05, meaning that

we can safely reject the hypothesis that the distributions of the two

datasets are drawn from the same distribution, partly validated the

efficiency of feature selections.

In Figure 5, we show the average importance of the 120 features

and the standard errors that are inferred from the Scikit-learn gradi-

ent boosting regression program. Here the importance of the indi-

vidual features is defined by the average number of the times that

the features are used in the split points of the regression tree. The

most predictive features are the four AMBER energy items, includ-

ing internal potential (Feature no. 63), van der Waals energy (no.

64), electrostatic energy (no. 65) and the total energy (68), on the I-

TASSER models. Meanwhile, the weighted conservation score from

threading template alignments (no. 39) also achieves a similar im-

portance index. These data demonstrated the relevance of structure

modeling based features on the stability prediction.

The highest importance score in the sequence-based features is

from the volume difference between wild-type and mutant amino

acids (no. 3). All the features have a non-zero contribution to the

final modeling. Interestingly, the importance of the features on the

wild-type amino acids is generally lower than that of the features on

the mutant amino acids. In fact, the average importance score for

the mutant amino acid based features is 0.013, which is 433%

higher than the average importance score of the wild-type amino

acid based features (0.003). The P-value of the difference in the

Student’s t-test is 9.5*10�24, which indicates that the difference is

statistically significant. This observation highlights the importance

for the construction of specific features, including sequence profiles

and structural models, from the mutant sequences.

3.2 Comparison of STRUM with other methods on the

S2648, S350 and Q306 datasets
To examine STRUM in control with other methods in the field, we

compare the performance of STRUM with that by four recently de-

veloped, state-of-the-art programs from I-Mutent3.0 (Capriotti

et al., 2008), PoPMuSiC (Dehouck et al., 2011), mCSM (Pires et al.,

2014) and INPS (Fariselli et al., 2015). The test is mainly on three

datasets of S2648, S350 and Q306, in which S2648 and S350 have

Fig. 4. Regression result of STRUM on the mutation-level cross-validation test

using the Q3421 dataset

Fig. 5. The importance score of 120 individual features to the regression pre-

dictive model in cross validation. The error bars denote the standard devi-

ation in the 5-fold mutation-level cross validation. Triangles and dots at the

bottom of the histograms label the source of features on wild-type and mu-

tant amino acids, respectively; the unlabeled histograms are for combined

mutant and wild-type residues
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been widely used in the literature but Q306 is a testing dataset newly

constructed. To generate STRUM prediction, we conducted various

multi-fold cross-validations in each of the datasets. The predictions

on other programs are generated by submitting the sequences and

mutations to the webservers provided by the authors. It should be

mentioned that since the server results are not from cross-validation,

part of the testing data might have been included in training sample

of the server models.

3.2.1 Testing result on S2648

Table 1 presents the average results of PCC (c) and RMSE (r) be-

tween predicted and experimental DDG by different programs

(Columns 3–4). Since some servers failed to generate predictions for

specific mutations, we listed in Columns 6–7 the results on the 2484

common mutations that have data by all programs. The 5-fold

mutation-level cross-validation with 50 loops by STRUM has the

average correlation coefficient c ¼ 0.77, which is the highest among

all the programs. Accordingly, the RMSE value of the DDG by

STRUM (0.92 Kcal/mol) is also lower than other predictions. The

P-values in the Wilcoxon test, when comparing the RMSEs of

STRUM with that by different programs, are all below 10�15, mean-

ing that the difference is statistically significant.

Figure 6 presented the regression result on the S2648 dataset from

the 5-fold mutation-level cross validations, where the majority of the

points (75.4%) have the DDG error with in 1.0 Kcal/mol. However,

there are several mutations that have the DDG error larger than 2 Kcal/

mol. The largest error comes from the mutation of H48N in Lysozyme

of bacteriophage lambda (PDB ID: 1am7A). A closer look at the ex-

amples shows that the I-TASSER model of the target protein has an in-

correct fold with a poor TM-score¼0.28. The structure superposition

shows that the mutated residue is completely mis-located on the 3D

fold. The target residue is buried in the native structure, which results

in the destabilized mutation in the native state (DDG < 0). However,

the I-TASSER model misplaced the residue in the surface, which result

in a stabilized mutation prediction with DDG > 0 (see upper-left panel

of Fig. 6). In this figure (lower-right panel), we also present an example

of I-TASSER model with correct fold (TM-score¼0.83) from the

staphylococcal nuclease (PDB ID: 1eyoA), where the predicted DDG is

almost identical to the experimental value. These examples seem to

imply a correlation of I-TASSER models accuracy on the mutation sta-

bility predictions.

The above tests are based on the mutation-level cross validation

in which mutations in training and test sets can come from the same

protein or even the same residue. To have a more comprehensive

test on the impact of protein and residue separations, we conduct

two additional ‘protein-level’ and ‘position-level’ cross-validations,

in which proteins and mutation positions are exclusively either in

the training or testing set. The results are summarized in Table 2, to-

gether with the data taken from two publications that performed the

same tests. It is shown that although STRUM still outperforms the

control methods in these stringent tests, the overall performance is

generally lower than that from the mutation-level validation experi-

ment. More specifically, PCC/RMSE (0.77/0.94) in mutation-level

cross validation are reduced to 0.64/1.14 and 0.54/1.25, respect-

ively, in the position-level and protein-level validations. This reduc-

tion is probably due to the unique distribution of the current

mutation samples, whereas hundreds of mutations can come from a

single protein and the mutation-level cross validation could result in

some level of bias in the testing results, a phenomenon that was also

noted recently by Pires et al. (2014).

3.2.2 Testing result on S350

The S350 may provide a convenient comparison of STRUM with

other methods, since most of publications have used this dataset as

Table 1. Comparison of different methods on the S2648 dataset

Method All mutations Common mutations P-valued

na cb rc na cb rc

I-Mutent3.0 2636 0.60 1.19 2484 0.60 1.19 7.2E-28

INPS 2648 0.56 1.26 2484 0.56 1.26 5.3E-46

mCSM 2643 0.69 1.07 2484 0.70 1.07 1.4E-18

PoPMuSiC 2647 0.61 1.17 2484 0.61 1.17 1.6E-25

STRUM 2647 0.77 0.94 2484 0.78 0.92

an, number of mutations obtained from the programs.
bc, PCC between predicted and experiment DDG:
cr, RMSE of DDG prediction in Kcal/mol.
dP-value, P-value in Wilcoxon test between the RMSE of STRUM and that

by the control methods on the common mutations.

Fig. 6. Regression results of STRUM on Dataset S2648. The red and blue car-

toons in two examples represent the protein structure from the PDB and the I-

TASSER prediction, respectively

Table 2. Summary of protein-level and position-level cross valid-

ation on the S2648 dataset

Method Protein-levela Position-levelb

cd re cd re

INPSc 0.52 1.26 0.54 1.28

mCSMc 0.51 1.26 0.54 1.23

STRUM 0.54 1.25 0.64 1.14

aProtein-level, mutation samples are divided based on their protein origin.
bPosition-level, mutation samples are divided based on their positions.
cINPS, mCSM, data taken from authors’ publications.
dc, PCC between predicted and experimental DDG:
er, RMSE of DDG prediction in Kcal/mol.
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their testing set. Similarly, we trained STRUM on the 2298 (¼2648-

350) mutations and use the S350 as the testing set. Columns 2–3 of

Table 3 present the c and r values that we copied from the original

publications; and Columns 4–9 are that obtained from the on-line

servers. The results from most servers are consistent with (or slightly

worse than) the published data. Again, STRUM outperforms the re-

sults on the S350 test set with the Wilcoxon test P-values listed in

Column 10, which indicates that the differences are statistically sig-

nificant. It is notable that the P-value here is generally higher than

that in Table 1, which is mainly due to the reduced sample size that

decreases the degree of freedom and therefore the magnitude of

P-values.

3.2.3 Testing result on Q306

Although mutations in S350 were excluded from the training set,

training and testing samples may come from the same proteins. In

Table 4, we report the results on the Q306 that contains 306 muta-

tions from 32 proteins that have a sequence identity < 60% to any

proteins in S2648, which STRUM was trained on.

The results on Q306 become worse than the S350 set with aver-

age PCC/RMSE¼0.40/1.91 compared with 0.79/0.98, which is

probably due to the fact that the mixture of the training and test mu-

tations from homologous proteins is now filtered out completely.

We also listed the results from web server of the three control meth-

ods (-results from PoPMuSiC were not shown because the server

failed to generate a prediction for nearly half of the mutations in

Q306). Although STRUM is in general worse than the S350 set, it

outperforms the control methods again in this new Q306 dataset.

However, the P-value of the difference between STRUM and the

control methods becomes less significant compared with that in

other datasets. One reason is that the sample is relatively smaller,

which can result in fluctuation in performance. Second, the proteins

in Q306 are non-homologous to the STRUM’s training set, which

may not be the case for the control methods.

3.3 Blind test on p53 protein
Cells in human often face dangers. The normal controls on cell

growth may be blocked and the cell will rapidly multiply and grow

into a tumor when the key regulatory elements are damaged. P53 is

probably the most important tumor suppressor protein that regu-

lates cell growth by binding DNA and activating the expression of a

number of down-stream cell-cycle regulation genes. Mutations on

the p53 protein-coding genes can result in unnatural growth, which

contributed to nearly half of the human cancers. Most of these mu-

tations are missense that can result in amino acid substitution on

protein sequence. There are 42 single mutations extracted from the

IARC TP53 Database that have been experimentally determined,

none of which appear in the STRUM training dataset. Since this

dataset was collected after STRUM development, we can consider it

as a blind test of the STRUM algorithm.

Table S2 shows the results of DDG predictions by 5 different

methods where STRUM uses the I-TASSER model and the rest of

the methods use the published crystal structure 2OCJ, except for

INPS that is from sequence. It was shown that the stability changes

by STRUM has the second strongest correlation with the experimen-

tally values (c ¼ 0:69), compared with that of other methods,

including INPS (c ¼ 0:71), mCSM (c ¼ 0:67), I-Mutent3.0

(c ¼ 0:57), and PoPMuSiC (c ¼ 0:56). The RMSE of STRUM is the

lowest with r ¼ 1:34 Kcal/mol.

3.4 Further examinations on STRUM
STRUM’s performance is partly attributed to the employment of

protein structure prediction and the large-scale feature design col-

lected from multiple resources. Here we examine several relevant

issues related to these attributes.

3.4.1 Are 120 features all needed?

To answer this question, we classify the 120 features into 3 groups.

The first group is sequence-based containing physicochemical prop-

erties plus MSA and local structure predictions; the second includes

physicochemical properties plus threading template-based features;

and the third consists of physicochemical properties plus I-TASSER

model based features (Supplementary Table S3). A protein-level 5-

fold cross-validation test is then performed on each of the feature

groups. The results show a modest level of variations on the final

performance among different feature groups, where the third group

based on I-TASSER models shows slightly better PCC/RMSE (0.49/

1.31) than the other two groups (0.47/1.34 and 0.41/1.41).

Next, we trained the predictor on the top 5, 10, 20, 50 features

selected from each group based on their importance score listed in

Figure 5. In all the groups, the performance gradually increases

when more features are included, demonstrating the necessity of

including more features. Finally, we tried to merge different number

of top features from the three groups for STRUM training. The re-

sult shows again that the performance increases when including

more features (Supplementary Table S4). With the number of fea-

tures increasing to 86, the PCC/RMSE values increase to 0.51/1.27,

which are close but still not equal to the level of using the entire

120-feature set (0.54/1.25), suggesting that the most features used in

STRUM are complementary to each other and the inclusion of a

comprehensive feature set is needed to achieve the optimal

performance.

Table 4. Comparison of different methods on the Q306 dataset

Method ca rb P-valuec

I-Mutent3.0 0.12 2.04 3.7E-4

INPS 0.27 1.96 7.9E-4

mCSM 0.18 2.09 7.0E-2

STRUM 0.40 1.91

ac, PCC between predicted and experiment DDG:
br, RMSE of DDG prediction in Kcal/mol.
cP-value, P-value in Wilcoxon test between the RMSE of STRUM and that

by the control methods on the mutations.

Table 3. Comparison of different methods on the S350 dataset

Method ca ra All mutations Common

mutations

P-valued

nb cc rc nb cc rc

I-Mutent3.0 0.53 1.35 349 0.53 1.32 343 0.52 1.33 2.4E-10

INPS 0.68 1.26 350 0.59 1.28 343 0.59 1.28 3.4E-07

mCSM 0.73 1.08 349 0.70 1.13 343 0.69 1.13 4.2E-05

PoPMuSiC 0.67 1.16 350 0.67 1.17 343 0.66 1.18 5.1E-05

STRUM 0.79 0.98 350 0.79 0.98 343 0.80 0.95

ac,r, Data obtained from corresponding publications
bn, Number of mutations obtained for each method
cc,r, Data obtained from on-line servers
dP-value, P-value in Wilcoxon test between the RMSE of STRUM and that

by the control methods on the common mutations
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3.4.2 Impact of protein structure quality on STRUM

Examples in Figure 6 have indicated some correlation between

I-TASSER model accuracy and STRUM performance. To have a

quantitative assessment on the impact of protein structure prediction,

we re-trained STRUM on the experimental structure from the PDB.

The data in Supplementary Table S5 shows, however, that the PCC/

RMSE values are only marginally improved, from 0.77/0.94 to 0.78/

0.92, compared using I-TASSER models. One reason on the small

difference can be attributed to the overall quality of the I-TASSER

modeling. As shown in Figure S1, although homologous templates

were excluded, the majority of the I-TASSER models (83%) have the

correct fold with a TM-score above 0.5 (Xu and Zhang, 2010).

If we split the protein sample into two subsets with TM-

score>0.5 (109 proteins) and TM-score<0.5 (23 proteins) respect-

ively, it is shown that there is almost no difference on the perform-

ance of STRUM between using the native and using the I-TASSER

model in the subset of TM-score>0.5, suggesting that a model ac-

curacy of TM-score>0.5 seems sufficient to provide correct spatial

environments for STRUM prediction. However, for the subset with

TM-score<0.5, the incorrect I-TASSER model reduced c by 7.5%

and increase r by 6.5%, compared with that using the native struc-

ture (Supplementary Table S5), indicating that further improvement

on structure prediction may help improve the stability predictions

for these targets. For the example of mutation of H48N in the

Lysozyme of bacteriophage lambda, STRUM can correctly classify

the case into the destabilized mutation with predicted

DDG ¼ �0:39, if the native structure is used.

In Supplementary Table S6, we present a comparison of the two

sets of proteins trained on the I-TASSER models, where a ‘good pre-

diction’ is defined as those with predicted and experimental DDG hav-

ing the same sign (i.e. both>0 or both<0) and the difference between

the predicted and experimental DDG below 0.1; and a ‘bad prediction’

as those with DDG having opposite sign and the difference above 1.0.

The portion of good predictions (10%) in the proteins of TM-

score>0.5 is slightly higher than that in the protein set of TM-

score<0.5 (7%). Meanwhile, the portion of bad prediction in the pro-

tein set of TM-score>0.5 (6%) is slightly lower than the set of TM-

score<0.5 (9%). This consensus tendency confirms the observation

seen in Supplementary Tables S5, i.e. protein models of better quality

tends to positively impact the performance of STRUM prediction.

Since all above tests have the training and test on the same set of

structure models (i.e. native or predicted), here we performed a new

experiment, in which we first trained STRUM on the native structures

but then compared the test results on the native and I-TASSER models

separately. The training set contains 2225 mutations from 109 pro-

teins with TM-score>0.5 in the S2648, while the testing set consists

of the rest of the 423 mutations from the 23 proteins with TM-

score<0.5. The PCC/RMSE based on the native testing dataset (0.47/

1.22) is only slightly better than that on the I-TASSER testing dataset

(0.43/1.27); but the difference is statistically significant (P-value¼5E-

12), consistent with the observation that the correctness of the protein

fold can impact the DDG prediction results. Meanwhile, it is observed

again that the separation of training and testing data sets on proteins

in this experiment considerably reduce the performance on the test re-

sults, compared with the cross-validation data shown in Table S5,

which confirms the observation by Pires et al (2014).

3.4.3 Impact of NMA features from threading template variations

In STRUM, three normal mode features, defined by Equation (8),

are derived from multiple LOMET threading templates (i.e. 30 for

Easy and 50 for Hard targets). To examine the effect of the NMA

features on STRUM produced by template variations, we tested five

different template sets, including (i) the first template; (ii) 10th tem-

plate; (iii) the last template; (iv) the first 10 templates; (v) the last 10

templates. Supplementary Table S7 lists the correlation coefficients

between the experimental DDG and the NMA features built from

the different template selections. Although the correlations are all

relatively weak (<0.1), there is however an obvious trend that the

higher-rank templates have a better TM-score and tend to have a

slightly higher correlation.

In Supplementary Table S8, we show the performance of

STRUM when replacing the current NMA features with each of the

five sets of template selections. Due to the weak correlation of indi-

vidual features with the DDG data, there is almost no change on the

overall performance of STRUM. However, they are all slightly

worse than the full version STRUM that exploits the entire set of

LOMETS templates (see Table 2).

3.5 Visualization of mutant stability profile and

application on staphylococcal nuclease
If we consider the protein folding and mutation as a thermodynamic

system, the possibility of the occurrence of the mutations should be

proportional to expðDDGÞ (Tokuriki and Tawfik, 2009). Here we

define a mutability score Fi that describes the total possibility of mu-

tations of the current residue to all other amino acids by

Fi ¼
X19

a¼1

eDDGwi
!ma 10

where wi is the wild-type amino acid at ith position of the sequence,

ma is one of the 19 possible amino acids mutated from wi, and

DDGwi!ma
is the predicted free-energy change on the mutation.

Thus, we can introduce a stability profile against mutation that can

be conveniently used for visualizations.

Figure 7 showed an example of the mutability score Fi calculated

for the staphylococcal nuclease (SNase) that is a widely used model

system for mutant study (Carra and Privalov, 1996). There are cur-

rently in total 553 experimentally determined mutations from this

enzyme. The STRUM model using the I-TASSER model generated D

DG prediction with a correlation c ¼ 0:72 and RMSE r ¼ 1:17

Kcal/mol compared with the experimental measurements.

In this profile, the height of each character is proportional to the

possibility of mutation into a corresponding amino acid type from

wild-type residue. If the height of the amino acid is greater than 1, it

means this mutation is favorable which should stabilize the wild-

type protein. Otherwise, the mutation will destabilize the wild-type

Fig. 7. Visualized mutability profile by STRUM for the staphylococcal nucle-

ase protein. The characters are colored on the polarization property of amino

acids, i.e. polar residues are brightly colored and non-polar ones are in darker

color. The height of the characters is proportional to the possibility of muta-

tion into the amino acid type from wild-type residue (Color version of this fig-

ure is available at Bioinformatics online.)

2944 L.Quan et al.

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw361/-/DC1
Deleted Text: to 
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw361/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw361/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw361/-/DC1
Deleted Text: <italic>p</italic>
Deleted Text: to 
Deleted Text: 1
Deleted Text: 2
Deleted Text: 3
Deleted Text: 4
Deleted Text: 5
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw361/-/DC1
Deleted Text: While 
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw361/-/DC1
Deleted Text: to 


protein. The higher the mutation score Fi is for a residue, the greater

the likelihood of a mutation will be produced. This mutation profile

has been integrated into the automated I-TASSER server for assist-

ing visualized stability analysis.

4 Conclusion

Prediction on the SNP mutation-induced stability changes (DDG) is

of critical importance to protein function annotation and human

disease diagnosis. Recent studies have showed advantage for the

methods that use experimental protein structure information to im-

prove the DDG prediction accuracy over the sequence-based

approaches. However, the experimental structure is often unavail-

able to protein sequences, which compromises the usefulness of the

structure-based prediction methods in practical applications.

We developed a new algorithm, STRUM, to explore the possibil-

ity to improve the DDG prediction based on low-resolution models

from the iterative assembly refinement (I-TASSER) simulations, in

which three groups of features from sequence profile, multiple tem-

plate threading, and I-TASSER atomic models are combined

through the gradient boosting regression tree training. The algo-

rithm was tested on a set of 3421 experimentally characterized mu-

tations from 150 proteins. After homologous templates with

sequence identity>30% to the target or detectable by PSI-BLAST

with E-value<0.05 were excluded, I-TASSER was able to build

structure model of correct fold with a TM-score>0.5 for 109 (83%)

proteins. Using the I-TASSER model, STRUM generated DDG pre-

diction for all proteins with a PCC 0.79 and RMSE 1.2 Kcal/mol in

the mutation-level 5-fold cross-validation, compared with the ex-

perimental mutation data. But the performance can be reduced

when tested on the protein-level cross-validation, probably due to

the correlation among mutation samples that are from the same

proteins.

The detailed data analysis showed that the most predictive fea-

tures are those from the physics-based energy terms on the I-

TASSER structural models and the conservation score based on mul-

tiple threading alignments, demonstrating the importance and use-

fulness of the low-resolution structure predictions in the DDG

predictions. Interestingly, features built on the mutated amino acids

are generally more sensitive to the DDG prediction accuracy than

those on the wild-type amino acids. This is understandable consider-

ing the fact that the wild-type amino acids are usually more stable

and adoptable to the protein environments due to the long-term evo-

lution than the new mutations. Thus, compared with the relatively

uniform stability from the wide-type amino acids, the identity of the

mutated amino acids should provide more information with regard

to the stability changes upon new mutations. This insight that the

wild-type amino acids have a uniformly higher stability than the mu-

tant ones is partly supported by the fact that the majority of the mu-

tations in the database destabilize the protein fold (see Fig. 2).

STRUM was also examined in four other datasets (S2648, S350,

Q306 and p35) in control with four state of the art algorithms,

including I-Mutent, INPS, mCSM and PoPMuSiC, which have the

web server available for exacting on-line DDG predictions. The re-

sults showed that STRUM based on predicted structural protein

models are comparable with or outperform most of the methods

that are built on the experimental structures. One reason for the

advanced performance by STRUM is probably due to the combin-

ation of multiple complimentary features extracted from a wide

range of resources. The gradient boosting regression training also

helps to improve the robustness of the training procedure by the re-

duction of the over-fitting effect.

Finally, the data results show that the DDG prediction is not sen-

sitive to the accuracy of protein structural models as long as the glo-

bal fold is correct (i.e. with TM-score>0.5). However, when the

target structure model has an incorrect fold, the structure-based DD

G prediction can be obviously degraded, which highlights the im-

portance of further improvement of protein structure prediction for

mutation change modeling, especially for the targets in the ‘twilight

zone’ where the creation of correct fold remains a challenge to most

structure prediction algorithms (Zhang, 2008).
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