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Abstract

Current innovation in computed tomography (CT) is focused on radiomics, patient-specific 

radiation dose calculation, and image quality improvement using iterative reconstruction, all of 

which require specific knowledge of tissue and organ systems within a CT image. The purpose of 

this study was to develop a fully automated Random Forest classifier algorithm for segmentation 

of neck-chest-abdomen-pelvis CT examinations based on pediatric and adult CT protocols. Seven 

materials were classified: background, lung/internal air or gas, fat, muscle, solid organ 

parenchyma, blood/contrast enhanced fluid, and bone tissue using Matlab and the Trainable Weka 

Segmentation (TWS) plugin of FIJI. The following classifier feature filters of TWS were 

investigated: minimum, maximum, mean, and variance evaluated over a voxel radius of 2n, (n from 

0 to 4), along with noise reduction and edge preserving filters: Gaussian, bilateral, Kuwahara, and 

anisotropic diffusion. The Random Forest algorithm used 200 trees with 2 features randomly 

selected per node. The optimized auto-segmentation algorithm resulted in 16 image features 

including features derived from maximum, mean, variance Gaussian and Kuwahara filters. Dice 

similarity coefficient (DSC) calculations between manually segmented and Random Forest 

algorithm segmented images from 21 patient image sections, were analyzed. The automated 

algorithm produced segmentation of seven material classes with a median DSC of 0.86 ± 0.03 for 

pediatric patient protocols, and 0.85 ± 0.04 for adult patient protocols. Additionally, 100 randomly 

selected patient examinations were segmented and analyzed, and a mean sensitivity of 0.91 (range: 

0.82–0.98), specificity of 0.89 (range: 0.70–0.98), and accuracy of 0.90 (range: 0.76–0.98) were 

demonstrated. In this study, we demonstrate that this fully automated segmentation tool was able 

to produce fast and accurate segmentation of the neck and trunk of the body over a wide range of 

patient habitus and scan parameters.

Keywords

CT; tissue segmentation; pediatrics

1Corresponding author: samuel.brady@stjude.org; 262 Danny Thomas Pl, Memphis, TN 38105; (T) 901-595-3927; (F) 901-595-3978. 

HHS Public Access
Author manuscript
Phys Med Biol. Author manuscript; available in PMC 2017 September 07.

Published in final edited form as:
Phys Med Biol. 2016 September 7; 61(17): 6553–6569. doi:10.1088/0031-9155/61/17/6553.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



I. Introduction

In the current era of technical development in diagnostic computed tomography (CT), three 

areas of research and innovation are prominent, namely: radiomics(Gillies et al., 2016; 

Kumar et al., 2012; Parmar et al., 2014), patient-specific radiation dose calculation(Chen et 
al., 2012b), and image quality assessment and improvement using iterative 

reconstruction(Solomon and Samei, 2014). Each area requires specific knowledge of tissue 

and organ systems within a CT image, which also requires an understanding of tissue and 

organ segmentation. The latter two demand challenging multi organ/tissue segmentation 

over a whole scan volume (e.g., chest, abdomen, and pelvis). Segmentation of CT images 

has a history within radiotherapy planning and computer-aided detection/diagnosis (CAD) 

software, but is generally specific to a localized region in the body (i.e., head and neck)

(Chen et al., 2012a) or a specific organ (e.g., lungs)(van Rikxoort and van Ginneken, 2013). 

Currently, a fully automated algorithm for multiple tissue and organ segmentation applied to 

the whole body or trunk is not available.

Tissue segmentation in CT is complicated by a variety of factors inherent to CT: similar gray 

scale levels between soft tissues and organs in the abdomen and pelvis, technique factor 

dependent image quality, organ shape, partial volume artifacts, quantum noise texture 

variability from reconstructed CT image-to-image and patient-to-patient, and finally, lack of 

a consistent method for tissue segmentation performance evaluation (Haas et al., 2008; 

Memon et al., 2008; Padma and Sukanesch, 2011). A variety of approaches to tissue and 

organ segmentation in a CT environment have been investigated, for example: shape 

analysis, atlas based localization, thresholding, edge detection, voxel-based texture analysis, 

artificial neural networks, region growing, deformable models, Markov random field 

models, morphological operations, and various deep learning methodologies (Pham et al., 
2000). However, each technique used for tissue and organ segmentation is largely specific to 

type of body part or end-point application for the segmentation algorithm (Sharma and 

Aggarwal, 2010). Additionally, the variation of body habitus from childhood into adulthood 

limits the more common approach to automated segmentation using shape analysis and atlas 

based localization. There is no universally accepted algorithm for segmentation of a whole 

body multi-organ/tissue system that spans the variation of body habitus from pediatrics to 

adulthood. In fact, different tissue and organ systems present their own specific limitations 

for any single tissue segmentation algorithm. Furthermore, most segmentation approaches 

are semi-automated and require a priori information and user manipulation, which may be 

more appropriate for localized regions of tissue and organ segmentation used in radiotherapy 

planning or CAD detection (Haas et al., 2008). But with the need to process large CT exam 

data sets for quantitative diagnostic analysis (i.e., radiomics), semi-automated segmentation 

is too cumbersome and inefficient; the process of CT segmentation needs to be fully 

automated, without manual user input to make a meaningful impact in the current era of big 

data and technical development in diagnostic CT.

The purpose of this study was to investigate and optimize a Random Forest algorithm for 

fully automated multi-tissue and organ segmentation of pediatric and adult neck-chest-

abdomen-pelvis CT examinations. Random Forest is a classification and regression tree 

(CART) decision analysis methodology, previously described in detail (Breiman, 1996, 
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2001). For Random Forest, the process is two parts: train then detect. To train using a CT 

image, data are randomly sampled from a test image and assigned to a class, e.g., voxels are 

sampled and labeled as bone, etc. Features of from each class are then extracted from the 

training data, e.g., the mean and variance of the voxel CT numbers sampled from voxels 

classified as bone and surrounding voxels. To train the data and grow a tree, split functions 

are identified that evaluate the image features from the training dataset and pass to a left or 

right branch of the tree. A random set of features are selected to grow a single tree; the 

random selection of features to evaluate the split functions both reduces training time and 

prevents over fitting of the data. The split functions are calculated to maximize the 

information gained per node (or point of branching), i.e., to produce the best split separating 

the class labels. The data are passed down the tree and the tree grows recursively from the 

root (starting point) to a terminal branch; the point at the end of the terminal branch is called 

a leaf. Detection is the result of a probability distribution function calculated at the leaf to 

classify the test sample. The forest is grown from the development of multiple trees, each 

created from randomized subsets of classification features.

A Random Forest algorithm is desirable for its training/classification, computational 

efficiency, probabilistic output, ability to handle a large variety of image input features, and 

iterative improvement based on error handling. Additionally, a Random Forest algorithm 

prevents over-fitting of the data by injecting randomness into the training of the trees, and 

combining the output of multiple random trees into the final classifier. In a head-to-head 

comparison of machine learning algorithms, Random Forest was shown to have a robust 

performance when compared using eight evaluation metrics (Caruana and Nicules-Mizil, 

2006).

A Trainable Weka Segmentation (TWS) plugin of Fiji (Schindelin et al., 2012), a Java-based 

image processing package that combined ImageJ (Schneider et al., 2012) with open source 

plugins, was utilized to implement a Random Forest algorithm for tissue segmentation of CT 

images. TWS is investigated in this study primarily because it is an open source 

implementation of Weka that is both fast and free, it utilizes Random Forests for machine 

learning and data mining, and does not utilize atlas or deformable registration methodologies

—which is important since a pediatric population significantly varies in size and internal 

anatomy (Hall et al., 2009). The TWS plugin was first optimized for tissue segmentation in a 

CT environment. The following image features were evaluated for optimal tissue 

segmentation: minimum, maximum, mean, and variance were evaluated over a voxel radius 

of 2n, with n ranging from 0 to 4, and the noise reduction and edge preserving filters, 

Gaussian, bilateral, Kuwahara, and anisotropic diffusion, were evaluated. Second, an 

estimate of differential tissue segmentation ground truth reproducibility was investigated 

based on an intra-observer study. Third, the optimized TWS Random Forests algorithm was 

applied to a sample of CT examinations acquired based on pediatric and adult CT protocols, 

and compared with the established ground truth.

II. Materials and Methods

In order to develop a fully automated differential tissue segmentation Random Forest 

algorithm for CT examinations, Fiji was utilized in this study. Fiji included two important 
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features which were utilized. First, the included MIJ package allowed a user to run ImageJ 

from MATLAB (ver. 2014b The MathWorks, Inc., Natick, MA), and allowed for the 

exchange of image volumes between MATLAB and ImageJ. In the development of a high-

throughput automated segmentation tool, this link allowed for image pre- and post-

processing in MATLAB while utilizing segmentation tools previously developed for ImageJ. 

The second important package included in the distribution is the TWS plugin (version 2.2.1). 

The TWS tool utilized the open-source machine learning software Weka (University of 

Waikato, Hamilton, New Zealand) to train a Random Forest classifier based on user input 

data selected from an image stack (Hall et al., 2009). TWS uses an implementation of 

Breiman’s Random Forests algorithm to develop a collection of random decision trees based 

on features of a bootstrap sampled training data set (Breiman, 1996, 2001). The TWS 

implementation of the Random Forest classifier used 200 trees with 2 features randomly 

selected per node.

II.A. Random Forests Segmentation

II.A.1. Training Data Set—A graphical user interface within the TWS plugin was used to 

select regions on an image stack and assign those regions to segmentation classes. Seven 

materials were classified in this study: background, lung/internal air or gas, fat, muscle, solid 

organ parenchyma, blood/contrast enhanced fluid, and bone tissue. Prior to training the 

classifier, image features were selected for training the selected segmentation classes. 

Available image features investigated in this study included voxel intensity statistics: 

minimum, maximum, mean, and variance, and different noise reduction and edge preserving 

filters such as: Gaussian, bilateral, Kuwahara, and anisotropic diffusion were also evaluated. 

Once the classifier was trained based on the user selected feature data, the classifier could be 

applied to other images.

The automated tissue segmentation method was developed and trained based on a contrast 

enhanced chest-abdomen-pelvis CT examination of a 20 year old male (72 kg) subsequently 

described in section II.B.2, [Fig 1]. Regions of voxels from each of the training data set’s 

seven tissue segmentation classes were selected across the complete image volume. The 

training image volume consisted of 139 512x512 images. The number of voxels selected per 

segmentation class was: 21311 for background, 5863 lung/internal air or gas, 2512 for fat, 

1874 for muscle, 9118 for solid organ parenchyma, 1547 for blood/contrast enhanced fluid, 

and 426 for bone.

II.A.2. Segmentation Algorithm Optimization—Optimization of the automated 

segmentation method was investigated using the following feature inputs: minimum, 

maximum, mean, and variance voxel values, where the voxel region of interest (ROI) was 

varied over 2n radius with n ranging from 0 to 4; additionally, Gaussian, bilateral, Kuwahara, 

and anisotropic diffusion filters were tested to preserve the boundary edge of each tissue 

class while reducing the impact of stochastic image noise on the material class analysis and 

classification.

The TWS plugin did not include direct tools to evaluate and optimize each feature, the 

varying radii of the feature ROI, or noise and edge preserving filters for the accuracy and 
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specificity of the automated segmentation method in a CT image environment. Therefore, 

each of the features (i.e., minimum, maximum, mean, and variance voxel values) and noise 

and edge preserving filters (i.e., Gaussian, bilateral, Linear Kuwahara, and anisotropic 

diffusion) were tested quantitatively for Dice similarity coefficient (DSC) and out-of-bag 

(OOB) error. The DSC was used as a validation metric of spatial overlap (Dice, 1945; 

Zijdenbos et al., 1994; Brock, 2014) of the manual and automated segmentation methods for 

each of the seven material classes separately: the DSC metric ranges from 0, indicating no 

overlap of the manual and automated material class segment, to 1, indicating complete 

overlap or perfect agreement. OOB error was used as an unbiased estimate of 

misclassification error and served as a surrogate of cross validation (Breiman, 1996; Wolpert 

and Macready, 1999). OOB was calculated from the approximately 33% of samples left out 

during the creation of each tree. Each of the 200 trees was created from different, with-

replacement, bootstrap samples of the original data set. The randomly selected left-out-

samples for each tree were considered “out-of-bag” relative to the corresponding tree. OOB 

error was then calculated by classifying the OOB samples using each tree in which that 

specific sample was not used during the training. Since 33% of samples are left out during 

the creation of each tree, an OOB classification was calculated for each sample in the data 

set using approximately 33% of the total number of trees. The percentage of resulting 

material class segmentations generated from the OOB classifications that did not match the 

true segmentation class for each sample (e.g., voxel values classified as bone but were 

actually muscle) gave the OOB error.

The training data set was processed using the intensity values (i.e., the CT number only) 

from the seven material classes to generate a baseline data set that compared input features 

from the feature filters. The baseline input was a single voxel intensity value taken from 

each of the seven material classes. Then the baseline input, using CT numbers only, was 

combined with each individual input feature filter and processed separately as a two-feature 

segmentation (e.g., CT number and variance, etc.). Each of the features from feature filters 

and the Gaussian filter were sampled from the input data at various ROI radii (ROI radii 

varied from 2n, where n = 0 to 4). The segmented seven material classes from the baseline 

and two-feature data sets, at all 2n ROI radii dimensions, were compared with the manually 

segmented training data set at the three axial locations demonstrated in [Fig. 1(a)].

The bilateral, anisotropic diffusion, and Kuwahara noise reduction, edge preserving filters 

were evaluated. TWS implementation of the bilateral filter formed an edge preserving mean 

filter using kernel radii of 5, 10, and 20 voxels, which included voxel value ranges of ±50 

and ±100. The anisotropic diffusion filter had several fixed parameters that included the 

number iterations set at 20, the diffusion limiters along minimal variations set at 0.10 and 

0.35, and the diffusion limiter along maximal variations set at 0.9. The number of 

smoothings per iteration was controlled with numerical user input as kernel radius. 

Therefore, for the anisotropic diffusion filter, the number of smoothings per iteration was 

varied from 2n, where n = 0 to 4, and the edge threshold, defining the minimum voxel value 

difference that was preserved by the filter, was controlled by an independent user input. This 

input was varied from 10 to 100 in increments 10. The Kuwahara filter provided 3 features 

per linear voxel-based criteria, namely: variance, variance/mean and variance / mean2, and 
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was investigated using a linear kernel length that varied from 3 to 35 voxels in increments of 

4, and sampled the image at fixed 30deg angles.

In addition to OOB and DSC calculations, a visual inspection of the quality of the two-

feature segmentation and degree of mis-segmentation within each segmentation class was 

performed, and segmentation time per image slice was noted. Once a set of useful features 

was determined, the classifier was trained and applied to the remaining six patients.

II.B. Quantitative Evaluation Comparing Manual Segmentation

II.B.1 Patient Examinations—Our institutional review board deemed this quality 

analysis study to be exempt from informed consent. All data were managed in compliance 

with the Health Insurance Portability and Accountability Act. Seven anonymized CT 

examinations were selected at random from the institution’s CT database and used in this 

segmentation study. All CT scans were performed with Lightspeed VCT XTe CT scanner 

(GE Healthcare, Waukesha, WI), using the appropriate CT protocol selected based on 

patient weight. All patients received oral and IV contrast enhanced chest-abdomen-pelvis 

CT scans, with one including the neck. Of the seven patients, four patients, median age 19 yr 

(range 16–21 yr), median weight 71 kg (range 57–81 kg), were considered adults for the 

purpose of protocol selection. The remaining three patients, median age yr (range 3–16 yr), 

median weight 30 kg (range 19–54 kg), were scanned using pediatric protocols.

II.B.2 Manual Segmentation Comparison—Manual segmentation served as a 

quantitative ground truth for evaluation of the TWS automated tissue segmentation method. 

Using Eclipse treatment planning software (Varian Medical Systems, Palo Alto, CA), the 

seven segmentation classes were manually segmented. Three slices were contoured per CT 

examination in a method directed by an experienced radiologist (RAK, 7 years’ experience). 

For each patient, this included reconstructed image locations at the aortic arch, upper-liver, 

and the immediately above the first appearance of the iliac crests in axial format. These 

selected reconstructed image locations allowed for evaluation of three distinct portions of a 

chest-abdomen scan, and comparison of the seven segmentation classes in different 

anatomical environments (i.e., patterns of fat are different in the upper thorax vs. the 

abdomen and pelvis).

To evaluate accuracy of the tissue class segmentation specificity and the reproducibility of 

the manual segmentation, an intra-observer reproducibility study was performed 15 days 

apart on two segmented patients. To account for variability in anatomy between adult and 

pediatric sized patients, one patient was selected from the adult scan protocol group and one 

from the pediatric scan protocol group. The adult scan protocol patient examination was 

represented by a 20 year old male (72 kg) who was administered 143 ml of intravenous 

iodixanol 270 contrast, and 16 ml of 1.5% solution oral iohexol 300 contrast mixed in 355 

ml (12 oz) of diluent. Total patient exam dose length product (DLP) was 528.2 mGy cm with 

chest series CTDIvol of 4.92 mGy (4.18 mGy SSDE) and with abdomen-pelvis series 

CTDIvol of 7.26 mGy (8.64 mGy SSDE). The pediatric scan protocol patient examination 

was represented by a 3 year old female (19 kg) who was administered 37 ml of intravenous 

iodixanol 270 contrast and 4 ml of 1.5% solution oral iohexol 300 contrast mixed in 89 ml (3 
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oz) of diluent. Total patient exam dose length product (DLP) was 128.78 mGy cm with chest 

series CTDIvol of 1.29 mGy (2.05 mGy SSDE) and with abdomen-pelvis series CTDIvol of 

2.46 mGy (4.53 mGy SSDE).

II.C. Evaluation of Implemented Automated Segmentation Algorithm

II.C.1. Patient Examinations—To determine the accuracy, sensitivity, and specificity of 

the implemented Random Forest algorithm, 100 randomly selected patient examinations 

were evaluated. The median age of the patient population evaluated was 13 years (range 0.4–

26 years), and median weight was 53 kg (range 5–112 kg). All examinations were performed 

with the same Lightspeed VCT XTe CT scanner used for manual segmentation comparison. 

The 100 randomly selected studies represented a combination of neck, chest, abdomen, and 

pelvis studies. Sixty three patients had oral and IV contrast enhanced CT scans, and 37 were 

non-contrast enhanced CT studies.

II.C.2. Confusion Matrix Comparison—To evaluate the 100 CT examinations a 

confusion matrix was derived from a qualitative evaluation of the segmented tissue classes. 

A comparison tool was developed using MATLAB. The tool imported both the anonymized 

CT images, and the seven segmented class layers (e.g., lung, fat, muscle, etc.). Any 

combination of segmented class layers could be overlaid with the grayscale CT images at 

one time. The transparency of the overlapping layers could be controlled; additionally, an 

outline of the layer could be used instead of overlapping with a filled transparency layer. To 

evaluate each segmented image, the observer had full control of image zoom, pan, window 

width, window level, CT voxel analysis (i.e., the CT number of any voxel could be 

identified), and image scrolling (i.e., the observer could scroll forward, backwards, or jump 

to any specific image slice through the image stack). Each segmented class was evaluated 

based on a 100 point scale ranging from 0 to 1.

To derive the confusion matrix, each segmented class was assigned a qualitative score based 

on the following definitions of a true positive (TP)—segmented class layer overlapping the 

correct corresponding grayscale tissue, false negative (FN)—grayscale tissue corresponding 

to the segmented class layer of tissue but not overlaid with the segmented class, false 

positive (FP)—segmented class layer overlaying non corresponding grayscale tissue, and 

true negative (TN)—non segmented class layer correctly not overlapping non-corresponding 

grayscale tissue. From each confusion matrix derived from each segmentation class the 

following metrics of analysis were derived, sensitivity:

(Eq. 1)

specificity:

(Eq. 2)
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and accuracy:

(Eq. 3)

III. Results

III.A. Segmentation Algorithm Optimization

Baseline testing of the automated TWS segmentation tool was established using the CT 

number alone as an input feature and resulted in an OOB error of 1.5% with DSCs of 1.00, 

0.97, 0.80, 0.80, 0.74, 0.29, 0.45, and 0.53 for background, lung/internal air or gas, fat, 

muscle, solid organ parenchyma, blood/contrast enhanced fluid, bone tissue, and combined 

high contrast material classes, respectively. OOB error, [Fig. 2(a)], for each of the features 

and Gaussian blur filter in the two-feature tests showed a strong exponential decrease, 

eventually becoming asymptotic with respect to increasing kernel size. The main inflection 

point where increasing kernel radii return diminishing improvement in OOB error was for a 

kernel radius of 4.

For tested features, the DSC of the background segmentation averaged 0.99; therefore, it was 

excluded from optimization of the segmentation algorithm. Average DSC of the remaining 

six material segmentation classes was normalized by the baseline, single CT voxel test, for 

the two-feature tests and showed that, with exception of the minimum feature, the DSC 

increased relative to the single CT voxel test when using input features at kernel radii of 1, 2, 

and 4 voxels, [Fig 2(b)]. Since the minimum feature filter did not follow this trend, it was 

removed as an input.

Visual evaluation of the resulting segmentations for the maximum, mean, and variance 

texture input features showed that kernel sizes of radii larger than 4 voxels produced large 

scale segmentation misclassification. For the maximum feature filter input, radii of 8 [Fig 

3(b)] and 16 [Fig 3(c)] produced circular spots in the segmentation corresponding to the 

kernel size. For the mean texture feature filter input, radii of 8 [Fig 3(d)] and 16 [Fig 3(e)] 

produced CT number intensity gradients that were classified as multiple different material 

classes. This was due to the mean values of different material types (i.e., CT number values) 

calculated across boundary interfaces; e.g., the liver/lung interface was classified as soft 

tissue, muscle, fat, and lung based on the decreasing CT number averaged at the liver/lung 

interface. For the variance feature filter input, radii of 8 [Fig 3(f)] and 16 [Fig 3(g)] produced 

less homogeneous segmentations due to the sensitivity of greater intra-tissue CT number 

variance.

The two-feature test of the bilateral filter had a low OOB error of 0.2% and an average DSC 

of 0.83 (range: 0.68–0.96) for the six material segmentation classes, but the resulting 

segmentation had large scale misclassification errors on some slices not included in the three 

slice DSC calculation, and was not used for classification and segmentation. The linear 

Kuwahara filter had an optimum linear kernel length of 19 voxels, resulting in an out-of-bag 

error of 0.2% and an average DSC of 0.83 (range: 0.65–0.97) for the six material classes. 
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Visually, this segmentation preserved edges and reduced noise well but led to small linear 

noise due to the linear kernel. This minimal linear noise was deemed acceptable due to the 

improved DSC relative to the baseline. The ideal edge threshold parameter of the anisotropic 

diffusion filter was found to be 50 (OOB of 0.2%); however, the TWS parameter controlling 

smoothing per iteration is based on the same user input as the selected kernel radii. The 

anisotropic diffusion filter was therefore fixed at 1, 2, and 4 smoothing per iteration, which 

did not lead to improvement in the OOB error, but increased segmentation time per CT 

image substantially. For this reason, the anisotropic diffusion filter was not included in the 

final segmentation classifier.

The final selected texture input feature filters, in addition to the original CT number, 

included maximum, mean, and variance, with kernel radii of 1, 2, and 4. Additional selected 

features included the Gaussian blur filter with kernel radii of 1, 2, and 4, and the Linear 

Kuwahara filter with a linear kernel of 19 voxels. This resulted in a total of 16 image 

features. Average segmentation time was 3.4 sec/slice (Intel® Xeon® CPU E5-1650 v3 @ 

3.50GHz, 16GB RAM) with 100% CPU utilization and 12.5 MB RAM/slice. The fully 

classified and segmented training data set is shown in [Fig 4], as compared to the original 

CT images, [Fig 1]; the data set contained 139 slices and required 7 minutes for total 

segmentation time. In comparison, average pediatric chest, abdomen, and pelvic CT 

examinations contained ~80 slices and required ~4–5 minutes for segmentation.

III.B. Manual Segmentation Comparison

The DSCs for the intra-observer manual segmentation comparison of the adult imaging 

protocol patient was found to be 0.99 for background, 0.98 lung/internal air or gas, 0.90 fat, 

0.94 muscle, 0.97 solid organ parenchyma, 0.88 blood/contrast enhanced fluid, 0.91 bone 

tissue, and 0.91 combined high contrast material classes (blood/contrast enhanced fluid and 

bone tissue), respectively. The pediatric imaging protocol patient had similar manual 

segmentation results with DSCs of 0.99, 0.97, 0.85, 0.90, 0.97, 0.87, 0.91, and 0.89, 

respectively.

A summary of the automated segmentation compared to the manual contouring is shown in 

Table I. These results are separated into average DSC for each of the segmentation classes 

across the three manually contoured slices and are stratified into results for the training 

patient, adult imaging protocol patients, and pediatric imaging protocol patients. The 

average DSCs over all patients also is included. A combined, not averaged, calculation of the 

DSC over the three slices is included to represent an estimate of the DSC of each 

segmentation class over the complete imaging volume. Since misclassification between 

blood/contrast enhanced fluid and bone was noted, both segmentation classes were 

combined into an additional combined high contrast region for segmentation evaluation.

III.C. Confusion Matrix Comparison

The confusion matrix results for the seven classes are shown in Table 2. Similar to Table 1, 

the high contrast regions, blood/contrast enhanced liquid and bone were combined and 

separately calculated for sensitivity, specificity, and accuracy. Since the background score 

was 1.0 across all categories, it was removed from further analysis. When considering the 
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combined high contrast regions as one class, the mean sensitivity, specificity, and accuracy 

across 100 patients was demonstrated to be 0.91 (range: 0.82–0.98), 0.89 (range: 0.70–0.98), 

and 0.90 (range: 0.76–0.98), respectively.

IV. Discussion

The purpose of this study was to develop an automated tissue segmentation algorithm 

optimized for CT using the Random Forest statistical classifying concept; to this end, the 

Fiji-based TWS plugin, in conjunction with MATLAB, was investigated. Generally, tissue 

segmentation for CT has been broadly investigated using a variety of segmentation 

approaches (Fortunati et al., 2013; Fritscher et al., 2014; Gao et al., 1996; Heimann et al., 
2009; Hu et al., 2001; Koss et al., 1999; van den Boom et al., 2012). The Random Forest 

algorithm within the TWS plugin has previously been utilized in a wide-range of imaging 

modalities including magnetic resonance imaging (MRI) and micro-CT (Chyzhyk et al., 
2013; Kulinowski et al., 2011; Macdonald and Shefelbine, 2013). To our knowledge, no 

machine-learning based automated CT tissue segmentation tool has been developed using 

TWS, and no previous studies have been reported on patient CT tissue segmentation 

optimized for TWS.

The results of this feasibility study were derived from a sample of pediatric and adult CT 

examinations. An initial comparison of three regions within seven automatically segmented 

patient examinations was compared against the same 21 manually segmented images. 

Manual segmentation in conjunction with an intraobserver study was deemed to be the most 

robust method for establishing ground truth for tissue and organ segmentation. The 

intraobserver study was conducted to provide context for interpretation of the DSC values 

reported in this study.

Following the feasibility study, the automated segmentation algorithm was implemented into 

the patient examination workflow at St Jude Children’s Research Hospital, namely: at the 

conclusion of each patient CT examination, all image series are archived within PACs for 

evaluation by a radiologist, and a separate copy is anonymized by stripping protected health 

information (PHI) and sent to the segmentation server. To date over 700 patient 

examinations have been segmented using the methodologies described in this work. As a 

further estimate of sensitivity, specificity, and accuracy of the Random Forest class 

segmentation, 100 patients were selected at random and visually analyzed for segmentation 

agreement with the grayscale anatomy in the original reconstructed images. The results of 

this study suggest that the Random Forest implementation in TWS can robustly segment 

seven material classes (background, lung/internal air or gas, fat, muscle, solid organ 

parenchyma, and bone and blood/contrast enhanced fluid combined) from CT imaging 

examinations of varying patient sizes (i.e., children and adults from 5 months to 26 years) 

and scan protocols (i.e., neck, chest, abdomen, and pelvis). Both metrics of segmentation 

accuracy, DSC and confusion matrix, show that the algorithm performs well for all material 

classes, excluding individualized high contrast regions. High contrast regions including 

blood/contrast enhanced fluid and bone overlap in CT number range. Furthermore, contrast 

enhancement is not uniform throughout the body with vascular contrast dependent on bolus 

timing and gastrointestinal opacification dependent on transit time and patient compliance. 
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However, when high contrast regions are combined into one class, the average DSC for all 

material classes is above 0.86 ± 0.04 (range 0.77–0.99) and the algorithm’s average measure 

of sensitivity is 0.90 and specificity is 0.99.

It is important to note that classification training was performed in the presence of 

intravenous and oral contrast. Subsequent tissue segmentation of the solid organ parenchyma 

classification is most accurate when intravenous contrast is administered to the patient. In 

the future, a separate training classifier needs to be investigated for non-contrast CT 

examinations to more accurately segment this patient population. Additionally, for solid 

organ DSC values presented in Table I, reconstructed images 1 and 3, corresponding to 

locations at the aortic arch and immediately above the iliac crests, respectively, no DSC was 

calculated. This results from no manual segmentation of solid organ parenchyma on these 

reconstructed images. Furthermore, the DSC of solid organ parenchyma across the 

combined three slices shows a decrease in spatial overlap when compared to slice 2 (upper-

liver/lower lung). The automated segmentation algorithm classified cartilage, ligament, joint 

fluid, bone marrow, and the trailing edge of bony ossification around the bony anatomy in 

the thorax and pelvic regions as solid organ parenchyma, [Fig. 5(a–b)]. Similarly, partial 

volume artifacts from axial imaging of an oblique surface near air/tissue interfaces are 

misrepresented as fat tissue due to the lower CT number intensity, which lowers the DSC 

result when comparing manual and automated segmentations, [Fig. 5(c–d)]. Considering 

only voxel intensity and not location or voxel pattern/geometry are current limitations of the 

automated segmentation tool as implemented.

Another known misclassification is water/fluid in the body, [Fig. 5(e–f)]. At the time of 

training the TWS algorithm, water/fluid was not included in the classification training, and 

as such is routinely classified as muscle since the CT number intensity of water is between 

fat and solid organ; as an example: the average CT number for fat in the sampled patient 

population is −109 ± 39 HU, for muscle is 69 ± 49 HU, for water/fluid is 5 ± 32 HU, and for 

solid organ parenchyma (as measured with IV contrast enhancement at late portal venous 

phase) is 117 ± 56 HU. Thus, all CT number values between fat and solid organ are 

classified as muscle. To limit tissue misclassification, a more granular training of different 

tissue types needs to be investigated.

Optimization of this algorithm is limited within the version of TWS used in the study 

(version 2.2.1). In this version, the TWS tool does not include direct methods of estimating 

feature importance, such as calculating the increase in classifier error for each variable 

resulting from permutations in OOB observations. The TWS tool in this study used a fixed 

Random Forest classifier; the number of trees and leaf size of the classifier ensemble were 

not optimized. Additionally, the creation of voxel features for training and classification in 

TWS is limited to minimum, maximum, mean, and variance of the region of voxels. Ideally, 

features for CT images would ignore outliers in the ROI around the voxel in which the 

feature is being calculated. This would aid in preserving tissue edges while not disrupting 

the segmentation within a tissue. The bilateral, and anisotropic diffusion noise-reduction 

filters have fixed parameters and could not be optimized for segmentation of CT images, but 

were likely optimized for microscopy image segmentation, the original purpose of the TWS 

tool. For CT segmentation, further optimization may be useful in increasing the efficacy of 
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these filters. Future improvements of this automated segmentation tool will likely rely on the 

inclusion of more image based features, such as 3D filters—in addition to current filter 

optimization, more granular tissue classification, spatially-based feature calculations (Pham 

et al., 2000; Karssemeijer et al., 1988), and combining additional classification algorithms 

for intelligent misclassification exclusions.

V. Conclusion

In this study, manual segmentation served as the ground truth for evaluation of automated 

segmentation. Ground truth reproducibility, determined via an intra-observer study and 

evaluated using DSCs, was found to be 0.94 (range: 0.90–0.99) for adult imaging protocol 

patients and 0.92 (range: 0.85–0.99) for pediatric imaging protocol patients across seven 

segmentation classes, background, lung/internal air or gas, fat, muscle, solid organ 

parenchyma, blood/contrast enhanced fluid, and bone. The optimized auto-segmentation tool 

included 16 image features calculated using maximum, mean, variance, and Gaussian blur 

filters with kernel radii of 1, 2, and 4 voxels, in addition to the original CT number and 

linear Kuwahara filter with a linear kernel of 19 voxels. Overall, the developed automated 

segmentation tool was found to produce fast and accurate segmentation of the seven material 

classes with an average DSC of 0.86 ± 0.04 (range: 0.81–0.99) and mean sensitivity of 0.91 

(range: 0.82–0.98), specificity of 0.89 (range: 0.70–0.98), and accuracy of 0.90 (range: 

0.76–0.98).
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Novelty & Significance

There is a need for robust, fully automated whole body organ segmentation for diagnostic 

CT. This study investigates and optimizes a Random Forest algorithm for automated 

organ segmentation; explores the limitations of a Random Forest algorithm applied to the 

CT environment; and demonstrates segmentation accuracy in a feasibility study of 

pediatric and adult patients. To the best of our knowledge, this is the first study to 

investigate a Trainable Weka Segmentation implementation using Random Forest 

machine-learning as a means to develop a fully automated tissue segmentation tool 

developed specifically for pediatric and adult examinations in a diagnostic CT 

environment.

Polan et al. Page 15

Phys Med Biol. Author manuscript; available in PMC 2017 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Training data set. The training data set was established based on chest-abdomen-pelvis CT 

examination reconstructed images of a 20 yr male (72 kg). Images from the data set are 

demonstrated: (a) axial, [sampled at the position of the dashed (− −) lines at the aortic arch, 

upper-liver, and immediately above the iliac crests], (b) coronal, and (c) sagittal 

reconstructed images.

Polan et al. Page 16

Phys Med Biol. Author manuscript; available in PMC 2017 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Segmentation optimization. (a) Out-of-bag error, and (b) Dice similarity coefficient (DSC) 

were calculated for material class segmentation optimization. Each plot represents the 

average value for six material class segmentations: lung/internal air or gas, fat, muscle, solid 

organ parenchyma, blood/contrast enhanced fluid, and bone tissue (background did not vary 

so it was removed from optimization process). Four texture feature filter inputs: mean, 

minimum (min), maximum (max), and variance, along with a noise reduction Gaussian 

filter, were calculated for the six material classes based on varying kernel radii (radii varied 
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from 2n, where n = 0 to 4). Kernel Radius of 0 represented the baseline or individual voxel 

only.
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Fig. 3. 
Visual evaluation of image features. (a) The upper-liver original CT image from the training 

data set was classified and seven material classes were segmented. The following feature 

inputs: (b)–(c) maximum, (d)–(e) mean, and (f)–(g) variance were visually assessed for 

appropriateness of segmentation. The top row (b), (d), and (f) was segmented using a radius 

of 8 voxels, and the bottom row (c), (e), and (g) was segmented using a radius of 16 voxels.
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Fig. 4. 
Example of segmentation. The training data set was classified and seven material classes 

segmented. Segmented images from the data set are demonstrated: (a) axial reconstructed 

images at the aortic arch, upper-liver, and immediately above the iliac crests, (b) coronal, 

and (c) sagittal. The original CT images are presented in Figure 1.
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Fig. 5. 
Example of segmentation misclassification surrounding. Based on the image intensity of (a) 

cartilage, ligament, joint fluid, and the trailing edge of bony ossification, (b) the Random 

Forest algorithm classified these tissues as solid organ parenchyma (blue voxels). Due to 

partial volume artifact from axial imaging of an oblique surface, (c) air/tissue interface is 

classified as (d) fat (purple voxels) due to the lower CT number intensity. Since (e) water/
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fluid, as shown in the bladder, was not originally classified, (f) the Random Forest algorithm 

classified these voxels as muscle (yellow voxels).
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