
RESEARCH ARTICLE

WEVOTE: Weighted Voting Taxonomic
Identification Method of Microbial
Sequences
Ahmed A. Metwally1,2*, Yang Dai1, Patricia W. Finn2, David L. Perkins1,2

1 Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States of America,

2 Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America

* ametwa2@uic.edu

Abstract

Background

Metagenome shotgun sequencing presents opportunities to identify organisms that may

prevent or promote disease. The analysis of sample diversity is achieved by taxonomic

identification of metagenomic reads followed by generating an abundance profile. Numer-

ous tools have been developed based on different design principles. Tools achieving high

precision can lack sensitivity in some applications. Conversely, tools with high sensitivity

can suffer from low precision and require long computation time.

Methods

In this paper, we present WEVOTE (WEighted VOting Taxonomic idEntification), a method

that classifies metagenome shotgun sequencing DNA reads based on an ensemble of

existing methods using k-mer-based, marker-based, and naive-similarity based

approaches. Our evaluation on fourteen benchmarking datasets shows that WEVOTE

improves the classification precision by reducing false positive annotations while preserv-

ing a high level of sensitivity.

Conclusions

WEVOTE is an efficient and automated tool that combines multiple individual taxonomic

identification methods to produce more precise and sensitive microbial profiles. WEVOTE

is developed primarily to identify reads generated by MetaGenome Shotgun sequencing. It

is expandable and has the potential to incorporate additional tools to produce a more accu-

rate taxonomic profile. WEVOTE was implemented using C++ and shell scripting and is

available at www.github.com/aametwally/WEVOTE.
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Introduction

The microbiome plays a vital role in a broad range of host-related processes and has a signifi-
cant effect on host health. Over the past decade, the culture-independentMetaGenome Shot-
gun (MGS) sequencing has become an emerging tool for studying the diversity and the ecology
of microbial communities. One of the key steps in data analysis is the taxonomic classification
of sequence reads in a metagenomic dataset.

The existing taxonomic identificationmethods of MGS data can be primarily classified
into four categories: methods based on naive-similarity, methods based on analyzing
sequence alignment results, methods based on sequence composition, such as k-mers, and
marker-based methods. The naive-similarity-based methods rely on mapping each read to a
reference database, such as the NCBI nucleotide database, and the taxonomic annotation of
the best hit is assigned to the read if it passes a pre-set threshold. Bowtie [1], BLASTN [2],
and its faster version MegaBlast [3] are the most commonly used algorithms in this category.
Since the number of sequences in the database is enormous, these methods have a high prob-
ability of finding a match. Therefore, these types of methods usually achieve a higher level of
sensitivity compared to other methods [4, 5]. However, the major drawbacks are the
increased rate of false positive annotations and the long computational time. Although it has
been shown that the taxonomic profile obtained from the naive-similarity-basedmethods
produces a large number of false positives [5, 6], a vast array of researchers are still dependent
on them because they do not want to sacrifice the high level of sensitivity to obtain fewer
false positives annotations.

The category analyzing the results from sequence alignment includes MEGAN [7], and
PhymmBL [4]. These methods consist of a preprocessing step and a post-analysis step. In
MEGAN, an algorithm involving the Lowest Common Ancestor (LCA) assigns each read
an NCBI taxonomic identification number (si. taxon / pl. taxa) that reflects the level of
conservation within the sequence. On the other hand, PhymmBL constructs a large num-
ber of Interpolated Markov Models (IMMs) using a BLASTN query against a reference
database. It subsequently computes the scores which correspond to the probability of the
generated IMMs matching a given sequence. Then it classifies a read using the clade label
belonging to the organism whose IMM generated the best score. The methods in this
category usually require additional computational time than those in the naive-similarity
methods.

The marker-basedmethods utilize a curated collection of marker genes where each marker
gene set is used to identify a unique group of clades. The fundamental difference between these
methods and the naive-similaritymethods is in the reference databases. Based on how the data-
base of the marker genes is formed, this type of methods is classified into two main subcatego-
ries: (i) methods that depend on a universal single copy marker genes database such as TIPP
[8], MetaPhyler [9], and mOTU [10], and (ii) methods that depend on a clade specificmarker
genes database such as MetaPhlAn [11, 12]. These marker-based methods can achieve high
accuracy if the reads come from genomes represented by the marker gene database. Otherwise,
they only achieve a low-level of sensitivity. The running time varies depending on the statistical
algorithm used in each method.

The k-mer-basedmethods use DNA composition as a characteristic to achieve taxonomic
annotation. The key idea is to map the k-mers of each read to a database of k-mers, and then,
each read is assigned a taxonomic annotation [5, 13–16]. For example, Kraken [5] uses an
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exact match to align the overlapped k-mers of the queries with a k-mer reference database,
instead of an inexact match of the complete sequence used in the naive-similarity basedmeth-
ods. Because of the exact matching on short k-mers, many efficient data structures can be
implemented for searching the k-mer database; thus the k-mer-basedmethods can be
extremely fast. Compared to the naive-similarity methods, it was recently shown that at the
genus level, k-mer-basedmethods could achieve a similar sensitivity but with higher precision
[17]. However, these methods are not robust to sequences that have a high sequencing error
rate because they are based on exact matching to the reference database. This limitation is dem-
onstrated in [5]. It shows that Kraken has the lowest sensitivity compared to other methods
when tested on the simBA-5 dataset.

In addition to our benchmarking, it has also revealed that different methods could generate
variation in taxonomic output profiles for the same input dataset [17]. Sample type, sequencing
error, and read length are the main factors that cause variation. This inconsistency in the pre-
dicted taxonomic annotations presents a challenge to investigators in the selection of identifi-
cation methods and the interpretation of annotations. In this work we present a novel
framework,WEVOTE (WEighted VOting Taxonomic idEntification), which takes advantage
of three categories of the taxonomic identificationmethods; naive-similarity methods, k-mer-
basedmethods, and marker-basedmethods.WEVOTE combines the high sensitivity of the
naive similarity methods, the high precision of the k-mer-basedmethods, and the robustness
of the marker-basedmethods to identify novel members of a marker family from novel
genomes [8].

Materials and Methods

The WEVOTE framework and core algorithm

The core of WEVOTE is a weighting scheme organized as a taxonomic tree tallying the
annotations from N different taxonomic identificationmethods. As shown in Fig 1, the
input to WEVOTE is the raw MGS reads of a microbiome sample. First, each of the N iden-
tificationmethods independently assigns a taxon for each read. If any method fails to clas-
sify the read based on the given threshold, the WEVOTE preprocessing phase assigns 0 as a
taxon, indicating that the read is unclassified by the corresponding method. Then,
WEVOTE identifies the taxonomic relationship of the N taxa per read based on the pre-con-
figured taxonomy tree structure and casts a vote to the final taxon, which may be a common
ancestor of the N taxa. Although the current version of our method only includes five meth-
ods, the voting scheme in our framework is flexible and allows for the inclusion or removal
of different methods.

WEVOTE utilizes a simplified version of the NCBI taxonomy tree as a backbone for its deci-
sion algorithm. This resolved phylogeny tree only contains the nodes that have a taxon corre-
sponding to one of the standard taxonomic levels (Super-kingdom, Phylum, Class, Order,
Family, Genus, and Species). This backbone structure facilitates and accelerates the choice of a
consensus taxon based on the taxonomic annotations received from each identification tool.
The decision scheme inWEVOTE is shown in Algorithm 1. Here, N denotes the number of
tools used in theWEVOTE pipeline; C the number of tools that can classify the read at any tax-
onomic level, i.e., taxon 6¼ 0; and A the number of tools that support theWEVOTE decision.
The relationship N� C� A always holds.
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Fig 1. Schematic diagram of the WEVOTE framework. The input to the WEVOTE is the raw reads of the sample. First, each of the identification

methods independently assigns a taxon to each read. Then, WEVOTE identifies the taxonomic relationship of the N taxa based on the pre-configured

taxonomy tree structure and determines the final taxon assigned to each read.

doi:10.1371/journal.pone.0163527.g001
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Algorithm 1 TheWEVOTE Decision Scheme

1: procedureWEVOTE(N taxa for each read)
2: for each (Read2 sequencefile) do
3: if (C = = 0) then
4: Read.Taxon= 0
5: Read.DecisionScore= 1
6: Read.NumSupportedTools= N
7: else if (C� 1) then
8: build a WeightedTreeof the reportedtaxa
9: Threshold= floor(C/2)
10: MaxWeight= 0
11: MaxNode= 0
12: for each (Node2 WeightedTreeand weight(Node)> Threshold)do
13: if (rootToTaxon(Node)> MaxWeight)then
14: MaxWeight= rootToTaxon(Node)
15: MaxTaxon= Node
16: else if (rootToTaxon(Node)= = MaxWeight)then
17: MaxTaxon= LCA(Node,MaxTaxon)
18: Read.Taxon= MaxTaxon
19: Read.NumSupportedTools= weight(Read.Taxon)
20: if (A = = C) then
21: Read.DecisionScore= A/N
22: else
23: Read.DecisionScore= (A/N) − (1/(m � N))

In the case that no single tool can classify the read, WEVOTE will accordingly fail to classify
the read and give it a taxon 0 and score of 1. Otherwise,WEVOTE starts by building a weighted
tree for each read from the taxa reported by individual tools. The weighted tree is a tree that
comprises the nodes of the identified taxa along with their ancestors’ taxa including the root.
The weight of any node on the weighted tree represents the number of tools that support the
identification of this particular node. Next, WEVOTE annotates the read with the taxon of the
node that has the highest weight from the root to that node (RootToTaxon), with the addi-
tional condition that the node itself has more weight than theWEVOTE threshold. This
threshold can be set as half of the number of tools that classify a read (C). In the case where
more than one node satisfies theWEVOTE condition, then the LCA of these nodes will be
assigned as theWEVOTE decision. For each classified read, a score is also assigned to reflect
the confidence of WEVOTE decision. The scoring scheme works as follows. If the number (C)
of tools that classified the read equals the number (A) of tools that agreed on theWEVOTE
decision, then theWEVOTE score will be calculated based on Eq (1)

Score ¼
A
N

ð1Þ

Otherwise,where A< C, the score will be calculated using Eq (2).

Score ¼
A
N
�

1

m � N
; m > 1 ð2Þ

The choice of the constant m depends on how strongly one elects to penalize the disagree-
ment among individual tools that classify the read but do not agree with theWEVOTE deci-
sion. A small value of m leads to a small WEVOTE score, implying more penalty is placed on
theWEVOTE decision score, and vice versa. This scoring schememakes the score satisfy the
condition of A� 1

N < score < A
N. Although the score does not affect the WEVOTE decision, it

would be useful if the user is interested in assessing the confidence of the taxon assignment
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made by WEVOTE. The default value of m is 2. We have chosen this value because it gives a
score exactly in the middle of A� 1

N and A
N. As m increases, the score skews towards the A

N side. In
order to demonstrate the decision and scoring schemes described in theWEVOTE algorithm,
the case scenarios of WEVOTE for N = 3 are shown in Fig 2.

The tools used in the current implementation

In our current implementation of WEVOTE, we used BLASTN [2] to represent the naive-simi-
larity-basedmethods, Kraken [5] and CLARK [13] as the identification tools representing the
k-mer methods, and TIPP [8] and MetaPhlAn [11] representing the marker-basedmethods.
The five tools were chosen since they are widely used and represent the three major categories
of taxonomic identificationmethods.We selected BLASTN over MegaBlast because of its
greater sensitivity. The primary reason for the increased sensitivity in BLASTN is the use of a
shorter word size as a search seed. Thus, BLASTN is better than MegaBlast in finding align-
ments for sequences that have a sequencing error which occurs after a short length of matched
bases (i.e., the initial exact match is shorter).

Kraken assigns taxonomic annotations to the reads by splitting each sequence into overlap-
ping k-mers [5]. Each k-mer is mapped to a pre-computed database where each node in the
database is the LCA taxon of all genomes that contain that k-mer. For each read, a classification
tree is computed by obtaining all the taxa associated with the k-mers in that read. The number
of k-mers mapped to each node in the classification tree is assigned as a weight for this node.
The node that has the highest sum of weights from the root is used to classify the read. Kraken
is an ultra-fast and highly precise algorithm for reads involving a low rate of sequencing error.
CLARK is a recently released tool that is very similar to Kraken and also based on k-mers. It is
reported to be faster and more accurate than Kraken at the genus/species level [13]. The funda-
mental difference betweenKraken and CLARK is their backbone k-mers database. Kraken has
only one database that can serve for the classification of metagenomic reads at any taxonomic
level. If more than one genome shares the same k-mer, Kraken assigns this k-mer to their LCA
taxon. CLARK, on the other hand, builds an index for each taxonomic level at which the user
wishes to classify. Each level’s index has only the discriminative k-mers that distinguish its taxa
from others.

TIPP (Taxonomic Identification and Phylogenetic Profiling) is considered a state-of-the-art
tool based on a set of marker genes. It uses a customized database of 30 marker genes [18]
which are mostly universal and single-copy genes. First, it performsmultiple sequence align-
ment of each marker gene set, then builds a phylogeny tree for each marker gene and con-
structs a resolved taxonomy tree of these marker genes. Then, it uses SATe [19] to decompose
the tree of each marker gene to many sub-trees. Subsequently, TIPP uses HMMER software
[20] to build a HiddenMarkov Model (HMM) for each of the sub-trees. For each query read,
TIPP uses HMMER again to align the query to the HMMs. Then, TIPP uses the alignments to
the HMM that have an alignment score and statistical support greater than a group of pre-set
values, and places them on the precomputed taxonomic tree using pplacer [21] to assign taxon-
omy to the query. It has been shown that TIPP can precisely identify reads containing high
sequencing error or novel members of a marker family from novel genomes [8]. The other tool
chosen for this category in our implementation is MetaPhlAn. MetaPhlAn has a set of clade-
specificmarker genes. The marker set was built from the genomes available from the Integrated
Microbial Genomes (IMG). For a given read, MetaPhlAn compares the read against the pre-
computed marker set using BLASTN searches in order to provide clade abundances for one or
more sequencedmetagenomes.
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Fig 2. WEVOTE case scenarios using three tools. C denotes the # tools able to classify the read, A represents the # of

tools that support WEVOTE Decision, and S represents the WEVOTE score. Scenarios are shown for (a) None of the three

tools classified the read; (b) Only one tool classified the read; (c) Two tools classified the read with the same taxon; (d, e) Two

tools classified the read with two different taxa; (f-i) Three tools classified the read with three different taxa; (j, k) Three tools

classified the read, two taxa are identical, and the other is different; (l) Three tools identified the read with the same taxon.

doi:10.1371/journal.pone.0163527.g002
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Results and Discussion

Simulated datasets have been used in the evaluation of various taxonomic identification tools.
In our assessment, we selected fourteen simulated datasets as shown in Table 1. Our choice was
based on the ability of these datasets to provide the true assignment for each read rather than
the true relative abundance at each taxonomic level. This information allows for the evaluation
of WEVOTE based on various metrics in addition to the assessment of relative abundance.

The first three datasets were used in the evaluation of Kraken [5]. The HiSeq and MiSeq
datasets are simulated from sequences obtained from non-simulated microbial projects but
were sequenced using two different platforms, i.e., Illumina HiSeq™ and IlluminaMiSeq™. The
simBA5 is a simulated dataset with a higher percentage of error to mimic increased sequencing
errors. Hence, it can be used to measure the ability of each tool to handle actual sequencing
data. The simHC20 dataset was used to benchmark CLARK [13] and it contains 20 subsets of
long Sanger reads from various knownmicrobial genomes. The other ten datasets were used in
MetaPhlAn [11] evaluations. HC1 and HC2 consist of reads from high-complexity, evenly dis-
tributedmetagenomes that contain 100 genomes, and LC1–LC8 consist of reads from low-
complexity, log-normally distributedmetagenomes that contain 25 genomes. The reads from
all ten MetaPhlAn datasets were sampled from KEGG v54 [22] with a length of 100 bp and an
error model similar to real Illumina reads.

The WEVOTE Benchmarking

Our benchmarking was performedwith two variants of WEVOTE: (i) WEVOTE (N = 3)
including BLASTN, TIPP and Kraken; and (ii) WEVOTE (N = 5) including BLASTN, TIPP,
MetaPhlAn, Kraken, and CLARK. As describedpreviously, BLASTN represents the naive-sim-
ilarity method; TIPP and MetaPhlAn belong to the category of the marker-basedmethods; and
Kraken and CLARK belong to the category of the k-mer-basedmethods. The default parameter
values were set for the individual tools and the score penalty inWEVOTE was set at m = 2 (see
Appendix A for full details about the commands used in the command-line). Regarding
WEVOTE, we reported all results in which at least one tool supported theWEVOTE decision.

Table 1. The Benchmarking Datasets.

Source Dataset # reads length (bp) # genomes

Kraken HiSeq 10,000 92 10

MiSeq 10,000 156 10

simBA5 10,000 100 1,967

CLARK simHC20 10,000 951 20

MetaPhlAn HC1 999,998 88 100

HC2 999,991 88 100

LC1 249,995 88 25

LC2 250,000 88 25

LC3 250,000 88 25

LC4 249,999 88 25

LC5 249,999 88 25

LC6 250,002 88 25

LC7 250,000 88 25

LC8 250,000 88 25

doi:10.1371/journal.pone.0163527.t001

WEVOTE: Weighted Voting Taxonomic Identification Method of Microbial Sequences

PLOS ONE | DOI:10.1371/journal.pone.0163527 September 28, 2016 8 / 18



With this approach, we can evaluate the accuracy of WEVOTE at the highest classification rate
of the reads. By increasing the threshold, we can generate more precise results as shown later.

We first looked at how accurately each tool annotates individual reads at each taxonomic
level using sensitivity and precision metrics, which are defined in Eqs (3) and (4), respectively.
For each level l in a simulated dataset:

Sensitivity
ðlÞ ¼

TPl

Pl
ð3Þ

PrecisionðlÞ ¼
TPl

TPl þ FPl
ð4Þ

where Pl denotes the number of reads annotated with some taxon at level l in the original data-
set; TPl the number of reads correctly annotated at level l; and FPl the number of reads incor-
rectly annotated at level l.

It could be inappropriate to compare the sensitivity of all the methods used inWEVOTE,
since the marker-basedmethods are primarily designed to calculate the microbial abundance
of the sample based on the annotation of the reads that come from genes represented by the
marker gene database. Based on this consideration, Fig 3(I) shows the sensitivity and precision
of Kraken, CLARK, BLASTN, andWEVOTE; while in Fig 3(II), we show the precision of TIPP
and MetaPhlAn separately. It is observed from Fig 3 that WEVOTE achieves the highest level
of precision and a level of sensitivity that is second only to BLASTN at the species level. At all
other taxonomic levels, WEVOTE outperforms all the other individual tools in terms of sensi-
tivity and precision in most datasets (S1 Table). Note that the reason for the lower precision
with N = 5 is because the results were reported when the minimum number of tools supported
theWEVOTE decision was set at 1. If a higher level of precision is required, then theWEVOTE
reporting threshold should be set at N/2 as explained later.

In addition, we calculated the Hellinger distance [23] (Hl) between a sample’s metagenomic
abundance profile generated by each tool and its true abundance profile at each taxonomic
level l. The Hellinger distancemeasures the deviation of the predicted profile from the true pro-
file. It is calculated as shown in Eq (5). Here, Cl is the union of all taxa that are in the true and
predicted profiles at each taxonomic level l. For each taxon x at level l, Px is the predicted rela-
tive abundance and Tx is the true relative abundance at taxonomic level l. The

ffiffiffi
2
p

is added to
the denominator to keep 0�Hl� 1.

Hl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
x2Cl
ð
ffiffiffiffiffi
Px
p
�

ffiffiffiffiffi
Tx

p
Þ

2
q

ffiffiffi
2
p ð5Þ

The calculation of the relative abundance (RA) differs among the tools. For tools that are
developed to identify every genomic read, such as BLASTN, Kraken, and CLARK, the relative
abundance is calculated as shown in Eq (6). As mentioned before, TIPP and MetaPhlAn are
not designed to identify every read. They build metagenomics abundance profile of the sample
based on the annotation of the reads that come from genes represented by the marker gene
database. In this case, the relative abundance of a taxon x is calculated using Eq (7). For
WEVOTE, we used Eq (6) to calculate the RA. These two forms of relative abundance calcula-
tion are implemented inWEVOTE. It is the user option to select which method to use.
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Fig 3. The sensitivity and precision at the species levels sub-panel (I) shows the sensitivity and precision of tools developed to

identify every read; Kraken, CLARK, BLASTN, and WEVOTE. sub-panel (II) shows the precision of marker-based tools; TIPP

and MetaPhlAn. The MetaPhlAn-HC and MetaPhlAn-LC datasets are the average of two HC and eight LC datasets,

respectively.

doi:10.1371/journal.pone.0163527.g003
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However, the genomic-basedmethod Eq (6) is the default setting.

RAgenomic� basedðxÞ ¼
nx

n
ð6Þ

RAmarker� basedðxÞ ¼
nx

nc
ð7Þ

Where nx is the total number of reads classified at taxon x, n the total number of reads, and nc

the total number of classified reads.
As the Hellinger distance represents an error distance, a small value is always preferable.

Particularly, H = 0 means that the predicted profile is exactly the same as the true profile; while
H = 1 means that the predicted profile is completely different from the true profile. Fig 4 and
S2 Table show the Hellinger distance between the true relative abundance profile and the pro-
files generated by all tools at different taxonomic levels. For all the benchmarking datasets,
WEVOTE, particularly when N = 3, always has the smallest Hellinger distance among all other
individual identification tools across all taxonomic levels. Although the Hellinger distance is
marginally different for WEVOTE and BLASTN, the interpretation is quite different. The
error that originates from BLASTN is due to the false positive annotations while the error that
originates fromWEVOTE is due to the lack of support in annotating the read at the corre-
sponding level. TIPP and MetaPhlAn have higher Hellinger distance than other tools used in
WEVOTE. This is mainly because few taxa in the datasets are predicted in low rate by them,
i.e., Px being near zero for few taxa. This has led to the accumulation in the Hellinger distance.
One of the reasons of the inability to predict these taxa may be because the current marker
gene databases used in TIPP and MetaPhlAn do not contain sufficientmarkers of the genomes
represented in the simulated datasets.

Lastly, we examined the details of various case scenarios that were encountered in the evalu-
ation of the twoWEVOTE variants, i.e., N = 3 and N = 5. The plots in Fig 5 show the percent-
ages of annotations in which the individual tools support theWEVOTE decision for all the
datasets. S3 Table shows the actual number of tools that support theWEVOTE decision for
each dataset. It can be observed that the majority of WEVOTE annotations are determined
based on more than N/2 agreements; 2 in the case of N = 3 and 3 in the case of N = 5. For only
a small portion of each dataset, all the used tools agreed on theWEVOTE decision. An interest-
ing observation is that a very small portion of all the classified reads by WEVOTE are in agree-
ment with one tool when N = 3, or either 1 or 2 tools when N = 5. Therefore, if we set a
threshold onWEVOTE to report the taxon at which more than half the tools are in agreement
with theWEVOTE decision, then the precision of WEVOTE would increase, and its sensitivity
will only be marginally decreased as demonstrated in Fig 6. We have chosen Kraken-HiSeq and
Kraken-MiSeq datasets for this investigation because they had low precision among all the
used taxonomic identification tools (Fig 3).

Computational resources and running performance

All the experiments were performed on the supercomputer (EXTREME) at the University of
Illinois at Chicago. To benchmarkWEVOTE, we used one node with 16 cores (Intel Xeon E5-
2670 @ 2.60 GHz, cache size of 20 MB, and 128 GB RAM). Since theWEVOTE core algorithm
and all the individual tools are parallelizable, we utilized 16 threads for all experiments con-
ducted in this work. Due to the high requirement on the memory for constructingKraken and
CLARK databases, we used the Highmem node on EXTREMEwhich has specification of 1TB
RAM. In order to achieve the maximum performance from Kraken and CLARK, we used the
default versions of the two tools, which require at least 80 GB of RAM. Therefore, if there is
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only a limited amount of memory available, users can run these tools using their mini versions,
i.e., MiniKraken and CLARK-l, which only require 4 GB of RAM. In this case, the output could
be 11%-25% less sensitive, but it will still preserve a high level of precision. TheWEVOTE algo-
rithm is particularly useful in this case because it can exploit the high precision level of Kraken
and CLARKwithout using large memorymachines and compensate the sensitivity by using
BLASTN.

Fig 4. The Hellinger distance. The deviation between the predicted and the true abundance profile was measured in terms of the

Hellinger distance for each tool at different taxonomic levels. Results are shown for: (a) Kraken-HiSeq dataset; (b) Kraken-MiSeq dataset;

(c) Kraken-simBA5 dataset; (d) CLARK-simHC20; (e) MetaPhlAn-HC and (f) MetaPhlAn-LC. The lower the error, the more precise the

corresponding tool is at the corresponding taxonomic level. H = 0 means that the predicted relative abundance profile is exactly the same

as the true profile; while H = 1 means that the predicted profile is completely different from the true profile.

doi:10.1371/journal.pone.0163527.g004
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Table 2 shows the running time for each tool per dataset. For HC and LC classes of datasets,
the running time is presented as the average over the datasets in each class. The standard devia-
tion of each category is also provided (full details for all individual datasets can be found in S4
Table). Kraken and CLARK finished in less than 3 minutes for any individual dataset. For
BLASTN, the most time-consuming tool that is currently implemented in theWEVOTE pipe-
line, its running time is proportional to the number of reads and the read length in a dataset.
The total time of the entire WEVOTE pipeline is the summation of the running times of the
individual tools and the time needed to run theWEVOTE core algorithm. TheWEVOTE core

Fig 6. The sensitivity and precision at the species level for the WEVOTE (N = 5) using different thresholds for the

minimum number of tools that support the WEVOTE decision. (a) Kraken-HiSeq dataset; and (b) Kraken-MiSeq dataset.

doi:10.1371/journal.pone.0163527.g006

Fig 5. The percentage distribution of the number of individual tools that support the WEVOTE decision for the 14 datasets.

Here, 0 means that the read was not classified by any tools, 1 means that one tool supports the WEVOTE assigned taxon for the read,

and so on. A = 3 in the case of (a) means that all the 3 tools support WEVOTE on its assigned taxon for the corresponding read, A = 5 in

case of (b) means that all the used 5 tools support WEVOTE on its assigned taxon for the corresponding read.

doi:10.1371/journal.pone.0163527.g005
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algorithmwas finished execution in less than 33 seconds for any individual dataset regardless
N = 3 or N = 5. TheWEVOTE core algorithm is mainly affected by the number of the used
tools, and more specifically, the number of tools that identified taxa for the reads. Because the
running time of WEVOTE pipeline is primarily dominated by the time required by BLASTN,
the pipeline running time can be reduced if many cores are used to execute BLASTN.

Conclusion and future work

We have developed theWEVOTE framework for the consolidation of taxonomic identifica-
tions obtained from different classification tools. The performance evaluation based on the
fourteen simulated microbiome datasets consistently demonstrates that WEVOTE achieves a
high level of sensitivity and precision compared to the individual methods across different tax-
onomic levels. The major advantage of theWEVOTE pipeline is that the user can make the
choice of which tools to use in order to explore the trade-off between sensitivity, precision,
time, and memory. TheWEVOTE architecture is flexible so that additional taxonomic tools
can be easily added, or the current tools can be replaced by improved ones. Moreover, the score
assigned to the taxon for each read indicates the confidence level of the assignment. This infor-
mation is especially useful for the assessment of false positive annotations at a particular taxo-
nomic level. The classification score given by WEVOTE can be used for any downstream
analysis that requires the high confidence of the annotated sequences. In our current imple-
mentation, we have used a uniformweight for each method to vote. However, we will explore
the potential of incorporating different weighted votes for individual methods. Future work
also includes the investigation of clinical microbiome samples and experimental validation for
species of interest.

Appendix (A)

We provide information on the command line, the databases and the software version that
were used for the execution of the tools: WEVOTE, BLASTN, Kraken, CLARK, TIPP, and
MetaPhlAn. The complete path to each executable of database is not shown here for clarity:

WEVOTE

The input to theWEVOTE algorithm is a CSV file. Each line of the CSV file has information
about one read from the sequence fasta file. The first field of each line is the read identifier, the
second field is the tool #1 taxon, the third field is tool #2 taxon, and so on. In the case of inabil-
ity of any tool to classify a read, the taxon should be zero. WEVOTE, then, will use this input
file along with the NCBI taxonomy database to annotate the sequences as following:

Table 2. Running time of the used tools. The time is measured in minutes.

Simulated Dataset Kraken BLASTN TIPP CLARK MetaPhlAn WEVOTE Pipeline [N = 5]

HiSeq 1 2 4 1 1 10

MiSeq 1 8 4 1 1 16

simBA5 1 7 3 1 1 14

simHC20 1 9 5 1 1 18

HC (std) 2 (0.0) 30 (1.4) 14 (0.0) 3 (0.0) 2 (0.0) 53 (1.4)

LC (std) 1 (0.0) 9 (2.9) 8 (0.5) 2 (0.0) 1 (0.5) 22 (3.5)

doi:10.1371/journal.pone.0163527.t002
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$wevote -i <input-file.csv>-d <taxonomy-database> -p <output-
prefix>-n 16 -m 2
Software version:WEVOTE version 1.5.0
Database:NCBI taxonomy database (Downloadedon 4/17/2016).

BLASTN

Map the reads file to the NCBI database and report the top hit:
$blastn -db nt -query <input-file.fa> -out <NaiveOutput>-outfmt

“6 qseqid sseqid sgi staxids length qstart qend sstart send pident
evalue score bitscorestitle” -num_threads16 -perc_identity90
-max_target_seqs1 -evalue 1e-5 -best_hit_score_edge 0.05 -best_hi-
t_overhang0.25
Software version: ncbi-blast-2.2.29+-x64-linux
Database:NCBI NT (Downloadedon 12/20/2015).

Kraken

Step 1:Map the reads file to the Kraken database:
$kraken ––db <kraken-db>-fasta-input––threads16 ––output<Kra-

kenOutput>[input-file.fa]
Step 2: Generate Kraken report:
$kraken-report––db <kraken-db><KrakenOutput>> [KrakenOutput.

report]
Software version: kraken-0.10.5-beta.
Database: used the kraken-build script to download and configure the standard Kraken

database. This downloads NCBI taxonomic information, as well as the complete genomes in
RefSeq for the bacterial, archaeal, and viral domains (Downloadedon 11/14/2015).

CLARK

Step 1: Configure the setting and choose the database:
$set_targets.sh<CLARK-DB>bacteriaviruses
Step 2:Map the reads file to the CLARK database:
$classify_metagenome.sh-O <input-file.fa> -R <output-prefix>-n

16
Software version:CLARKSCV1.2.3
Database: used the download_data.sh script to downloadNCBI taxonomic information, as

well as the complete bacterial and virus genomes (Downloaded on 4/20/2016). In the begging
of Step 2, CLARK checks whether the database exists or not, if not, it builds the default one.

TIPP

Map the reads file to the database of 30 marker genes and reports the taxon of the classified
reads:
$run_abundance.py -f [input-file.fa]-c /.sepp/tipp.config -x 16

-d [TIPPOutput]
Software version:Downloaded the source code from:
https://github.com/smirarab/sepp.git on (Downloadedon 12/1/2015).
Database:Downloaded the references datasets from www.cs.utexas.edu/phylo/software/

sepp/tipp.zip on (Downloadedon 12/1/2015).
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MetaPhlAn

Map the reads file to the database of MetaPhlAn marker genes:
$python metaphlan.py<input-file.fa>––bowtie2dbbowtie2db/mpa

––bt2_pssensitive-local––bowtie2out<output-prefix.bt2out>
––input_typemultifasta––nproc16 > <output-file>
Software version:MetaPhlAn version 1.7.7
Database:The same marker genes database that downloadedwith MetaPhlAn version 1.7.7

(Downloaded on 12/13/2015).
MetaPhlan maps each read to a clade number. The clade number is different from NCBI

taxonomy ID. So, we have to use a lookup table that MetaPhlan developers provide in order to
convert the clade ID to NCBI taxonomy ID.

Supporting Information

S1 Table. Sensitivity and Precision.
(XLSX)

S2 Table. Hellinger Distance.
(XLSX)

S3 Table. Number of tools agreed onWEVOTE decision.
(XLSX)

S4 Table. Running time.
(XLSX)
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