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Abstract

In this paper we describe a coherent multiple testing procedure for correlated test statistics such as 

are encountered in functional linear models. The procedure makes use of two different p-value 

combination methods: the Fisher combination method and the Šidák correction-based method. P-

values for Fisher’s and Šidák’s test statistics are estimated through resampling to cope with the 

correlated tests. Building upon these two existing combination methods, we propose the smallest 

p-value as a new test statistic for each hypothesis. The closure principle is incorporated along with 

the new test statistic to obtain the overall p-value and appropriately adjust the individual p-values. 

Furthermore, a shortcut version for the proposed procedure is detailed, so that individual 

adjustments can be obtained even for a large number of tests. The motivation for developing the 

procedure comes from a problem of point-wise inference with smooth functional data where tests 

at neighboring points are related. A simulation study verifies that the methodology performs well 

in this setting. We illustrate the proposed method with data from a study on the aerial detection of 

the spectral effect of below ground carbon dioxide leakage on vegetation stress via spectral 

responses.
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1 Introduction

High-dimensional data analysis is a current emphasis in statistical methodology 

development. High-dimensional data consisting of observations measured “continuously” in 

time are typically called functional data. Because in practice the continuous measurements 

are approximated by a vector – a continuous function evaluated on a grid of L points ti, i = 1, 
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…, L – point-wise inference provides an intuitive and easy way to analyze functional data. 

For example, Godwin et al. (2010) were interested in variability observed in human motion 

patterns. By discretizing kinematic and kinetic lifting curves on a grid of L = 100 points (and 

performing inference point-wise), they were able to demonstrate additional areas of 

difference in motion patterns beyond those identified by traditional analysis based solely on 

peak values. However, conclusions based on a set of L point-wise p-values may lead to far 

too many falsely significant tests (e.g., Rice (1988)). In particular, although Godwin et al. 

(2010) say that “additional areas outside of the peaks were significantly different,” they 

concluded significance for all L = 100 points and all types of lifting curves. These 

conclusions made the interpretation of findings troublesome. An adequate method for 

simultaneous point-wise testing needs to account for potentially inflated false positive 

results.

The commonly used Bonferroni correction for false positive decisions is not ideal for point-

wise inference with functional data. The Bonferroni procedure is designed to correct for L 
independent simultaneous tests. If functional inference is performed on a point-wise grid, 

the corresponding p-values at nearby time points are correlated and the Bonferroni 

correction becomes overly conservative (Cribbie (2007)). Some methods suggest replacing 

the number of tests, L, in the Bonferroni method by an estimate of the effective number of 

independent tests (Cheverud (2001), Nyholt (2004), Li and Ji (2005)) based on the 

eigenvalue variance of the correlation matrix. However, a single parameter, i.e., the number 

of independent tests, might not fully capture the correlation structure.

Our work is motivated by a problem of CO2 surface leakage detection from a geologic 

carbon sequestration (GCS) site. Geologic carbon sequestration is a carbon capture and 

storage technique that could play a major role in climate mitigation strategy. Since 

vegetation is a predominant land cover over a GCS cite, Bellante et al. (2013) analyzed areal 

hyperspectral images of the simulated CO2 leak site in attempt to identify differences in 

mean spectral signatures of healthy vegetation and vegetation under stress. Bellante et al. 

(2013) proposed the Red Edge Index (REI) – a single test statistic that summarizes 

differences between the spectral signatures of healthy and stressed vegetation. We used the 

data collected by Bellante et al. (2013) in an attempt to identify specific wavelength regions 

where the mean spectral signatures (mean spectral responses) of healthy vegetation and 

vegetation under stress differ (see Figure 5). Our approach was to perform the analyses on a 

discretized grid of 80 points because the original spectral data were collected in 80 bands 

throughout the visible and near infrared wavelengths (Bellante et al. (2013)).

Although interest in point-wise inference is obvious, few viable approaches exist in this 

direction that account for inflated false positive results and correlation structure among tests. 

Ramsay and Silverman (2005) proposed a method for performing L point-wise tests 

simultaneously, however their approach is not designed to control the family-wise error rate 

(FWER) – i.e., the probability of at least one false rejection among all tests. A promising 

approach was introduced by Cox and Lee (2008) who used the multiplicity correction 

procedure proposed by Westfall and Young (1993) to control the FWER. Neither of the 

proposed methods provide a decision regarding the overall null hypothesis that all single L 
hypotheses are true. This is an undesirable property since a multiple comparison procedure 
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may be non-coherent (Gabriel (1969)), i.e., the rejection of at least one point-wise 

hypothesis may not imply the rejection of the overall null and thus might lead to 

interpretation problems.

We propose a point-wise procedure that both provides a decision for the overall hypothesis 

and adequately adjusts the individual p-values to account for L simultaneous tests. The 

method first uses two different p-value combining methods to summarize the associated 

evidence across L points, defines a new test statistic, W, based on the smallest p-value from 

the two combination methods, and applies the closure principle of Marcus et al. (1976) to 

individually adjust the L point-wise p-values. The idea of using the minimum p-value as the 

test statistic for the overall test across different combination methods has been used in 

genetics studies (Hoh et al. (2001), Chen et al. (2006), Yu et al. (2009)). A challenge for the 

proposed analysis was the individual adjustment performed using the closure principle. The 

closure principle generally requires 2L − 1 tests. To overcome this obstacle, we describe a 

computational shortcut which allows individual adjustments using the closure method even 

for large L. Accordingly, the paper is organized as follows. We give an overview of the 

closure principle and detail the computational shortcut to it. We give an explicit strategy for 

the proposed approach and compare its performance to other possibilities in a simulation 

study. We apply the proposed methodology in order to identify regions of the 

electromagnetic spectrum that differ based on distances to a simulated underground CO2 

leak pipe.

2 Multiple Tests and Closure Principle

2.1 The General Testing Principle

It is well known that by construction all inferential methods have a nonzero probability of 

Type I error. Therefore, when L multiple tests are conducted simultaneously, the probability 

of finding at least one spurious result is greater than the threshold α. A multiple testing 

adjustment procedure, which controls FWER for the family of individual hypotheses, H1,…, 

HL, at a pre-specified level α, can be obtained through the closure principle of Marcus et al. 

(1976). The closure principle considers all possible combination hypotheses obtained via the 

intersection of the set of L individual hypotheses HI = ∩{Hi : i ∈ I}, I ⊆ {1,…, L}. The 

coherence of the procedure is enforced by rejecting an individual hypothesis Hi, i = 1,…, L, 

only if all intersection hypotheses that contain it as a component are rejected. Most 

researchers prefer the results of a multiple test procedure to be presented in terms of L 
individually adjusted p-values. The individually adjusted p-value for the hypothesis Hi is set 

to the maximum p-value of all intersection hypotheses implied by Hi.

A valuable feature of the closure principle is its generality, i.e., any suitable α-level test can 

be used to test the intersection hypotheses. However, the implementation of the method 

becomes computationally challenging for a large number of tests. The total number of 

intersection hypotheses is 2L − 1 which grows quickly with L and limits the applicability of 

the method. Grechanovsky and Hochberg (1999) exhaustively discussed the conditions 

under which the closure procedure admits a shortcut in the case of joint multivariate normal 

tests. The question remains of how to reduce the computational burden of the closure 

method in the case of non-normal correlated tests.
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2.2 Closure in a Permutation Context

Permutation-based methods are becoming more popular for multiple testing corrections with 

high-dimensional data. They do not require normality assumptions and utilize the data-based 

correlation structure. That is, the resulting procedure for false positive decision corrections 

based on permutation test is exact despite unknown covariance structure. The closure 

method easily admits permutation-based tests, all that is required is an α-level permutation 

test for each intersection hypothesis. Westfall and Troendle (2008) described a 

computational shortcut for the closure principle with a permutation test that reduces the 

number of required computations from the order of 2L to L. Here, we show how to 

implement a computational shortcut for the Šidák (Šidák (1967)) and Fisher (Fisher (1932)) 

permutation-based tests to reduce the number of computations from the order of 2L to the 

order of L2.

Suppose K tests are conducted and the resulting p-values are p1,…,pK. Denote the ordered p-

values by p(1) ≤ ⋯ ≤ p(K). The test based on the Šidák correction for the intersection of K 

hypothesis, , is

(1)

The Fisher test statistic for the same intersection hypothesis is

(2)

The permutation p-values based on the Šidák correction are equivalent to the p-values based 

on the min-p test statistic and the rank truncated product statistic (RTP), 

, of Dudbridge and Koeleman (2003) with truncation at K = 1, because 

1 − (1 − p(1))K is a monotonic transformation of p(1). Similarly,  is a 

monotonic transformation of , and the permutation p-values based on these two 

test statistics are equivalent.

The idea behind the shortcut is to consider only the “worst” (the smallest) test statistic in the 

subsets of the same cardinality. Note that, for both the Šidák correction-based test and the 

Fisher test, the values of the test statistics are monotonically decreasing among intersection 

hypotheses of the same size. Thus, for the ordered p-values, p(1) ≤ ⋯ ≤ p(L), the hypotheses 

that will be used for individual adjustments are:
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Here, the hypothesis H1 has p-value p(1), H2 has p-value p(2), etc. The unique intersection 

hypotheses to consider are highlighted in bold, and the number of unique tests to consider is 

. One need not necessarily use resampling to apply the above 

shortcut, however it also works well if permutations are used to find p-values for each 

intersection hypothesis. Figure 1 illustrates correspondence between p-values calculated 

based on the full closure “resampling-based” procedure and the “resampling-based” 

shortcut. The graphs show an excellent agreement between the two adjusted p-values for 

both Šidák and Fisher test statistics.

3 Methods

We now describe a permutation algorithm that ensures coherency when estimating adjusted 

individual p-values. Suppose L correlated tests are conducted simultaneously. Apply the 

following steps to obtain the corresponding individually adjusted p-values based on B 
permutations.

1.
Construct  matrices of Šidák and Fisher permuted 

test statistics, Sij, Fij  (indexes intersection 

hypotheses), j = 1, …, B + 1 (indexes permutations). The first column of 

the matrices contains the observed test statistics.

2.
Construct  matrices of the permuted p-values based 

on the algorithm from Ge et al. (2003) – discussed below. The Šidák p-

value for the i-th intersection hypothesis and j-th permutation is

The Fisher p-value for the i-th intersection hypothesis and j-th permutation 

is
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3.
Define the statistic  and obtain its p-value as

4. Make an overall decision and obtain L individually adjusted p-values by 

applying the closure principle to the set of ’s.

To avoid nested permutations in Step 2, we used the algorithm by Ge et al. (2003) to 

compute permutational p-values for each permutation j = 2,…, B + 1. More specifically, the 

algorithm allows one to obtain permutational p-values on just B permutations instead of B2. 

Also, in Step 3, testing the ith intersection hypothesis with Wij at a threshold α would lead to 

inflated Type I error rate, because choosing the smallest of the two p-values  and  leads 

to yet another multiple testing problem. To overcome this issue, one can use either the 

Bonferroni correction and define the test statistic as 2 min(Ps, Pf) or, as suggested, determine 

the significance of W on the basis of permutations. Finally, setting W=min(PS, Pf) is the 

same as min(RTP(1), RTP(L)), where RTP(•) is the rank truncated product statistic of 

Dudbridge and Koeleman (2003) which was also considered in Zaykin (2000) and Zaykin et 

al. (2007). Thus, W incorporates two extremes: the combination of all p-values and a min-p 
adjustment procedure. Simulation studies are used to show that it retains desired properties 

of both type of statistics.

4 Simulations

4.1 Simulation Study Setup

We were motivated by a problem of identifying differences in mean spectral signatures of 

healthy vegetation and vegetation under stress across electromagnetic spectra. We approach 

the problem by evaluating functional responses on a grid of 80 points across wavelengths 

and performing tests point-wise. More generally, we were interested in evaluating k groups 

of functional responses on a grid of L points, t1, …, tL, and performing point-wise inference 

in the functional data setting. The goal of the simulation study was to investigate the power 

of the proposed procedure to detect departures from (1) the global null hypothesis 

of no difference anywhere in t and (2) the point-wise null hypotheses H0 : μ1(ti) = μ2(ti) for 

all ti, i = 1, …, L, where μ(ti) is a mean functional response evaluated at a point ti. We 

followed the setup of Cox and Lee (2008) to be able to directly compare the performance of 

W to their method. To the best of our knowledge, the Cox and Lee (2008) method is the only 

viable existing approach for performing point-wise inference with functional data so we 

considered it to be a direct competitor.

For all simulations we generated two samples of functional data with n1 = n2 = 250 

observations in each group (N = 500). The mean function of the first sample was constant 

and set to zero, μ1(t) ≡ 0, t ∈ [0,1]. The mean of the second sample was either set to μ2(t) = 

γBeta(1000,1000)(t) or μ3(t) = γBeta(5,5)(t), where Beta is a probability density function of 
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the Beta distribution. Figure 2 illustrates μ2(t) and μ3(t) for the range of different γ values 

explored.

First, we simulated the case where all L point-wise hypotheses were true (μ1(ti) ≡ μ2(ti), 
∀ti). To obtain functional data, we evaluated the mean functions on a grid of 140 equally 

spaced points ranging from −0.2 to 1.2 and added random noise, εij ~ N (0,0.012). Then, we 

fitted a smoothing spline using the <monospace>smooth.spline</monospace> R function (R 

Core Team (2013)) with the 0.95 smoothing parameter for each functional observation as 

suggested in Cox and Lee (2008). The output of the <monospace>smooth.spline</

monospace> function is the fitted values of functional responses evaluated on the original 

grid of points. We disposed of 20 points from each end to remove excessive boundary 

variability from the estimated splines and for each curve sub-sampled 50 equally spaced 

values on the grid between 0 and 1. At the 0.05 level, we evaluated the empirical Type I 

error rate for the global null, i.e., the number of incorrect rejections of the overall null 

hypothesis, , out of B = 1000 simulations. We also evaluated the empirical control 

of the family-wise error rate (FWER), i.e., the number of times at least one incorrect 

rejection occurred across all points where the null hypothesis is true. We calculated the 

FWER control in a weak sense, meaning that Hi was true for all i = 1, …, 50, and in a strong 

sense, meaning that not all point-wise Hi’s were true. Reporting the empirical FWER was 

not a trivial task due to the computational intensity of the methods. Likely for this reason, 

Cox and Lee (2008) never reported the FWER in their original paper. To obtain our results, 

we employed the Boos and Zhang (2000) method that allowed us to reduce the size of the 

inner resampling loop and correct the resulting estimator for bias.

We also compared our procedure to five alternative statistical methods: the Šidák correction 

based test, the Fisher test, the Cox and Lee method (Cox and Lee (2008)), the functional ℱ 
statistic (Shen and Faraway (2004)), and the functional Vn (Cuevas et al. (2004)). The 

functional test statistics of Shen and Faraway (2004) and Cuevas et al. (2004) are designed 

to perform the overall functional analysis of variance (FANOVA) test. The FANOVA null 

and alternative hypotheses are

where μi(t) is assumed to be fixed, but unknown, population mean function of group i, i = 1, 

…, k. Parametric distributions are available for both ℱ and Vn from the original papers. The 

FANOVA test assesses evidence for the existence of differences among population mean 

curves across the entire functional domain. The test across the entire domain of t is a global 

test. Thus, we also considered these two methods as competitors to the proposed 

methodology.

Second, we investigated two properties of our method: (1) power to detect deviations from 

the combined null hypothesis  and (2) power to detect deviations from point-wise 

hypotheses H1, H2, …, H50. To calculate power for the combined null hypotheses, we 

simulated B = 1000 sets of functional observations for the specified range of γ values, 
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performed the overall test and calculated the empirical probability of rejecting . At 

the point-wise level, the concept of power is not as clear cut. For example, one may calculate 

conjunctive power – the probability of rejecting all false null hypotheses – or disjunctive – 

the probability of rejecting at least one false hypothesis. For a detailed discussion of these 

different choices see Bretz et al. (2010). Here, we adopted the approach of Cox and Lee 

(2008) to be able to directly compare to their results. We considered a single simulated set of 

functional observations for a specific choice of γ; calculated the unadjusted point-wise p-

values; performed the multiplicity adjustment using W, as well as by Fisher’s, Šidák’s, and 

Cox & Lee’s methods; then we compared the adjusted p-values by plotting them on a single 

graph.

4.2 Results

Table 1 summarizes control of the Type I error rate for the overall null hypothesis, , 

the family-wise error rate (FWER) in the weak sense for the point-wise tests (all Hi’s are 

true) and the strong sense (only 28% of Hi’s are true at t19, …, t32). All methods tend to be 

liberal in terms of the Type I error rate control (“combined null” line). The family-wise error 

rate (both weak and strong control) is conservative for Šidák’s test, Fisher’s test and W, and 

right around 0.05 margin for the Westfall-Young adjustment.

Figure 3 illustrates power for the global null hypothesis . We see that in both 

graphs Fisher’s method outperforms all of the other methods, however W has similar power 

for this realization. The performance of the functional ℱ of Shen and Faraway (2004) is 

very similar to the functional Vn of Cuevas et al. (2004). The Šidák test is the clear laggard.

Figure 4 shows the unadjusted and the adjusted p-values for a single set of functional 

observations. To compute the unadjusted p-values, we simulated 250 curves with mean μ1(t) 
= 0 and μ2(t) = 0.0003Beta(1000,1000)(t) (left graph) or μ1(t) = 0 and μ3 = 0.0003Beta(5, 5)

(t) (right graph) and performed a t-test on a grid of 50 equally spaced points t1 = 0, …, t50 = 

1. From both graphs, it is evident that Fisher’s method has the lowest power. The 

performance of W is very similar to Šidák’s test. The Cox & Lee method has the highest 

power.

5 Application to Carbon Dioxide Data

Bellante et al. (2013) conducted an experiment to study the effect of carbon dioxide (CO2) 

surface leak on vegetation stress at the Montana State University Zero Emission Research 

and Technology (ZERT) site in Bozeman, MT. To study the spectral changes in overlying 

vegetation in response to elevated soil CO2 levels, a time series of aerial images was 

acquired over a buried carbon dioxide release pipe. A single image acquired on June 21, 

2010 was the focus of the current analysis. The pixel-level measurements (with nearly 

32,000 pixels) of the image consist of 80 spectral responses ranging from 424 to 929 nm. 

For each pixel, a horizontal distance to the CO2 release pipe was calculated and 500 spectral 

responses were randomly chosen from five distance subcategories: (0,1], (1,2], (2,3], (3,4], 

and (4,5] meters (see Figure 5). To obtain a functional response for each pixel, we used the 

penalized cubic B-spline smoother with a smoothing parameter determined by generalized 
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cross-validation (Ramsay et al. (2012)). The functional responses were evaluated on the 

original grid of L = 80 points and subsequently the analysis of variance test was performed 

point-wise to obtain the unadjusted p-values.

First, we tested the global null hypothesis of no difference in the entire range of spectral 

responses based on the distance from the CO2 release pipe and obtained the corresponding 

overall p-value of 0.001 (from 1,000 permutations) using W. We then obtained the corrected 

point-wise p-values, which are illustrated in Figure 6. The adjusted p-values from 712 to 788 

nm were below α = 0.05 and correspond to the “red edge” spectral region, which indicates 

that the spectral responses among binned distances differ significantly within this region. 

This is an encouraging result since previous research has indicated that the “red edge” 

spectral region is typically associated with plant stress (Carter and Knapp (2001)). 

Furthermore, the implementation of our method allows one to obtain an overall p-value over 

the points with established statistical significance. In our application, the points with the 

adjusted p-values below α = 0.05 were t46, …, t58, between 712 and 788 nm. Using the 

closure principle, we were also able to calculate the adjusted p-value=0.001 for the 

hypothesis , of no difference of group means in this region of the spectral domain.

The method proposed by Cox and Lee (2008), which employs the Westfall-Young correction 

for multiplicity, identifies a much larger region of wavelengths than the other methods. The 

difference in power is due to the conservative nature of W. A possible direction of future 

research could be a correction to increase the FWER and the power of W.

6 Discussion

Modern data recording techniques allow one to sample responses at a high frequency of 

measurement. In many applications it is of interest to utilize all of the recorded information 

and perform a test at each point, while accounting for the correlation of the test statistics at 

nearby times, properly controlling the probability of false positive findings, and providing 

information on the overall difference. Here, we suggested a coherent method for point-wise 

testing with the desired properties.

Our method capitalizes on the evidence based on the minimum p-value (the Šidák method) 

and the product (or the sum on the logarithmic scale) of all p-values (the Fisher method). 

This results in a procedure that has high power for the combined null hypothesis, , 

and for the individual tests H1, H2, …, HL. These characteristics of our procedure can be 

better understood by examining rejection regions of Fisher’s and Šidák’s tests. In general, 

rejection regions for L tests are hypervolumes in L-dimensional space, however some 

conclusions can be drawn from considering just two p-values. The two-dimensional 

rejection regions for Fisher’s and Šidák’s tests are provided in Loughin (2004). Based on the 

rejection regions, a clear difference is evident between the Fisher method and the Šidák 

method. In particular, the Fisher method will reject the combined null hypothesis, , 

if at least some p-values are “small enough”, but not necessarily significant. The Šidák 

method will reject the combined null hypothesis only if min-p is significant. Thus, Fisher’s 

method is higher-powered than Šidák’s method for the overall null hypothesis. On the other 

hand, Fisher’s test along with the closure principle is lower-powered than Šidák’s method 
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for the individual adjustments. Envision a situation where the smallest p-value, p(1), is just 

above α. The adjusted value of p(1) by the closure principle is the maximum p-value of all 

hypotheses implied by H(1). To test an intersection hypothesis of size K, Fisher’s test 

considers the combination of p(1),p(L), …, p(L−K+1). All p(L), …, p(L−K+1) are greater than 

p(1) and Fisher’s test will not be able to reject  and thus H(1). Conversely, the 

decision for  based on Šidák’s test is made regardless of the magnitudes of p(L), …, 

p(L−K+1) but solely on the magnitude of p(1). Thus, Šidák’s method along with the closure 

principle has higher power than Fisher’s method for the individual tests H1, H2, …, HL. 

Since our approach combines Fisher and Šidák’s methods, it possesses desirable properties 

of both tests and has high power for all  and H1, H2, …, HL.

Our method uses the closure principle of Marcus et al. (1976) to adjust the point-wise p-

values for multiplicity. The implementation of the closure method provides an additional 

advantage of being able to obtain a corrected p-value for intersection hypotheses of interest. 

That is, once the points with the adjusted p-values below a significance level α are 

identified, a researcher can obtain an overall p-value over the collection of these points. For 

example, in our application the points corresponding to the “red edge” spectral region (t46, 

…,t58) had statistically significant adjusted p-values. By using the closure principle we were 

additionally able to obtain a p-value for the intersection hypothesis  for the entire 

“red edge” interval. Thus, while the Westfall-Young approach appears to have higher power 

for testing individual hypotheses, overall p-values for subsets of the functional domain are 

not available with that approach.

Our method is permutation-based. Generally, a drawback of the permutations methods is 

their computational intensity. However, Cohen and Sackrowitz (2012) note that parametric 

stepwise multiple testing procedures (including the closure principle) are not designed to 

account for a correlation structure among hypotheses being tested. That is, test statistics for 

an intersection hypothesis will always be the same regardless of the correlation structure 

among tests considered. Thus, the shortcoming of the stepwise procedures is determining a 

correct critical value. The permutation-based approach alleviates this shortcoming and 

allows for dependency to be incorporated into the calculation of the critical values.

Another advantageous property of our method is that it does not require access to the 

original data but only to the L unadjusted point-wise p-values. The matrices of the test 

statistics in Step 1 can be found based on the Monte Carlo algorithm described in Zaykin et 

al. (2002). The test statistics are found by first obtaining L × 1 vectors, R*, of independent 

random values from the Unif (0,1) distribution and then transforming them to R – vectors 

with components that have the same correlation structure as the observed p-values. Since 

functional observations are evaluated on a dense grid of points, the correlation structure 

among observed p-values can be estimated with reasonable precision. Thus, our method 

efficiently employs information contained just in the p-values and is more flexible than 

methods that require access to the original observations.

In summary, we proposed a coherent p-value combination method that allows researchers to 

obtain individually adjusted p-values for multiple simultaneous correlated tests. We hope 
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that our work will promote new research in this direction. In particular, in our approach we 

treated all p-values as equally important. It might be possible to incorporate some weights 

that would optimize desirable properties of the procedure based on a particular application. 

Alternatively, adaptive selection of the test statistic is possible. That is, instead of 

considering just min-p (RTP(1)) and the combination of all p-values (RTP(L)), one might 

optimize power and size of the proposed method by considering RTP(K) across all possible 

values of K = 1, …,L.
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Figure 1. 
Correspondence between individually adjusted p-values using the full closure algorithm and 

the computational shortcut (L = 10). The Šidák p-values are illustrated in the left panel, and 

the Fisher p-values in the right panel.
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Figure 2. 
Two choices for the mean of the second sample.
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Figure 3. 
Plots of empirical power for the combined null hypothesis with α = 0.05.
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Figure 4. 
Plots of point-wise adjusted p-values for γ = 0.0003. Left graph: Hi : μ1(ti) = μ2(ti), i = 1, …, 

L. Right graph: Hi : μ1(ti) = μ3(ti), i = 1, …, L.
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Figure 5. 
Spectral responses from 2,500 pixels corresponding to five different binned distances with 

superimposed fitted mean curves.
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Figure 6. 
Plots of unadjusted and adjusted p-values. A horizontal line at 0.05 is added for a reference.
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