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Abstract

A novel Model Predictive Control (MPC) law for an Artificial Pancreas (AP) to automatically 

deliver insulin to people with type 1 diabetes is proposed. The MPC law is an enhancement of the 

authors’ zone-MPC approach that has successfully been trialled in-clinic, and targets the safe 

outpatient deployment of an AP. The MPC law controls blood-glucose levels to a diurnally time-

dependent zone, and enforces diurnal, hard input constraints. The main algorithmic novelty is the 

use of asymmetric input costs in the MPC problem’s objective function. This improves safety by 

facilitating the independent design of the controller’s responses to hyperglycemia and 

hypoglycemia. The proposed controller performs predictive pump-suspension in the face of 

impending hypoglycemia, and subsequent predictive pump-resumption, based only on clinical 

needs and feedback. The proposed MPC strategy’s benefits are demonstrated by in-silico studies 

as well as highlights from a US Food and Drug Administration approved clinical trial in which 32 

subjects each completed two 25 hour closed-loop sessions employing the proposed MPC law.

Keywords

Model predictive control; Periodic control; Safety-critical control; Artificial pancreas; Type 1 
diabetes mellitus

1 Introduction

Type 1 Diabetes Mellitus (T1DM) is an auto-immune disease that destroys the pancreas’ β-

cells, rendering people with T1DM incapable of producing insulin, a hormone that facilitates 

absorption of glucose from the blood-stream into various types of cell, and that plays a 

crucial role in the endocrine feedback mechanisms that lead to glucose homeostasis in 

healthy people. People with T1DM tend to suffer chronic hyperglycemia and a lack of 

glucose homeostasis, causing severe and incurable health problems in later life, e.g., 
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premature cardiovascular diseases, nephropathy, retinopathy, and neuropathy [1,2]. The 

number of people with T1DM in the United States is estimated to be about 1.46 million, 

nearly 0.5% of the population [1]. Treating T1DM using an external source of insulin is 

effective, albeit burdensome, but determining the required dosage is difficult, or impossible, 

even for experienced and diligent patients. Insulin over-delivery causes hypoglycemia, 

which may quickly lead to seizures, coma, and death. This work is motivated by the 

enormous potential for automatic feedback control of insulin delivery to improve the clinical 

outcomes, and alleviate the burden, resulting from the treatment of T1DM.

Research into a so-called Artificial Pancreas (AP), a device that performs automatic insulin 

dosing and delivery to people with T1DM, started in the 1970s [3,4], but through the 

development of the Continuous Glucose Monitor (CGM) [5] only became feasible beyond 

intensive care units much later [6–10]. AP control laws based on Model Predictive Control 

(MPC) [11–15], proportional-integral-derivative control [16,17], or MD/fuzzy logic [18,19] 

have been deployed in human trials. Other control schemes have been proposed and tested 

in-silico, e.g., ℋ∞ [20,21] and linear parameter-varying [22] control. The authors’ group has 

been focusing increasingly on developing zone-MPC strategies [23–26], whereby the 

controller reduces insulin delivery from, or supplements insulin in addition to, subjects’ 

basal-insulin only when blood-glucose levels are predicted to make an excursion from a 

target zone, rather than deviate from a singular setpoint. This was motivated by clinical 

intuition; there is not one optimal glucose level, instead all glucose levels considered safe 

form an interval. Furthermore, zone-MPC has proven effective in real-life operation of an 

AP, yielding control laws that exhibit limited intervention. Use of a zone induces robustness 

to plant-model mismatch, model bias, and CGM sensor errors; the controller does not 

respond to small deviations from the setpoint, instead intervenes only when there is a strong 

indication that intervention is required.

Only recently has an AP been considered feasible in out-patient settings [27–30], facilitated 

by improvements in CGM accuracy and the availability of consumer-oriented Continuous 

Subcutaneous Insulin Infusion (CSII) pumps. Safety concerns for outpatient AP deployment 

are different than for in-clinic use, and it is a contribution of the MPC strategy proposed in 

this paper to explicitly address these. A primary concern is that while asleep patients cannot 

monitor themselves or their equipment, and may not respond to alarms. Thus it is the 

responsibility of the control system to safeguard patients from hypoglycemia, the main 

immediate risk when treating with insulin, without requiring user-interaction. The proposed 

strategy improves safety by employing a glucose target zone that is diurnal, i.e., periodic 

based on the time of day (see Sec. 2.3). At night, assumed (and enforced in trials) to be the 

time of sleep, the target zone is raised, encouraging elevated glucose levels and thereby 

reduced hypoglycemia risk. Additionally, the proposed strategy enforces a diurnal input 

constraint that limits nighttime insulin infusion to 1.8 times the subjects’ basal-rate, limiting 

the controller’s leeway to correct hyperglycemia (see Sec. 2.4). Diurnal zones and input 

constraints were first described in [25].

Protection from hypoglycemia is more critical at home than in-clinic where, e.g., rescue by 

intra-venous glucose infusion is feasible. Thus, even when patients are awake and aware of 

their current state, the control system must prevent hypoglycemia suitably before glucose 
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concentrations descend to levels at which patients experience symptoms. What is required 

are predictive insulin delivery suspensions. The proposed MPC strategy (see Sec. 2.6) 

performs appropriate predictive pump-suspensions, and subsequent predictive pump-

resumptions, promoted by the use of novel asymmetric input cost functions in the MPC 

formulation, first described in [26] (see Sec. 4).

Elements of the proposed MPC strategy were proposed previously, but are brought together 

in this work, and with settings tuned over multiple previous clinical trials. The MPC 

algorithm proposed in this paper was trialled in the first clinical deployment of the authors’ 

zone-MPC approach in an outpatient setting; for details consult the clinical companion paper 

[31]. It is a contribution of this paper to describe the proposed MPC strategy in reproducible 

detail, and to demonstrate its efficacy and features using data obtained from real-life testing 

during US Food and Drug Administration (FDA) approved trials [31]. The paper is 

organized as follows: The feedback MPC strategy is described in Sec. 2. A feed-forward 

method to announcing meal intake to the control system is presented in Sec. 3. The novel 

asymmetric input cost functions are discussed in Sec. 4. In Sec. 5 an outline of the 

simulation test procedures and results to obtain FDA approval are provided. Highlights of 

clinical trials using the presented approach are discussed in Sec. 6.

2 Control Law Design

2.1 Insulin-glucose dynamics: Control-relevant model

Control law design is based on the discrete-time, linear time-invariant (LTI) model of 

insulin-glucose dynamics proposed in [24], with sample-period T := 5 [min]. The time step 

index is denoted by i. The scalar plant input is the administered insulin bolus uIN,i [U] 

delivered per sample-period, and the scalar plant output is the subject’s blood-glucose value 

yBG,i [mg/dL]. The model is linearized around the steady-state of the subject-specific, time-

dependent basal input rate uBASAL,i [U/h], achieving a blood-glucose output ys := 110 [mg/

dL]. The LTI model’s input ui and output yi are defined as:

We denote by  ( −1) and  ( −1) the z-transform of the signals of input ui and output yi, 

respectively. The transfer characteristics from u to y are described by

(1)

with poles p1 := 0.98, p2 := 0.965, the subject specific total daily insulin amount uTDI ∈ ℝ>0 

[U], and where c := −60 (1 − p1) (1 − p2)2 is used to set the correct gain, and for unit 

conversion. The so-called safety factor F is unitless and provides a mechanism to personalize 

the model gain to the subject; however, F := 1.5 is fixed throughout this paper. The 1800 

term stems from the “1800 rule” to estimate blood-glucose decrease with respect to (w.r.t.) 
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the delivery of rapid-acting insulin [32]. The state-space realization of (1) used in this work 

is

(2)

The structures of A and C indicate that, in the absence of noise, at time-step i the three state 

elements x[3], x[2], and x[1] correspond to yi, yi+1, and yi+2, respectively.

2.2 State-estimation

The proposed MPC strategy is designed for use with a CGM that updates its glucose 

measurement output ỹi at the controller’s update period T = 5 [min]. At each step i let ỹi ∈ 
ℝ denote the most recent CGM measurement. An estimate xi of the state of model (2) is 

provided at each step i by linear recursive state-estimator (3) (Luenberger observer, see, e.g., 

[33]). No notational distinction between the actual and estimated state is made, because state 

x of (2) can only be estimated. Adjusting penalization term R allows tuning the estimator’s 

noise rejection capabilities; the stated value was arrived at by experimentation using the 

University of Virginia/Padova (UVA/Padova) FDA accepted metabolic simulator [34,35].

(3a)

(3b)

2.3 Diurnal blood-glucose target zone

Zone-MPC penalizes predicted blood-glucose trajectories based on their excursion from a 

target zone [23,24]. The proposed periodic zone-MPC scheme uses a zone that is dependent 

on the time of day; the interval [80, 140] mg/dL during the day, [110, 170] mg/dL at night, 

with two-hour transitions in between. Such diurnal zones help enforce increased safety from 

nocturnal hypoglycemia and were first employed in [25]. Let τ1 := 4, τ2 := 6, τ3 := 22, and 

τ4 := 24 denote specific times of day, and let t ∈ [0, 24] denote the current time of day, all in 

hours after midnight. The zone-excursion function Z : ℝ × ℝ → ℝ is defined in (4). The 

zone’s upper and lower bounds ẑ (t) and z̆(t) are defined in (5) and (6), respectively, and are 

plotted in Fig. 1. The zone’s switching times and boundary values were decided upon after 
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successful and safe testing with different values in [25], and after discussions with 

endocrinologists and the FDA.

(4)

(5)

(6)

2.4 Diurnal insulin delivery constraints

At each step i the controller must enforce the constraint

(7)

where ti denotes the time of day, in hours after mid-night, associated with time-step i, and 

uMAX := 25 [U] denotes a bound on the bolus size the CSII pump is permitted to deliver. The 

value of uMAX was chosen so large it is highly unlikely to ever be commanded by the 

controller (see also Sec. 3). Thus, during the day the insulin infusion is practically 

unbounded. However, during the night the insulin infusion is constrained to 80% in excess 

of the subject’s basal-rate. This diurnal input constraint is a further safeguard against 

nocturnal hypoglycemia and was introduced in [25]. The multiplication factor β = 1.8 was 

arrived at after successful and safe testing with a lower value in [25], and after discussions 

with endocrinologists and the FDA. Note that in terms of absolute infusion the nighttime 

constraint may be time-dependent, because a subject’s basal-rate profile typically switches 

between multiple (usually 3–8) values (see Figs. 5 & 6). Furthermore, the nighttime 

constraint is personalized to the subject, because subjects have their own basal-rate profiles. 

The diurnal input constraint is depicted in Fig. 1. Note that the input constraint switches 

instantaneously between the daytime and nighttime values, and that the switching instant is 

at the start of the transition periods of the blood-glucose target zone; this enforces safer 

insulin delivery going into nighttime and times of sleep, and gives the controller extra 

leeway to reduce hyperglycemia in the early morning, approaching breakfast time.
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2.5 Insulin on board (IOB) constraints

Insulin delivery is further subject to an Insulin On Board (IOB) constraint – a constraint 

based on the insulin delivery history, preventing over-delivery when much insulin was 

recently delivered, e.g., after a meal-bolus (see Sec. 3). The notion of IOB constraints was 

obtained from [36] and modified. Let vectors θl ∈ ℝ 96 for l ∈ {2, 4, 6, 8} denote the 2, 4, 6, 

8 hour decay curves depicted in Fig. 2; no mathematical definition is available. The curves 

are sampled at T = 5 [min] intervals, and each curve is eight hours in duration, padded with 

trailing zeros when necessary: 8h/T = 96. The decay curve θi applicable at step i depends on 

the most recent CGM measurement ỹi:

(8)

Let ΛBASAL ∈ ℝ 96 denote the 8 hour history of linearized insulin infusion, as provided by 

pump-feedback (with no delivery errors this is analogous to ui but with pump-discretization 

[see Sec. 2.7]), but setting to zero the value at any step were a meal-bolus was delivered (see 

Sec. 3). Further denote by ΛMEAL ∈ ℝ96 the 8 hour history of meal-boluses, by Θ ∈ ℝ the 

estimated IOB present, by Γ ∈ ℝ the required IOB, which depends on the current blood-

glucose level, and by CF,i ∈ ℝ>0 [(mg/dL)/U] the patient’s so-called correction-factor at 

time-step i. At each time step i the IOB upper bound ūIOB is given by

(9)

It holds that ūIOB,i ≥ 0, and ūIOB,i = 0 implies the controller delivers no more than the basal 

rate. Thus, after a large bolus the insulin delivery is temporarily constrained to the basal rate, 

but note that IOB constraint (9) cannot constrain insulin delivery to below the basal rate. The 

selection of the current decay curve in (8) is based on physiological intuition; higher blood-

glucose levels lead to a more rapid metabolization of insulin, thus a shorter decay curve is 

selected. From a control perspective, the result of this is that at higher blood-glucose levels 

the past insulin delivery tightens the current IOB constraint less than at lower blood-glucose 

levels. Subsequently, the controller is permitted more leeway to actively reduce 

hyperglycemia, by means of higher insulin infusion commands. Note that meal-boluses 

contribute to the estimated IOB based on the 4-hour IOB curve θ4, irrespective of glucose 

levels.

2.6 MPC problem

For MPC background the reader is referred to [37,38]. We denote by u, x, y, the predicted 

input u, state x, and glucose output y, respectively, by Ny := 9 the prediction horizon, by 
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Nu := 5 the control horizon, by R̂ := 7000 and R̆ := 100 weighting coefficients for non-

negative and non-positive control inputs, respectively. For prediction step k we denote by tk 

the time of day of the time-instant of step i + k, in hours after midnight. Let  denote the set 

of consecutive integers {a,..., b}. MPC performs closed-loop control by applying at each 

step i the first element  of the optimal, predicted control input trajectory { }, 

characterized as follows.

MPC Problem—Determine

with cost function

(10)

and subject to

(11a)

(11b)

(11c)

(11d)

(11e)

(11f)
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(11g)

(11h)

(11i)

Eqs. (11a)–(11c) enforce the prediction dynamics of model (2), initialized to an estimate of 

the current state (see Sec. 2.2). Eqs. (11d) and (11e) enforce input constraint (7) and (9), 

respectively, across the control horizon. Eq. (11f) implies that beyond the control horizon 

exactly the basal-rate is delivered. Eq. (11g) provides the zone deviation of (4) to penalize in 

(10). Eqs. (11h) and (11i) provide the non-negative and non-positive deviations of the input 

u from the basal-rate, respectively. The above MPC Problem can be formulated (details 

omitted) as a strictly convex, continuous quadratic program (QP). The (linearized) control 

input is .

2.7 Pump-discretization

The proposed control strategy was destined for deployment with a CSII pump that has a 

delivery resolution of δ := 0.05 [U] when used in an AP. After the solution ui to the MPC 
Problem is determined, the final, absolute control input ũi [U] commanded to the pump is 

characterized according to a so-called carry-over scheme

where ⌊ · ⌋ denotes flooring. Suppose ui is persistently a value between two pump-

discretization levels. The resulting trajectory of ũi then toggles between the level above and 

that below the control input ui. This toggling can be seen in Figs. 3, 5, and 6. Note that upper 

bounds on the insulin input are enforced on the MPC solution, not when applying the pump-

discretization. Suppose the MPC solution satisfies an upper bound that lies between two 

pump-discretization levels, and that this constraint is active. The carry-over scheme results 

in the ũi trajectory repeatedly, temporarily violating the upper bound, but satisfying it on 

average over multiple steps. This phenomenon is depicted in Fig. 5 (4–5am).

2.8 Controller personalization & de-tuning

Those parameters of the proposed strategy that are subject specific are the total daily insulin 

amount uTDI, the basal-rate profile uBASAL,i, the correction-factor profile CF,i, and the 

carbohydrate-ratio profile CR,i (employed in Sec. 3). Subjects generally know these 

parameters’ values to a suitable accuracy. Importantly, all other controller parameters, e.g., 
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the prediction horizon Ny, control horizon Nu, input costs R̂ and R̆, glucose target zone 

boundaries, etc., are the same for all subjects, and were chosen to lead to a control law that 

performs successfully on average while remaining safe for outlier subjects.

The various design parameters were selected through extensive numerical testing with the 

UVA/Padova simulator, based on experience from clinical trials, and after consultations with 

endocrinologists. After determining a well-tuned set of parameters the value of R̂, and the 

lengths of IOB curves in (8), were intentionally increased to the stated values, to result in a 

control law that is deliberately slightly de-tuned. The clinical trial results (see Sec. 6 & [31]) 

indicate this caution was prudent.

3 Meal-Bolusing Strategy

Users of the AP control system have the option of announcing meals to the controller, or to 

consume meals without announcement. Without announcement the control system responds 

to the resulting blood-glucose rise based solely on CGM feedback. In the case of announced 

meals the control system performs feed-forward control-action by delivering a meal-bolus of 

a size that is a function of the meal size M ∈ ℝ≥0 [gCHO] (grams of carbohydrates), 

provided by the subject, and the blood-glucose level, provided by CGM measurements. The 

meal-bolus is delivered in its entirety at the time the subject enters the meal-size into the 

control system and acknowledges the computed final bolus size.

At each step i we denote by CR,i ∈ ℝ>0 [gCHO/U] the subject’s so-called carbohydrate-
ratio, by ỹi ∈ ℝ the most recent CGM measurement, and by Δi ∈ [0, ∞] [min] the length of 

time that has elapsed between the measurement of ỹi and the current controller call. By 

slight abuse of notation we let Δi = ∞ when no CGM measurement is available. At a step i 
following a meal-announcement the MPC law of Sec. 2.6 is by-passed and the insulin 

infusion command is characterized as follows:

The basic bolus size B, based on meal-size and carbohydrate-ratio, is adjusted so that a 

correction B̄ is added when blood-glucose exceeds 140 mg/dL. The correction is limited to 2 

[U]. At low blood-glucose levels, or when no recent CGM measurement is available, the 

basic bolus size B is reduced by 20%. This reduction is a safety feature; if required the 

controller can increase insulin delivery later to correct high blood-glucose values, but 

removing excessive insulin is not possible. The switching threshold, bound, and reduction 

ratio were arrived at through discussions with endocrinologists.

4 Asymmetric Cost Functions

The glucose control problem is highly asymmetric, for three reasons. First, the consequences 

of hypoglycemia are immediate and more detrimental than those of (temporary) 

hyperglycemia; a blood-glucose level within the interval [80, 140] mg/dL is generally 
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considered safe, but a drop to 30 mg/dL may be fatal, whereas an equisized excursion to 190 

mg/dL is common and of no clinical concern if it is brief. Second, basal insulin rates are 

generally low, giving a controller only little leeway to attenuate insulin delivery from basal 

before being constrained by the fact that insulin cannot be removed from the system (i.e., 

uIN ≥ 0); in contrast, aggressive insulin infusion above basal is physically realizable. Third, 

in the single-hormone AP considered here there is no antagonistic control action to insulin, 

short of “commanding” a subject to consume food. This asymmetry is well known and 

commented on, yet most glucose controllers do not address it, even though a controller that 

does was proposed a long time ago [4]. For example, most MPC schemes use symmetric, 

quadratic cost functions to penalize both predicted glucose outputs and insulin inputs. 

Weights in (10) that are symmetric (i.e., R̂ = R̆) pose a challenge: A controller tuned to 

respond conservatively to hyperglycemia (i.e., R̂ is large) has difficulty performing a pump-

suspension in the face of hypoglycemia. Conversely, a controller tuned to easily perform 

pump-attenuations (i.e., R̆ is small) tends to over-correct hyperglycemia, resulting in 

controller-induced hypoglycemia and oscillations following blood-glucose highs. AP 

controllers are frequently equipped with safety logic, input modulators, or supervisory 

control systems, to mitigate the effects of this trade-off. The asymmetric input cost function 

of (10) decouples the design of the controller’s responses to hyperglycemia and 

hypoglycemia, and requires no ad-hoc auxiliary safeguards.

To demonstrate we consider the numerical simulation of one subject using the UVA/Padova 

simulator [34,35]. The closed-loop simulation starts at 8am. At 9am a 2 U bolus is delivered 

to mimic the spontaneous occurrence of a hypoglycemic event. At 2pm a 90 gCHO meal is 

ingested that is unannounced, i.e., no feed-forward meal-bolus is delivered (see Sec. 3). We 

consider the three tunings summarized in Table 1; corresponding blood-glucose and insulin 

delivery trajectories are depicted in Fig. 3. With the symmetric-high cost, the cost scheme 

typically employed in MPC of an AP, the pump fails to perform a pump-suspension around 

10am despite acute hypoglycemia, but delivers appropriately conservatively w.r.t. the meal, 

from 2–7pm. Using the symmetric-low cost, the pump appropriately suspends delivery 

around 10am, but catastrophic over-delivery occurs in response to the meal around 3pm. Use 

of the asymmetric cost function permits the controller to both appropriately suspend the 

pump in response to hypoglycemia, and also deliver appropriately conservatively w.r.t. the 

meal. The three glucose minima around 10am are similar. First, the glucose drop is 

dominated by the 2 U bolus. Second, the UVA/Padova simulator displays a robustness to, 

and resilience from, hypoglycemia exceeding that of many people, who may suffer 

persistent hypoglycemia. The value R̂ = 7000 was chosen to yield a controller that is suitably 

conservative w.r.t. hyperglycemia. The value R̆ = 100 was chosen so small that it never poses 

an obstacle to pump-attenuation when predicted blood-glucose values trend beneath the 

glucose target zone, but large enough that when the predicted blood-glucose trajectory enters 

the zone from below, the control input is “pulled” firmly to its setpoint, zero, i.e., the basal-

rate in absolute infusion terms. There is no physiological significance to the value of R̆, or 

the ratio R̂/R̆ = 70.

The use of asymmetric cost functions in MPC of an AP was considered in [13,39–47] and 

mentioned in a few more publications by those works’ authors. The proposals all differ from 

one another, but in each the asymmetry is applied to the output cost function, not the input 
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cost function as here. This is in some sense irrelevant, because it is the ratio of output cost 

vs. input cost that determines the controller’s behavior. However, it indicates contrasting 

motivations. Most of the aforementioned references attempted to address the asymmetry of 

the glucose control problem in terms of glucose risk, in that hypoglycemia is riskier than 

hyperglycemia. In contrast, the objective of the proposed asymmetric input costs is to 

facilitate appropriate pump-attenuations. Importantly, the level of asymmetry in this 

proposal is much greater than in most of the referenced works. It is not a given that a risk 

function is a suitable objective function for controller design. Because insulin delivery 

cannot be reversed or corrected for (bar bi-hormonal control and rescue carbohydrates), 

predicted hypoglycemia requires very “aggressive” pump-suspension. (Furthermore, risk 

functions are generally only valid, or defined, over the domain of physiologic glucose 

values, whereas MPC output cost functions require a wider domain, e.g., including negative 

glucose values.) Some works confuse asymmetry for nonlinearity, concluding the need for a 

nonlinear program to accommodate cost functions more general than symmetric. However, 

using an LTI model, asymmetric, convex linear/quadratic cost functions, whether on outputs 

or inputs, can be incorporated within a continuous, convex linear/quadratic program. Note 

that such a program requires auxiliary optimization variables and must be solved subject to 

hard constraints.

The works [45–47] stand out particularly favorably for two reasons. First, the asymmetry 

seems to have been designed based on controller considerations, not physiology, as in this 

proposal; the level of asymmetry there slightly exceeds that here. Second, in most other 

works the asymmetry was either only considered within a benchmark problem for in-silico 
tests, and not meant for implementation, or considered beneficial in in-silico tests, but 

abandoned for clinical trials. In contrast, the asymmetric cost functions of [45–47] appear to 

have been deployed in trials, as has the strategy proposed here.

5 Numerical Simulations

A synopsis of the simulation testing performed for final validation, and for obtaining FDA 

approval, of the proposed controller is presented in this section. The presented results were 

obtained using the most recent version of the UVA/Padova simulator with all 111 available 

in-silico subjects, combining those of the 10-subject and 100-subject simulators (the latter 

includes a 101st subject “average”). FDA approval was based on the 100 in-silico subjects of 

an earlier version of the UVA/Padova simulator, which had a different physiological model.

Simulations are 28 hours in duration, starting at 2pm. Closed-loop control commences at 

4pm. Dinner, breakfast, and lunch are consumed at 6:30pm, 7am, and 1pm, respectively, 

closely mimicking the clinical protocol (see Sec. 6.2). The clinical protocol prescribes that 

meals be announced, with meal-boluses delivered at the start of mealingestion. For FDA 

approval the described scenario was simulated on the entire cohort of the full UVA/Padova 

simulator using a large number of permutations of parameter values that were either 

nominal, or incorrect to varying degrees, e.g., basal-rates and meal-estimates being excessive 

or insufficient. For brevity only two cases are presented here; a) nominal, i.e., all parameters 

are “optimal” with respect to the in-silico subjects’ characteristics, and meals are announced 

exactly, and b) parameters are nominal but meals are unannounced, i.e., meal-sizes are 
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severely under-estimated. Unannounced meals are one of the toughest challenges for an AP 

controller. The clinical protocol allows subjects to choose their own meal-sizes, but imposes 

a limit of 90 gCHO (a large meal for most people). To stress the controller, simulations were 

performed with 90 gCHO meals for dinner, breakfast, and lunch. Note that the UVA/Padova 

simulator by design includes in-silico subjects with parameter values at the boundary of, or 

slightly beyond, physiologic plausibility.

Table 2 lists the results. The first set of rows contains time-in-range percentages for various 

Blood-Glucose (BG) ranges and thresholds. The second set of rows lists the number of 

events of BG beyond the stated thresholds. The third set of rows lists the number of pump 

suspensions of various lengths. The UCSB Health Monitoring System (HMS) [48], which 

provides predictive hypoglycemia alarms, was run during the simulations, and the number of 

HMS alarms is listed. Low Blood Glucose Index (LBGI) and High Blood Glucose Index 

(HBGI) values were computed according to [13]. Control-Variability Grid Analysis (CVGA) 

is based on [49]; see Fig. 4 for CVGA plots. As expected, the nominal case with announced 

meals results in both lower hyperglycemia risk and lower hypoglycemia risk compared to 

the case of unannounced meals. However, for both announced and unannounced meals the 

proposed asymmetric MPC strategy results in substantially reduced hypoglycemia risk, and 

fewer HMS alarms, than the symmetric-high MPC strategy. The penalty for this is a slightly 

elevated hyperglycemia risk. The number of pump suspensions with the proposed 

asymmetric MPC strategy is significantly increased, demonstrating “aggressive” efforts to 

protect from hypoglycemia. Importantly, the symmetric-high MPC law has very few pump 

suspensions, despite the high number of hypo-glycemic events. For both announced and 

unannounced meals the proposed asymmetric MPC strategy causes the CVGA clusters to 

unambiguously shift to the left (glucose lows are higher) while shifting the clusters only 

very slightly upwards (glucose highs are only slightly higher). Based on all tests it was 

concluded that the asymmetric input cost function significantly improves the safety from 

hypoglycemia of the proposed MPC scheme. While in this paper only the detailed 

comparison of the proposed asymmetric and symmetric-high MPC strategy is provided, 

based on extensive testing the authors conclude that the proposed asymmetric MPC 

approach outperforms any symmetric one (of the MPC structure described herein).

6 Clinical Trials

6.1 UCSB Portable Artificial Pancreas System (pAPS)

For clinical trials the proposed control law was deployed within the University of California 

Santa Barbara (UCSB) portable Artificial Pancreas System (pAPS), a tablet computer based 

advancement of the laptop based UCSB Artificial Pancreas System (APS) [50]. The pAPS 

runs on a Hewlett-Packard tablet computer with Windows 7. The control law was coded in 

Matlab and executed within the Matlab Compiler Runtime environment; exactly the code 

validated with the UVA/Padova simulator was executed in trials. The pAPS further includes 

the HMS [48], that provides hypoglycemia alarms to subjects, and dispatches multimedia 

messages, with salient information in text and plots, to the phones of physicians and 

engineers, who may be attending the trial or be off-site. The UCSB pAPS was used together 

with a Dexcom G4 Platinum CGM and Animas One Touch Ping CSII pump. The pAPS 
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communicates wirelessly with the CGM and CSII pump up to ca. 15 meters, allowing 

subjects fairly free, untethered mobility.

6.2 Trial details

Thirty two subjects completed two closed-loop sessions of ca. 25 hour duration each. In each 

session subjects were observed from noon. Closed-loop control was initiated by 4pm. 

Subjects enjoyed simulated outpatient conditions, i.e., the trial location was not a clinic and 

subjects were nearly free to behave and eat as they pleased. The trial protocol specified three 

meals (dinner 6–7pm, breakfast ca. 7am, and lunch ca. 1pm) be consumed, capped at 90 

gCHO, and announced, with meal-boluses delivered at the start of meal ingestion. Snacks or 

drinks could be consumed, with subjects free to announce them or not. Each session 

included an exercise session. Subjects slept at night. Closed-loop control was exited by 6pm 

the next day. The reader is referred to [31] for trial details and results. Only controller-

related highlights and points of interest are provided here.

6.3 Example 1: Fig. 5

Only the data during closed-loop control are available, and closed-loop is initiated during a 

glucose drop that is driven by insulin infusion prior to closed-loop control. Based on glucose 

predictions the proposed MPC strategy suspends insulin infusion ca. 5pm, while the glucose 

level is still comfortably within the safe zone. The pump is suspended for 2 hours, mild 

hypoglycemia occurs, and insulin delivery is re-initiated ca. 7pm, only once the predicted 

glucose trajectory points confidently into the target zone. Predicted hypoglycemia triggers 

HMS alarms; there are multiple alarms because the subject failed to inform the control 

system of consumed rescue carbohydrates. The pump-suspension and rescue carbohydrates 

cause a sharp rise, into hyperglycemia, of glucose levels at 7:30pm, causing the control law 

to deliver in excess of the basal rate. The meal-bolus prior to 8pm causes the IOB constraint 

to limit insulin infusion to the basal rate, and the IOB constraint loosens, based on the IOB 

decay curves of Fig. 2, shortly before 10pm. While it may have been beneficial from a 

glucose control point of view to continue delivering insulin significantly in excess of the 

basal rate, for outpatient safety the nighttime input constraint limits overnight insulin 

infusion. The insulin upper bound is time-dependent due to the basal-rate profile of this 

subject having three overnight levels. Increased insulin delivery in response to the breakfast 

high at 8:15am drives the glucose level down, and in combination with exercise causes mild 

hypoglycemia at noon. Note that the pump was predictively suspended, for one hour, starting 

prior to the descent through the glucose target zone’s lower bound. There are again multiple 

HMS alarms because the HMS system was not informed of lunch. The effects of IOB 

constraints are again visible after both the breakfast and lunch meal-boluses, with infusion 

constrained to the basal rate.

6.4 Example 2: Fig. 6

The noteworthy feature of this example is the pump-suspension from 10:47pm to 3:22am, 

4:35 hours in duration. It is noteworthy for two reasons. First, the glucose level during the 

suspension is mostly within the safe interval [80, 140] mg/dL. The suspension occurs 

because the glucose level, and the predicted glucose trajectory, are below the glucose target 

zone, which is elevated during the night. The elevation is not to enforce better overnight 
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control, but to enforce higher safety from nocturnal hypoglycemia due to automated over-

delivery. The second noteworthy feature is that the duration of the overnight pump-

suspension is extremely long. This is discussed further in Sec. 6.5. The long overnight 

pump-suspension improves overnight safety but is to blame for the steady rise of glucose 

levels over the morning. The very low levels of IOB, in combination with breakfast, make 

such a rise inevitable after a long suspension of insulin delivery. This is an acknowledged 

weakness of the proposed diurnal target zone approach, but the authors believe that 

protection from hypoglycemia during sleep justifiably receives precedence. Note that the 

pump-suspension around 4am is due to a communications disruption and subsequent restart 

of the pAPS. The time-dependent nighttime insulin constraint, and effects of IOB 

constraints, are again visible. A sequence of short-lived pump-suspensions due to repeated 

mild hypoglycemia can also be seen. Two of these events are accompanied by a single HMS 

alarm each. In this example repeated alarms do not occur because the subject informed the 

pAPS of the rescue carbohydrates and lunch.

6.5 Discussion

The examples of Figs. 5 and 6 contain pump-suspensions of varying lengths. Within one day 

Example 2 experienced one very long suspension, and a succession of 3 short ones due to a 

succession of mild hypoglycemic events. Suspension counts for all 64 clinical trails, 

corresponding to about 9 weeks of single-person AP use, of the proposed MPC algorithm 

are listed in Table 3. Crucially, with the proposed control strategy these suspensions, and, 

importantly, the subsequent pump-resumptions, are driven only by the clinical need as 

determined by CGM feedback. Note that the value of R̆ plays a crucial role in both 

suspension and resumption. AP control systems are frequently equipped with ad-hoc logic or 

supervisors to enforce safety, based on heuristics, not feedback. For example, the Medtronic 

MiniMed® 530G, that is being advertised as “Featuring the world’s first breakthrough in 

Artificial Pancreas Technology”, simply suspends insulin delivery when CGM readings 

cross from above a threshold in the interval [60, 90] mg/dL that is set by the user, and 

suspends for a fixed length of time, up to two hours in duration, that is also set by the user. 

Entering a suspension requires user acknowledgment, and during a suspension the user must 

interact with the system to achieve a pump-resumption. Furthermore, after a full 2 hour 

suspension the Medtronic 530G re-starts the pump for at least 2 hours, despite persistent, 

low CGM measurements.

The CGM trajectories of all 64 trials were re-played through a control system with R̆ = R̂ = 

7000, resulting in input trajectories that deliver significantly more insulin during the clinical 

controller’s suspensions. It is impossible to know what the outcome would have been, but 

given the satisfactory and safe clinical outcomes (see [31]), it is defensible to speculate that 

a traditional, symmetric cost function, tuned for hyperglycemia, may have resulted in a 

greater occurrence of unsafe events.

7 Conclusion

In this work a novel MPC strategy for control of an AP was proposed and described in 

reproducible detail, and a small selection of control-related highlights from its in-silico 
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testing and clinical operation presented. The proposed strategy is a novel combination of 

multiple features that have been experimented with independently and elsewhere; a blood-

glucose target zone that is diurnally time-dependent, diurnal insulin input constraints, and 

IOB constraints. The main algorithmic novelty is the use of an asymmetric input cost 

function. This enforces appropriate insulin delivery suspensions, and subsequent 

resumptions, based on clinical needs, without relying on heuristics or arbitrary decisions. 

The presented asymmetric functions are a distinct and differently motivated approach to 

existing approaches of control of an AP using asymmetric cost functions, which are few.
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Fig. 1. 
Diurnal glucose target zone (top) and diurnal, individualized upper-bound on insulin 

infusion input (bottom).
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Fig. 2. 
Two, four, six, and eight hour IOB (insulin on board) decay curves from [32] and used in 

IOB constraints in [36].
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Fig. 3. 
Simulation of adult#1 of full-version UVA/Padova simulator with proposed asymmetric (A), 

symmetric-high (B), and symmetric-low (C) input weights – see Table 1.
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Fig. 4. 
Proposed asymmetric (left) and symmetric-high (right) weighted MPC. CVGA plot for 111 

in-silico adults. Meals: Announced (black ◆), unannounced (blue ). Circles: Centered on 

mean, standard deviation radius. Zone-counts in Table 2.
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Fig. 5. 
Closed-loop clinical trial example 1; see Sec. 6.3. Top: CGM (blue dots), [80, 140] mg/dL 

(green area), [70, 180] mg/dL (yellow area), exercise period (gray area), diurnal target zone 

(black lines), dinner (Di), breakfast (Br), and lunch (Lu) sizes. Bottom: Closed-loop insulin 

delivery (red line), open-loop meal-boluses (blue bars), basal rate (dashed green line), 

diurnal safety constraint (black line).
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Fig. 6. 
Closed-loop clinical trial example 2; see Sec. 6.4. Key same as Fig. 5.

Gondhalekar et al. Page 25

Automatica (Oxf). Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Gondhalekar et al. Page 26

Table 1

MPC input weights for three different controller settings.

MPC style R̂ R̆ Figures

Asymmetric (proposed) 7000 100 3 (A), 4 (left)

Symmetric-high 7000 7000 3 (B), 4 (right)

Symmetric-low 100 100 3 (C)
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