(A) At intermediate times, the base radius decreases linearly in time, with a dewetting speed that increases with increasing temperature and decreasing volume. (B) The apparent contact angle, θ, is normalized using the equilibrium contact angle, θe. The linear dewetting regime, where the speed of the contact line is constant, corresponds to the first plateau. At longer times, there is a crossover to a second plateau, corresponding to the equilibrium state of the drop. The data collapse to a single master curve upon rescaling time by the relaxation time of the rim, τrim. The solid line corresponds to the theoretical prediction for the first plateau (see text).