
Predictive coding of multisensory timing

Zhuanghua Shi1 and David Burr2,3

1Department of Psychology, University of Munich, Munich, Germany

2Neuroscience Institute, National Research Council, Pisa, Italy

3Department of Neuroscience, University of Florence, Florence, Italy

Abstract

The sense of time is foundational for perception and action, yet it frequently departs significantly 

from physical time. In the paper we review recent progress on temporal contextual effects, 

multisensory temporal integration, temporal recalibration, and related computational models. We 

suggest that subjective time arises from minimizing prediction errors and adaptive recalibration, 

which can be unified in the framework of predictive coding, a framework rooted in Helmholtz’s 

‘perception as inference’.

Introduction

The sense of time, unlike other senses, is not generated by a specific sensory organ. Rather, 

all events that stimulate the brain, regardless of sensory modality, contain temporal cues. 

Because of heterogeneous processing of sensory events, subjective time may differ 

significantly for a given duration across modalities. For example, an auditory event is often 

perceived longer than a visual event of the same physical interval [1]. Subjective time is also 

susceptible to temporal context, voluntary actions, attention, arousal and emotional states, all 

of which can bias it away from physical time [2,3,4••,5,6]. Over the past several decades, 

researchers have advanced our understanding of how we perceive and integrate multisensory 

and sensorimotor timing, with examples such as the ‘central-tendency’ effect [7••,8••,9], the 

time shrinking illusion [10], and sensorimotor temporal recalibration [11,12••]. In this article 

we examine a few selected duration-related temporal phenomena and related computational 

models, and show how those phenomena can be parsimoniously explained within the 

predictive coding framework [13,14,16•]. We propose that subjective time is an outcome of 

adaptive processes of the brain that minimize the overall estimation error to boost the 

reliability of estimation of external temporal structures.
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Subjective time as inference

One and a half centuries ago Hermann von Helmholtz famously suggested that perception 

can be understood as a process of unconscious inference: “The connection between the 

sensation and external object can never be expressed without anticipating it already in the 

designation of the sensation… This is because inductive reasoning is the result of an 

unconscious and involuntary activity of memory” [17]. Time perception is also the result of 

unconscious inference. Subjective time can be easily influenced by internal expectation, as 

suggested by Karl Vierordt [18] around the same time as von Helmholtz. He observed that 

subjective judgment of duration is attracted to an ‘indifference point’, which is close to the 

central mean of all the durations experienced [9,18]. That is, short durations tend to be 

overestimated and long durations underestimated. Hollingworth later coined this 

phenomenon of gravitation toward the expected mean magnitude as the ‘central tendency’ 

effect [19].

The recent surge of interest in the central tendency effect [7••,8••,20•,21,22] has taken this 

topic to a new level within Bayesian inference framework. This development has been 

motivated by the fact that, across a wide variety of tasks, the fundamental problem 

encountered by the brain is coping with uncertainty [15]. To minimize uncertainty, the brain 

needs to maximally utilize the available information, combining not only sensory input but 

also top-down ‘prior belief’ in a weighted average manner. In Bayesian terms, perception 

emerges from probabilistic inference, including the likelihood associated with the sensory 

evidence and prior belief (see Box 1). While this type of weighted average is clearly 

beneficial when the external environment is relatively stable, combining multiple sources of 

information in the brain would engender perceptual and cognitive biases when the 

environment changes.

Jazayeri and Shadlen [7••] recently reinvestigated the central tendency effect in duration 

reproduction using a Bayesian approach, and confirmed that the fundamental principle of 

central tendency is a strategy to minimize the overall temporal reproduction errors by 

combining both sensory likelihood and prior knowledge (e.g., the statistical distribution) of 

the to-be-estimated duration. Their approach is illustrated in Figure 1. When asked to 

reproduce temporal intervals, people tend to underestimate long intervals and overestimate 

short intervals, always ‘regressing toward the mean’. Importantly, the mean is set 

dynamically, for the specific range being tested in that session. This is brought out most 

clearly for reproductions at 850 ms: the bias can be either toward shorter or longer intervals, 

depending on the range of intervals sampled in that particular session (lower panels).

Note that the internal prior may not equate to the rigid physical distribution of the stimuli, 

but rather be better captured as a smoothed approximation of the distributions up to third-

order moments [8••,20•]. As sensory precision may vary among different groups of 

individuals as well as across different modalities [8••,21,23], central tendency effects vary 

according to the weighted average strategy of Bayesian inference. By testing subjects with 

various levels of musical expertise, Cicchini and colleagues [8••] have demonstrated the 

variation of tendency effects is closely related to Bayesian optimal encoding. Non-

percussionists, who had large variability of visual duration reproduction, showed a standard 
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central tendency effect, while expert drummers responded veridically owing to their high 

precision of reproduction (Figure 1). Similar variations of central tendency has been shown 

in patients with Parkinson’s disease [23]. Patients are less prone to the central bias with their 

dopaminergic medication than without medication, as patients have higher sensory reliability 

in their medication state. Those findings [8••,21,23] suggest the brain represents recent 

statistics of event duration, and this information is incorporated in on-going perception, thus, 

producing biases such as regression to the mean; however, the degree of tendency biases 

depends crucially on the sensory reliability [8••].

The internal prior that influences perceptual judgments sometimes can be built up quickly, 

for example, by preceding or following a test interval with a distractor interval. One clear 

example of such ‘quick’ contextual effect is the ‘time-shrinking’ illusion [10]. A short 

distractor interval presented before or after a test interval shortens the perceived duration of 

the test interval [10,24]. Recently Burr et al. [25••] showed that these quick temporal 

contextual effects depend on the duration of the events: for short events, the contextual 

effects were very strong (Figure 2a), while for long events it is negligible (Figure 2b). They 

further showed that the existence of contextual effects was strongly associated with the 

precision of interval judgments (measured by Weber fraction), which were larger for short 

than for long intervals (Weber’s law was not observed). This relationship is consistent with 

Bayesian predictions. Assume the interval prior that represents the ensemble mean of the 

sequence of intervals keeps at a constant Weber fraction. According to Bayesian inference, 

the weight of the prior decreases when the reliability of the duration estimate increases, 

leading to a decrease of contextual effect when the reference duration increases (Figure 

2c,d).

Multisensory duration and optimal cue integration

In natural environments, real objects stimulate not just one but many senses: a roaring 

Ferrari is both seen and heard. Integrating the different sensory cues arising from the same 

object can clearly be advantageous for perception. On the other hand, integrating cues from 

different objects would be detrimental. In the spatial domain there is ample evidence 

showing that the brain can integrate separate spatial cues in an optimal manner [26,27], 

which can be predicted by maximum likelihood estimation (MLE). That is, multiple cues are 

weighted averaged according to their precisions (Box 1).

Several recent studies have focused on whether the brain integrates temporal cues in an 

optimal manner. Using an audiovisual apparent motion paradigm, Shi and colleagues [28] 

demonstrated that implicit estimation of audiovisual interval is in good agreement with the 

MLE prediction. Incorporating both onset and offset redundant information of multisensory 

durations, Hartcher-O’Brien et al. [29] have also confirmed that perceived duration is close 

to the optimal weighting process predicted by the MLE model. However, several other 

studies have shown multisensory temporal integration can be suboptimal [30,31]. For 

example, Burr and colleagues [30] found that pure MLE model fits only roughly with the 

trend in a temporal bisection task for audiovisual interval discrimination. The empirical 

weight of the auditory cue is far higher that the model predicted. Note, though, those studies 

that applied the MLE model did not consider potential influence of prior and hyper-prior 
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information in their modeling, which may explain the sub-optimality. One important 

prediction of optimal integration is that the precision of the integrated signal is finer than 

that for any individual cues (see Box 1). Hartcher-O’Brien et al. [29] showed that Weber 

fractions of audiovisual duration estimates were smaller than Weber fractions of auditory or 

visual alone duration estimates, in agreement with the prediction of the MLE model. Similar 

improvement of precision with multiple timers has also been found in temporal control and 

motor coordination [32•,33,34]. For example, Ivry and Richardson [34] showed that in-

phase bimanual tapping, compared with unimodal tapping, greatly reduced temporal 

variability, and the reduction of the variability can be best accounted by a model in which 

two timing signals are averaged. This account could be a special case of the MLE model 

when two timing signals have similar variability.

Another study conducted by Burr and colleagues [35] directly measured precision of 

duration discrimination, and they found an interesting phenomenon: dips in discrimination 

thresholds (i.e., peaks in sensitivity) near the border between subjective simultaneity and 

asynchrony for auditory, visual and audiovisual intervals. They suggested that the 

enhancement of temporal discrimination may result from the boundary between two 

perceptual categories: synchrony and asynchrony, which the brain may use as an additional 

discrimination cue. Here we apply Bayesian inference to their original data, assuming the 

sensitivity of interval discrimination depends on the reliability of two cues: one is the 

discrimination threshold of the base interval, which depends on interval size (we assume 

Weber law for simplicity); the other is the likelihood of two compared intervals falling into 

two separate categories, either simultaneous or asynchronous. Figure 3 shows that the MLE 

model predicts well this dip effect — enhancement of interval discriminations near the 

border of the simultaneity window (Figure 3).

Being able to detect simultaneity between signals of different modality is important, as it is a 

strong cue that they arise from the same object, and should therefore be integrated. It is 

therefore reasonable that the brain dedicates neural mechanisms to this task, and that 

psychophysical experiments can reveal the action as a separate cue. However, this approach 

still begs the question of how simultaneity is calculated. A promising approach is bases on 

cross-correlation between the signals of different modality [35,36], and an approach that has 

been applied successfully in stereopsis [37].

Temporal recalibration and predictive coding

As the external environment changes constantly, the brain needs to recalibrate its internal 

representation to be consistent with the external world. Action, which is strongly coupled 

with perception, is a powerful calibrator of time perception. Action can either compress or 

expand the perceived duration depending on the temporal relation between actions and 

events [38–43]. Morrone et al. [38], for example, have demonstrated that the interval of an 

event delineated by two successive visual flashes in the retinal periphery around a pre-

saccadic period is often compressed, similar to the space compression induced by saccadic 

eye movements. Voluntary actions can also compress time through ‘intentional binding’ 

[39,44], whereby actions are perceived as shifted toward their effects when they are 

performed volitionally. This temporal recalibration is so strong that, after a sequence of 
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response-delay-effect adaptation, even the order of the action and its sensory consequence 

can be subjectively reversed, so that the consequence seems to precede the action [11]. 

Those studies demonstrate that our brain constantly recalibrates the timing of actions and 

outcomes to fit the prior expectation that these events are contiguous [45].

It is important to note that an ideal temporal recalibrator should consider the statistical 

properties of sensory inputs from past history. When sensory inputs are noisy, they would be 

poor signals to use to calibrate the internal prior, which itself may be more reliable than the 

sensory signals. However, when the sensory inputs are reliable, and deviate from the 

prediction, they should update the prediction to fit better the external world [46]. Vercillo et 
al. [12••] recently demonstrated that this does occur, with a developmental study on temporal 

recalibration, where they compared temporal recalibration among different age groups. They 

found that adults exhibited strong recalibration effect, similar to Stetson et al. [11], but the 

recalibration effect did not occur in the younger age groups (Figure 4a). They also showed 

that the precision thresholds for the temporal-order task improved with age (Figure 4b) and, 

most interestingly, the magnitude of recalibration correlated negatively with individual 

temporal precision (Figure 4c). This suggests that the perceptual systems of the young age 

group is acting efficiently in not incorporating response-effect delays into their prior belief, 

as these sensory measures are noisy. They confirmed this idea by measuring adult 

performance with added noise, and showed that noisy signals are indeed ineffective for 

recalibration. This kind of precision-based temporal recalibration can be explained by 

dynamic Bayesian inference, such as a Kalman filter (Box 1) [4••,46].

Another type of action-induced time distortion is duration-expansion of a subsequent 

sensory event. For instance, when a person shifts the focus of gaze to a clock, the second 

hand of a clock appears to, momentarily, stand still, the stopped clock illusion 

(‘chronostasis’) [40]. Other manual actions [41,43,47], action preparation [48], or even 

irrelevant action context [49], can also expand subjective duration expansion. The original 

explanation for the ‘chronostasis’-type duration expansion is that the brain likely backdates 

the onset event to the action onset due to the uncertainty of the event induced by voluntary 

action [40]. This account is in line with recent predictive coding suggestions — action 

preparation and action alter the prediction of ongoing streams of sensory results [15].

Note that subjective time compression and expansion do not exclude each other, but may 

rather reveal two different effects on different events caused by voluntary action. The time 

between an action and its effect, and the duration of events occurring before and during the 

action are likely to be compressed; subsequent sensory events are prone to be dilated. Both 

effects reflect dynamic updating about the temporal relationship between outgoing actions 

and incoming sensations [11,50]. The brain needs to explain away prediction errors between 

the actual current sensory timing and the predicted one. By updating internal temporal prior 

with prediction errors based on Bayesian inference, top-down predictions could minimize 

temporal prediction errors at the lower level, ‘explaining away’ those conflicts 

[13,14,15,16•].
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Concluding remarks

In this article we have discussed some recent research on contextual effects in duration 

perception, multisensory temporal integration and temporal recalibration. Application of the 

predictive coding framework offers a new view on subjective time perception. Various types 

of time distortions and multisensory temporal integration can be regarded as the outcome of 

perceptual inference by maximally using available information to minimize overall temporal 

prediction errors. Temporal assimilation effects, such as central tendency and recalibration 

depend much on the precision of the available temporal cues, which can be predicted by 

computational principles within the predictive coding framework. It is important to note, 

however, the literature reviewed above is a small part of large body of multisensory timing 

studies. Future empirical work and continue application of predictive coding framework will 

expand our understanding of multisensory timing and time perception.
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Box 1

Dynamic updating of priors in time perception

Various types of contextual calibration of time perception can be explained in the 

framework of Bayesian inference(See Figure I) [4••]. The central idea of Bayesian 

inference is that the brain uses all available temporal information to minimize the 

prediction error. One source of temporal information comes directly from sensory inputs, 

which depends on sensory measures and signal quality. For example, for a given duration 

D, the sensory measure is S. This cue can be expressed in Bayesian term as the likelihood 

function P(S|D). Another cue that the brain often uses is internal expectation based on the 

prior knowledge. In Bayesian term it is the prior function P(D). According to Bayes’ rule, 

the probability of a duration being D, given the sensory measure S is the product of the 

prior probability and the likelihood, normalized by the probability of the sensory 

measures:

The probability distribution P(S|D) is known as the posterior probability. When both the 

likelihood and prior are independent Gaussians, the optimal duration estimate can be 

predicted by

where Ds and Dp are the expected mean of the likelihood and prior, and the weight 

 is proportional to its reliability, in which  are 

the reliability of the likelihood and prior. The variance of this optimal estimate is 

 which is the minimum variance among all possible linear weighted 

combinations between the sensory estimate and the prior. When there are two conditional 

independent likelihoods (e.g., one from the auditory modality and another from the visual 

modality), and the prior is not the focus factor, the optimal estimate is very similar:

where Da and Db are the mean of two individual sensory estimates, and the weight wa is 

proportional to its reliability.

With predictive coding, the internal predictive prior is not fixed, but is dynamically 

adjusted from the prediction errors. The top-down predictions are delivered through the 

backward connections. So long as this successfully predicts the lower level activity, all is 

well, and no further action needs to ensue. But where there is mismatch, a ‘prediction 

error’ occurs and the ensuing (error-indicating) activity is propagated to the higher level. 

This automatically adjusts probabilistic representations at the higher level so that top-
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down predictions cancel prediction errors at the lower level, yielding rapid perceptual 

inference [13–15,16•]. In a simple case, this predictive processing can be described by 

Kalman filter [4••,46] — a dynamic optimal prior updating process when noises are 

Gaussian:

where Pn and Pn−1 are the priors at time n and n − 1, g is the Kalman gain, which is 

optimally determined by the variances of the internal prior and the prediction error. As 

shown by a developmental study on the temporal recalibration [12••], Kalman gain is 

larger in the adult group compared to the young groups (see text).
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Figure I. 
Schematic illustration of Bayesian inference of duration. The red curve denotes the 

likelihood P(S|D) for a given duration signal, the blue curve the prior at time n, and the 

dashed blue curve the updated prior at time n + 1. The dark green curve is the posterior 

based on Bayesian inference. There are two updating processes: the posterior updating 

based on the cues and the prior is for reliable sensory estimates, and the prior updating 

based on error correction is for minimizing forthcoming prediction errors.
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Figure 1. 
Regression to the mean in a time-reproduction task. Upper graphs: average reproduction 

intervals as a function of physical reproduction for measurements made in three different 

durations: short (squares, 494–847 ms), intermediate (circles, 671–1024 ms), and long 

(triangle, 847–1200 ms). The graphs at left refer to control subjects with no musical training, 

those in center to trained drummers, at right to trained string-instrumentalists. All the non-

drummers show a strong regression to the mean of that particular interval: drummers 

respond veridically. Lower graphs: response distributions for interval 850 ms, taken from 

the three different conditions (short, intermediate, and long; symbols as before). The 

direction of the bias depends on the interval, tending to under-estimation for the short 

interval and overestimation for the long interval.

Adapted from [8••].

Shi and Burr Page 12

Curr Opin Behav Sci. Author manuscript; available in PMC 2016 September 28.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 2. 
(a and b) PSEs for judging the duration of auditory stimuli, as a function of the duration of 

the distractor, for base duration of 100 and 1000 ms. For the base duration of 100 ms, 

distractors shifted the PSE, in a way consistent with assimilation (short distractors cause 

underestimation and vice versa), while there is no effect for base duration of 1000 ms. (c 
and d) Illustration of how the Bayesian prior interacts with the likelihood estimate of 

duration within the Bayesian model, for 100 ms and 1000 ms base durations. The prior (in 

green) is assumed to be the same normalized width in the two conditions, corresponding to a 
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Weber fraction of 0.2. The Weber fraction of the likelihood (red curves) vary with duration, 

broad at short durations, narrow at long durations. The prior dominates in determining the 

posterior (black curve) at 100 ms base duration, the likelihood dominates at 1000 ms base 

duration.

Adapted from [25].
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Figure 3. 
(a) Illustration of how the MLE model combines two interval-discrimination cues. Cue 1 is 

based on the difference between the base interval (τ) and the comparison interval (τ + Δ), 

which we assume follows Weber’s law: σ1 = wfτ + c. Cue 2 comes from synchrony/

asynchrony categorization: when one interval falls within the simultaneity window and the 

other does not, this is a strong cue as to which is longer. The probability of this occurring 

peaks near the boundary of the simultaneity. We assume the discriminability function is 

normal distributed in logarithmic. According to the MLE model (see Box 1), the 

discrimination threshold of the combined cues is  (b) Interval discrimination 

thresholds for subject CL (dots) as a function the base interval, separated for audiovisual, 

and visual-auditory conditions (adapted from [35]), and the prediction of the MLE model 

(curves).
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Figure 4. 
How sensory-motor recalibration is affected by precision. (a) Average recalibration as a 

function of age. (b) Average thresholds as a function of age. (c) The recalibration effect as a 

function of thresholds: the correlation is strong (R2 = 0.25, p < 0.001, slope = −0.9).

Adapted from [12••].
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