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Abstract: Regenerative medicine and bone tissue engineering using mesenchymal stem cells (MSCs) hold great 
promise as an effective approach to bone and skeletal reconstruction. While adipose tissue harbors MSC-like pro-
genitors, or multipotent adipose-derived cells (MADs), it is important to identify and characterize potential biological 
factors that can effectively induce osteogenic differentiation of MADs. To overcome the time-consuming and techni-
cally challenging process of isolating and culturing primary MADs, here we establish and characterize the reversibly 
immortalized mouse multipotent adipose-derived cells (iMADs). The isolated mouse primary inguinal MAD cells are 
reversibly immortalized via the retrovirus-mediated expression of SV40 T antigen flanked with FRT sites. The iMADs 
are shown to express most common MSC markers. FLP-mediated removal of SV40 T antigen effectively reduces the 
proliferative activity and cell survival of iMADs, indicating the immortalization is reversible. Using the highly osteo-
genic BMP9, we find that the iMADs are highly responsive to BMP9 stimulation, express multiple lineage regulators, 
and undergo osteogenic differentiation in vitro upon BMP9 stimulation. Furthermore, we demonstrate that BMP9-
stimulated iMADs form robust ectopic bone with a thermoresponsive biodegradable scaffold material. Collectively, 
our results demonstrate that the reversibly immortalized iMADs exhibit the characteristics of multipotent MSCs 
and are highly responsive to BMP9-induced osteogenic differentiation. Thus, the iMADs should provide a valuable 
resource for the study of MAD biology, which would ultimately enable us to develop novel and efficacious strategies 
for MAD-based bone tissue engineering.

Keywords: BMP9, adipose-derived stem cells, mesenchymal stem cells, bone formation, tissue engineering, im-
mortalized progenitor cells

Introduction

Bone tissue engineering using mesenchymal 
stem cells (MSCs) holds great promise as an 

effective approach to bone and skeletal recon-
struction [1-8]. MSCs are multipotent progeni-
tors that can undergo self-renewal and differen-
tiate into multiple lineages, such as osteogenic, 
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chondrogenic, and adipogenic lineages [1, 2, 
9-13]. MSCs have been isolated from numer-
ous tissues, and one of the major sources in 
adults is the bone marrow stromal cells [5, 
10-12]. Osteogenic differentiation from MSCs 
recapitulates most of the molecular events 
occurring during skeletal development [14, 15].

While many signaling pathways, such as Wnt, 
IGFs, FGFs, and Notch, play important roles in 
regulating osteogenic differentiation [9, 16-24]. 
Bone morphogenetic proteins (BMPs) are con-
sidered as a group of the most potent osteoin-
ductive factors [9, 25-27]. We have demon-
strated that BMP9 (also known as growth dif-
ferentiation factor 2, or GDF2) is one of the 
most potent BMPs among the 14 types of 
BMPs in inducing osteogenic differentiation [4, 
5, 28, 29], which may be attributable, at least 
in part, to the fact that BMP9 is more resistant 
to noggin inhibition [30]. Mechanistically, BMP9 
has been shown to effectively induce osteo-
blast differentiation by regulating several 
important downstream targets [31-35], as well 
as through cross-talk with other important sig-
naling pathways [36-41]. Thus, it is conceivable 
that using BMP9-expressing progenitor cells 
may be able to promote bone regeneration in 
large bony defects and/or fracture nonunion in 
clinical settings [3-5]. 

Once thought to merely function as a protective 
cushion for the internal organs, nerves and ves-
sels, adipose tissue has more recently emerged 
as a premiere source of cells for evolving tissue 
engineering and regenerative therapies over 
the past few decades [42-47]. Adipose tissue is 
a complex, dynamic, and bioactive organ, which 
is involved in a diverse array of physiologic and 
disease processes [42, 44-47]. Adipose tissue 
comprises various discrete depots, such as 
inguinal, interscapular, perigonadal, retroperi-
toneal and mesenteric depots [43, 44]. Adipose 
tissue forms in utero, in the peripartum period 
and throughout life [42-44]. In adult humans, 
new adipocytes are generated continually and 
at substantial rates [44]. 

Since the early 2000’s, it has been reported 
that adipose tissue may harbor progenitor cells, 
so-called adipose-derived mesenchymal stem 
cells (AD-MSCs), that have osteogenic potential 
[46, 48-50]. In order to effectively utilize adi-
pose tissue progenitors as a staple source of 
cells for bone tissue engineering, it is important 

to identify and characterize possible biological 
factors that can effectively induce osteogenic 
differentiation of AD-MSCs. While adipose tis-
sue is abundant and easy to harvest, AD-MSCs 
only account for a small fraction of the total cell 
populations in adipose tissue. Thus, isolation 
and culture of AD-MSC cells remain a time-con-
suming process. In this study, we established 
reversibly immortalized mouse multipotent adi-
pose-derived mesenchymal cells (iMADs) that 
were shown to exhibit the characteristics of 
multipotent MSCs and to be highly responsive 
to BMP9-induced osteogenic differentiation. 
Therefore, the established iMADs should serve 
as a valuable resource to study AD-MSC biolo-
gy, as well as to develop novel and efficacious 
strategies to utilize AD-MSCs for bone tissue 
engineering.

Materials and methods

Cell culture and chemicals

HEK-293 (from ATCC, Manassas, VA) and its 
derivative line 293pTP cells were maintained in 
the completed Dulbecco’s Modified Eagle 
Medium (DMEM), as described [51-55]. Unless 
indicated otherwise, all chemicals were pur-
chased from Sigma-Aldrich (St. Louis, MO) or 
Thermo Fisher Scientific (Waltham, MA).

Synthesis of PPCN (polyethylene glycol citrate-
co-N-isopropylacrylamide) 

The polymer PPCN (polyethylene glycol citrate-
co-N-isopropylacrylamide) was synthesized by 
sequential polycondensation and radical poly- 
merization of citric acid, glycerol 1,3-diglycero-
late diacrylate, poly (ethylene glycol) (PEG), and 
poly-N-isopropylacrylamide as described [56]. 
The chemical, biodegradable and thermore-
sponsive features were evaluated for each 
newly synthesized batch as reported [56]. Prior 
to mixing with cells, PPCN powder was dis-
solved in PBS (100 mg/ml stock solution), ster-
ilized by syringe filtration using 0.22 µm filters, 
and kept at either room temperature or 4°C. 

Generation and amplification of recombinant 
adenoviruses expressing BMP9, FLP recombi-
nase, and GFP

Recombinant adenoviruses were generated 
using the AdEasy technology as described [57-
59]. The coding regions of human BMP9 and 
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flippase (FLP) recombinase were PCR amplified 
and cloned into an adenoviral shuttle vector, 
and subsequently used to generate recombi-
nant adenoviruses in HEK-293 or 293pTP cells 
[51]. The resulting adenoviruses were designat-
ed as Ad-BMP9 and Ad-FLP, both of which also 
express GFP as the marker for monitoring infec-
tion efficiency [40, 41, 60, 61]. Analogous ade-
novirus expressing only GFP (Ad-GFP) was used 
as a vector control [36, 52, 62].

Isolation and immortalization of multipotent 
adipose-derived mesenchymal stem cells 
(MADs)

All animal studies were conducted by following 
the NIH guidelines approved by Institutional 
Animal Care and Use Committee (IACUC). 
Experimentally, skeletally mature CD1 mice 
(male, 4-week old, provided by The University of 
Chicago Transgenic Core Facility) were eutha-
nized immediately prior to tissue harvest as 
described [37, 63-66]. The adipose tissues 
were carefully dissected out from the inguinal 
region, rinsed in sterile PBS, and kept in sterile 
100 mm cell culture dishes. The retrieved tis-
sues were minced into small tissue bits, fol-
lowed by 0.1% collagenase I digestion at 37°C 
for 20 min to 60 min. The dissociated mouse 
adipose-derived (MAD) mesenchymal stem 
cells were washed in complete DMEM and plat-
ed into 25 cm2 flasks at 37°C. 

To establish the immortalized mouse multipo-
tent adipose-derived mesenchymal stem cells 
(iMADs), early passages of primary MAD cells (< 
3 passages) were seeded in 25 cm2 flasks and 
infected with retroviral vector SSR41, which 
expresses SV40 T antigen flanked with the FRT 
sites [67]. Stably immortalized MADs (or iMADs) 
were obtained by selecting the infected cells 
with hygromycin B (at 4 mg/mL) for one week 
as previously described [63-65, 68-70].

Crystal violet assay

Subconfluent cells were seeded in 35 mm cell 
culture dishes and infected with the Ad-FLP or 
Ad-GFP adenovirus. At the indicated time 
points, the infected cells were subjected to 
crystal violet staining. The staining results were 
recorded under a bright field microscope. For 
quantitative measurement, the stained cells 
were dissolved in 10% acetic acid at room tem-
perature for 20 min with agitation. Absorbance 

was measured at 570~590 nm as previously 
described [39, 55, 71-73].

WST-1 cell proliferation assay

The WST-1 assay was carried out as previously 
described [53, 74-76]. Exponentially growing 
cells were plated into 96-well culture plates at 
20% confluence. Unseeded wells were used as 
background controls. At the indicated time 
points, the premixed WST-1 (BD Clontech, 
Mountain View, CA) was added to each well and 
incubated at the 37°C CO2 incubator for 2 h. 
The plates were subjected to a microtiter plate 
reader to obtain absorbance reading at 450 
nm. The obtained A450nm values were sub-
jected to background reading subtractions. 
Each assay condition was done in triplicate. 

Fluorescence-activated cell sorting (FACS) 
analysis

Subconfluent cells were harvested, fixed and 
stained with Hoechst 33342. Cell cycles were 
analyzed using the BD LSR II Flow Cytometer 
and the FlowJo software as previously described 
[52, 53]. Each assay condition was done in 
triplicate. 

RNA isolation and TqPCR analysis

Total RNA was isolated using TRIZOL Reagents 
(Invitrogen) and subjected to reverse transcrip-
tion reaction with hexamer and M-MuLV 
Reverse Transcriptase (New England Biolabs, 
Ipswich, MA). The cDNA products were diluted 
10 to 50-fold and used as PCR templates. The 
PCR primers (usually 18-20 mers, product size 
ranged 120 bp to 200 bp; Supplemental Table 
1) were designed by using the online program 
Primer3Plus [77]. The TqPCR analysis was car-
ried out as described [78]. TqPCR reactions 
were carried out using the following conditions, 
95°C × 3″ for one cycle; 95°C × 20″, 66°C × 
10″, for 4 cycles by decreasing 3°C per cycle; 
95°C × 20″, 55°C × 10″, 70°C × 1″, followed by 
plate read, for 40 cycles. Gapdh was used as a 
reference gene. All reactions were done in 
triplicate. 

Alkaline phosphatase (ALP) activity assay

ALP activity was assessed quantitatively with a 
modified assay using the Great Escape SEAP 
Chemiluminescence assay kit (BD Clontech) 
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and qualitatively with histochemical staining 
assay (using a mixture of 0.1 mg/ml napthol 
AS-MX phosphate and 0.6 mg/ml Fast Blue BB 
salt) as described [30, 32, 79-82]. Each assay 
condition was performed in triplicate. 

Matrix mineralization assay (Alizarin Red S 
staining)

Cells were seeded in 24-well culture plates, 
infected with AdBMP9 or AdGFP, and main-
tained in the presence of ascorbic acid (50 mg/
mL) and β-glycerophosphate (10 mM) [28]. At 
10 days post infection, mineralized matrix nod-
ules were stained for calcium precipitation 
using Alizarin Red S staining as described [28, 
34, 39, 83]. Briefly, cells were fixed with 0.05% 
(v/v) glutaraldehyde at room temperature for 
10 min and washed with distilled water, fixed 
cells were incubated with 0.4% Alizarin Red S 
for 5 min, followed by being extensively washed 
with distilled water. The staining of calcium min-
eral deposits was recorded under a bright field 
microscope. Each assay condition was done in 
triplicate. 

Oil Red O staining assay

The iMADs were seeded in 12-well cell culture 
plates and infected with AdBMP9 or AdGFP  
for 10 days. Oil Red O staining was performed 
as described [30, 40, 79]. Briefly, cells were 
fixed with 10% formalin at room temperature 
for 10 min, and washed with PBS. The fixed 
cells were stained with freshly prepared Oil  
Red O solution (six parts saturated Oil Red O 
dye in isopropanol plus four parts water) at 
37°C for 30-60 min, followed by washing with 
70% ethanol and distilled water. The staining  
of lipid droplets was recorded under a bright 
field microscope. Each assay condition was 
done in triplicate.

Immunofluorescence staining

Immunofluorescence staining was performed 
as described [53, 63, 84-86]. Briefly, cells were 
fixed with methanol or 4% paraformaldehyde, 
permeabilized with 1% NP-40, and blocked  
with 10% donkey serum (Jackson Immuno- 
Research Laboratories, West Grove, PA), fol-
lowed by an incubation with CD29, CD73, 
CD113, CD40, CD90, CD117/c-kit, CD166/
ALCAM, CD105/endoglin, or BMPR-II antibody 
(Santa Cruz Biotechnology) for 1 h at room tem-

perature. After being washed, cells were incu-
bated with FITC labeled secondary antibody 
(Jackson ImmunoResearch Laboratories) for 
30 min. Cell nuclei were counterstained with 
DAPI. Stains were examined under a fluores-
cence microscope. Stains without primary anti-
bodies were used as negative controls. 

Subcutaneous implantation of BMP9-
stimulated iMADs for ectopic bone formation

All animal studies were conducted by following 
the guidelines approved by the Institutional 
Animal Care and Use Committee (IACUC). Stem 
cell-based ectopic bone formation was per-
formed as previously described [29, 37, 63, 
87]. Briefly, iMADs were infected with AdBMP9 
or AdGFP for 24 h, collected, and resuspended 
in 80 µl of PBS, or 80 µl of the thermorespon-
sive PPCN scaffold (100 mg/ml) [56], mixed 
with 0.2% gelatin (1:1=v:v) for subcutaneous in- 
jection (5 × 106/injection, n=5) into the flanks  
of athymic nude (nu/nu) mice (male, 4-6 wk  
old; Harlan Research Laboratories/ENVIGO, 
Indianapolis, IN). At 4 weeks after implantation, 
animals were sacrificed, and the implantation 
sites were retrieved for microcomputed tomog-
raphy (µCT) imaging, histologic evaluation, and 
special stains (see below).

micro-CT analysis

All retrieved specimens were fixed and imaged 
using the µCT component of the GE triumph (GE 
Healthcare) trimodality preclinical imaging sys-
tem. All image data analyses were performed 
using Amira 5.3 (Visage Imaging, Inc.), and 3D 
volumetric data were determined as described 
[37, 63, 64, 83].

H&E staining and trichrome staining

Retrieved tissues were fixed, decalcified in 10% 
buffered formalin, and embedded in paraffin. 
Serial sections of the embedded specimens 
were stained with hematoxylin and eosin (H&E). 
Trichrome stains were carried out as previously 
described [29, 41, 88].

Statistical analysis

All quantitative assays were performed in tripli-
cate and/or carried out in three independent 
batches. Statistical analysis was carried out 
using Microsoft Excel program. Data were 
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expressed as mean ± SD. Statistical signifi-
cances were determined by one-way analysis of 

variance and the student’s t test. A value of 
p<0.05 was considered statistically significant.

Figure 1. Isolation and immortalization of mouse adipose-derived (MAD) mesenchymal stem cells. (A) Primary MADs 
were isolated from the inguinal adipose tissue of 4-week old CD1 mice, and maintained in complete DMEM me-
dium. Cell morphology was recorded at day 3 (a) and day 10 (b) after plating. (B) The primary MADs (under passage 
3) were infected with retroviral immortalization vector SSR #41 (a). The infected cells were selected in hygromycin-
containing medium. Surviving clonal growth was observed at 3 days (b) and 10 days (c) after selection. The immor-
talized iMAD cells were stable and retained long-term proliferation at passage 2 (d) or passage 20 (e). Representa-
tive images are shown.
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Results

Primary mouse adipose-derived (MAD) mesen-
chymal stem cells can be effectively immortal-
ized by SV40 T antigen

Although there have been numerous reports 
about the use of adipose-derived MSCs 
(AD-MSCs), the biological features of these pro-
genitor cells remain to be fully understood [42-
44]. Though readily available, it is rather techni-
cally challenging and time-consuming to isolate 
and culture primary AD-MSCs, which may in 
turn hamper effective in-depth investigations 
into biological characteristics of AD-MSCs. 
Here, we sought to establish reversibly immor-
talized mouse adipose-derived (iMAD) mesen-
chymal stem cells and to characterize their 
responsiveness to osteogenic differentiation 
signals. 

We first isolated primary MAD cells from the 
adipose tissue retrieved from the inguinal 
region of young CD1 mice (Figure 1Aa, 1Ab). 
Once reaching subconfluence, the primary MAD 
cells were replated and infected with retroviral 
vector SSR#41, which co-expresses SV40 T 
antigen and hygromycin flanked with FRT sites 
(Figure 1Ba) [64, 65, 67-70, 84]. The infected 
MAD cells were subjected to hygromycin selec-
tion. The surviving cells formed colonies at as 
early as at 3 days after selection (Figure 1Bb) 
and the colonies became more apparent at 10 
days after selection (Figure 1Bc). When pas-
saged, the surviving cells grew robustly under 
conventional culture conditions at passage 2 
and passage 20 (Figure 1Bd & 1Be). Thus, 
these results indicate that the obtained cells 
are stably immortalized and can maintain long-
term proliferation, so have been designated as 
immortalized MADs or iMADs. 

Figure 2. The iMADs express most mesenchymal stem cell markers. Subconfluent iMADs were fixed and stained 
with antibodies against CD29/integrin β1 (A), CD31/PECAM1 (B), CD73 (C), CD99/Thy-1 (D), CD105/Endoglin (E), 
CD117/c-Kit (F), CD133/Prom1 (G), or BMPRII (H). All antibodies were obtained from Santa Cruz Biotechnology. 
Minus primary antibodies and isotype IgG were used as negative controls (data not shown). Cell nuclei were counter-
stained with DAPI. Representative images are shown. 
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Figure 3. The immortalization phenotype of the iMADs can be reversed by FLP recombinase. (A) Subconfluent 
iMADs were infected with Ad-FLP or Ad-GFP and fixed for Crystal violet staining at different time points (a). The 
stained cells were dissolved and quantitatively determined at A590nm (b). “**”, p<0.01 when compared between 
Ad-FLP and Ad-GFP infected groups. (B) Quantitative analysis of the FLP-mediated removal of SV40 T antigen in the 
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The iMAD cells express most common mesen-
chymal stem cell markers

We next tested whether the iMADs express 
common mesenchymal stem cell markers [63, 
64, 89]. Using immunofluorescence staining  
we found that vast majority of the iMAD cells 
exhibited positive staining with antibodies 
against CD29/integrin β1, CD31/PECAM1, 
CD73, CD99/Thy-1, CD105/Endoglin, CD117/c-
Kit, CD133/Prom1, or BMPRII (Figure 2A-H). 
These results demonstrate that the iMADs 
express most of the consensus markers defin-
ing multipotent mesenchymal stem cells [89]. 

The FLP-mediated removal of SV40 T antigen 
effectively reduces proliferative activity and 
survival of iMAD cells

We next conducted a series of experiments to 
test whether the SV40 T antigen-mediated 
immortalization can be effectively reversed in 
iMADs. When the iMADs were infected with 
Ad-FLP, which expresses a high level of FLP 
recombinase [54, 63], the cell proliferation of 
the infected iMADs was lower than that of the 
control Ad-GFP infected cells (Figure 3Aa). The 
decrease in cell growth was significantly lower 
at day 5 and day 7 in the Ad-FLP infected iMADs 
than that of the control cells (Figure 3Ab). 
Quantitatively, there was approximately 72% 
reduction of SV40 T antigen expression in the 
Ad-FLP-infected cells, compared with that of 
the Ad-GFP infected cells (Figure 3B), indicating 
that FLP recombinase can effectively remove 
most of SV40 T antigen from the immortalized 
cells although the FLP-mediated excision is not 
100% efficient, consistent with previous reports 
[90-92].

We carried out additional quantitative analyses 
on effect of FLP-mediated T antigen removal on 
the cell proliferation of the iMADs. The sensi-
tive WST-1 assay indicates that Ad-FLP infected 
iMADs consistently grew more slowly, at as 
early as day 2 after infection, than of the con-

trol Ad-GFP infected cells (Figure 3C). Cell cycle 
analysis further revealed that Ad-FLP infected 
iMAD cells exhibited significantly increased G1 
phase, decreased S phase and S/G2 phases, 
compared with that of the Ad-GFP infected cells 
(Figure 3Da vs. 3Db). Collectively, these results 
strongly indicate that the SV40 T antigen-medi-
ated immortalization phenotype can be effec-
tively reversed by FLP recombinase even 
though the SV40 T antigen may not be removed 
completely. 

The iMADs are responsive to BMP9 stimula-
tion, express multiple lineage regulators, and 
undergo osteogenic differentiation upon BMP9 
stimulation

We previously demonstrated that BMP9 is one 
of the most osteogenic BMPs among the 14 
types of human BMPs [4, 5, 26-29], and identi-
fied a panel of important downstream media-
tors of BMP9 signaling in mesenchymal stem 
cells [5, 31-35, 93]. We examined whether the 
iMADs were responsive to BMP9 stimulation. 
When the iMADs were transduced with 
Ad-BMP9 or Ad-GFP for 36 h, qPCR analysis 
revealed that several well-characterized imme-
diate-early genes, such as Smad7, Id1, CTGF 
and Hey1 [5, 31-34], were significantly upregu-
lated in BMP9-transduced iMADs, compared 
with that of the control group (p<0.001) (Figure 
4A), indicating that the iMADs are responsive to 
BMP9 stimulation. 

We previously demonstrated that BMP9 can 
induce osteogenic, chondrogenic, and adipo-
genic lineage-specific differentiation of mesen-
chymal stem cells [5, 79, 94]. When the iMAD 
cells were stimulated with BMP9, osteogenic 
lineage regulators Runx2 and Osterix (Osx), as 
well as the late osteogenic marker osteocalcin 
(Ocn), were up-regulated at as early as day 3, 
and significantly increased at day 7 (Figure 4B). 
Similarly, the chondrogenic regulator Sox9 and 
the adipogenic regulator Pparγ2 were also sig-
nificantly up-regulated in the iMADs by BMP9 at 
day 7 (Figure 4B). 

iMADs. Subconfluent iMADs were infected with Ad-FLP or Ad-GFP. At 3 days after infection, total RNA was isolated 
and subjected to RT-PCR and subsequently TqPCR analysis of SV40 T antigen expression. Gapdh was used as a 
reference gene. “**”, p<0.01 when compared between Ad-FLP and Ad-GFP infected groups. (C) WST-1 proliferation 
assay. Subconfluent iMADs were infected with Ad-FLP or Ad-GFP. WST-1 substrate was added to the cell culture and 
assessed for A450nm readings at the indicated time points. Assays were done in triplicate. “**”, p<0.01. (D) Cell 
cycle analysis. Subconfluent iMADs were infected with Ad-GFP (a) or Ad-FLP (b). At 36 h after infection, cells were 
collected, fixed, stained with Hoechst 33342, and subjected to FACS analysis. Assays were done in triplicate, and 
representative results are shown.
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Figure 4. BMP9 induces the expression of early downstream genes and multiple lineage regulators in iMADs. A. Upregulation of early target genes in iMADs by 
BMP9. Subconfluent iMADs were infected with Ad-BMP9 or Ad-GFP. Total RNA was isolated at 36 h and subjected to TqPCR analysis using gene-specific primers for 
mouse Smad7, Id1, Ctgf and Hey1. B. BMP9 induces the expression of multiple lineage regulators/markers. Subconfluent iMADs were infected with Ad-BMP9 or Ad-
GFP. Total RNA was isolated at the indicated time points and subjected to TqPCR analysis using gene-specific primers for Runx2, Osx, Ocn, Sox9 (day 7), or Pparγ2 
(day 7). Gapdh was used as a reference gene. Reactions were done in triplicate. “*”, p<0.05, “**”, p<0.01. 
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We further analyzed the in vitro osteogenic and 
adipogenic differentiation capabilities of the 
iMADs. When iMAD cells were infected with 
Ad-BMP9, the activity of early osteogenic mark-
er alkaline phosphatase (ALP) was readily 
detectable at day 5, while some basal ALP 
activity was also observed (Figure 5Aa). 
Quantitative ALP assay indicates that the ALP 
activity was significantly up-regulated in BMP9-
treated iMADs at as early as day 3 (p<0.001) 
and the overall ALP activity kept increasing up 
to day 7 (Figure 5Ab). Furthermore, when the 
BMP9-treated iMADs were cultured in mineral-
ization medium for 10 days, significant amounts 
of mineralized extracellular matrix nodules 
were observed as demonstrated by Alizarin Red 
S staining (Figure 5B). These results strongly 
suggest that the iMADs may have osteogenic 
potential upon BMP9 stimulation.

We also assessed the adipogenic potential of 
the iMADs. When the iMADs were stimulated 
with BMP9 for 10 days, the cells exhibited a 
modest but significantly higher level of lipid 
droplet formation as revealed by Oil-red O stain-
ing, compared with that of the control cells 
(Figure 5C). Interestingly, the BMP-induced in 
vitro adipogenic differentiation in the iMADs is 
somewhat less pronounced than that in other 
sources of mesenchymal stem cells, such as 
mouse embryonic fibroblasts, C3H10T1/2 cells 
or C2C12 cells [29, 41, 79, 94, 95]. This is rath-
er surprising given the fact that the iMADs were 
derived from adipose tissue. Nonetheless, 
these in vitro results further demonstrate that 
the iMADs are responsive to BMP9 stimulation 
and exhibit the characteristics of mesenchymal 
stem cells.

BMP9 induces robust ectopic bone formation 
from by iMADs implanted with scaffold materi-
als

We next determined the iMADs’ ability to form 
ectopic bone using the stem cell implantation 

model with or without scaffold materials, as 
previously reported [34, 36, 83, 87, 96]. The 
iMADs were first transduced with Ad-BMP9 or 
Ad-GFP for 30 h. The cells were then collected, 
mixed with PBS or the scaffold material PPCN/
gelatin and injected subcutaneously into athy-
mic nude mice. PPCN polymer is a thermore-
sponsive, injectable, biodegradable and highly 
biocompatible scaffolding material [56]. At 4 
weeks after implantation, subcutaneous mass-
es at the injection sites were retrieved from the 
BMP9-transduced groups, while no apparent 
masses were formed in the animals injected 
with GFP-treated iMADs only. When subjected 
to µCT imaging analysis, the masses retrieved 
from the BMP9-treated groups (either injected 
with the iMAD cells only or the iMADs mixed 
with the scaffold material) exhibited significant 
mineralization (Figure 6Aa & 6Ab). Quantitative 
analysis indicates that the bony masses formed 
in the direct cell injection group were volumetri-
cally similar to that formed in the cells mixed 
with the PPCN-gelatin interpenetrating network 
group (p>0.1) (Figure 6Ac). However, histologic 
evaluation indicates that the BMP9-stimulated 
iMADs mixed with the scaffold material under-
went rather complete osteogenic differentia-
tion and formed well-networked woven bone 
structures, whereas the bony masses retrieved 
from the direct cell injection group contained 
regions of undifferentiated cells and unevenly 
distributed bony trabeculae (Figure 6Ba vs. 
6Bb). The masses retrieved from the iMADs 
transduced with Ad-GFP and mixed with the 
scaffold material did not form any detectable 
bony structure upon histologic examination 
(Figure 6Bc). Trichrome staining further con-
firmed that the bony structures formed in 
BMP9-transduced iMADs mixed with PPCN/
gelatin scaffold material exhibited higher matu-
rity and greater mineralization, compared with 
those of the direct BMP9-iMAD cell injection; 
no mineralization was observed in the GFP-

Figure 5. BMP9 induces osteogenic differentiation in iMADs in vitro. (A) BMP9 effectively induces osteogenic marker 
alkaline phosphatase (ALP) activity in iMADs. Subconfluent iMADs were infected with Ad-BMP9 or Ad-GFP. At 5 days 
after infection, cells were fixed for histochemical staining for ALP activity (a). Quantitative measurement of relative 
ALP activity was also determined at 3, 5, and 7 days after infection (b). Assays were done in triplicate and repre-
sentative images are shown. “**”, p<0.001. (B) BMP9 induces robust matrix mineralization. Ad-BMP9 or Ad-GFP 
infected iMADs were cultured in mineralization medium for 10 days and stained with Alizarin Red S. Assays were 
done in triplicate and representative images are shown. (C) BMP9 has limited effect on adipogenic differentiation, 
Ad-GFP (a) or Ad-BMP9 (b) infected iMADs were cultured in complete DMEM. At 10 days after infection, the cells 
were fixed and stained with Oil Red O solution. Assays were done in triplicate and representative images are shown. 



BMP9-mediated bone formation in adipose stem cells

3721	 Am J Transl Res 2016;8(9):3710-3730

treated iMADs group (Figure 6Cb vs. 6Ca & 
6Cc). Interestingly, no apparent adipogenic dif-
ferentiation and adipocyte formation were 
observed in the masses formed with BMP9-
transduced iMADs, which is consistent with the 
modest adipogenic activity shown in vitro. 
These in vivo results strongly indicate that 
BMP9 induces robust bone formation from the 
iMADs. 

Discussion

AD-MSCs are important sources of multipotent 
progenitor cells for regenerative medicine al-
though the biological features and regulatory 
circuitries of these progenitors remain to be 
fully understood

Adipose tissue controls a myriad of biological 
actions, including appetite, glucose homeosta-

Figure 6. BMP9 induces robust ectopic bone formation from the iMADs implanted with scaffold materials. (A) Sub-
confluent iMADs were infected with Ad-BMP9 or Ad-GFP for 30 h, and implanted into athymic nude mice subcutane-
ously either by direct cell injection or mixing with thermoresponsive biodegradable scaffold material PPCN-gelatin 
(5x106 cells per injection, n=5 per group). After 4 weeks, the subcutaneous masses at the injection sites were 
collected and fixed for microCT imaging (a & b). Average bone volumes were calculated using Amira software (c). 
No masses were retrieved from the group injected with Ad-GFP infected iMAD cells only, nor were bony masses 
recovered from the group injected with Ad-GFP infected iMADs mixed with PPCN-gelatin scaffold material. (B) H&E 
staining of the masses retrieved from subcutaneous injection with Ad-BMP9 infected iMAD cell only (a), Ad-BMP9 
infected iMAD cells mixed with PPCN scaffold (b) or Ad-GFP infected iMAD cells mixed with PPCN scaffold (c). Rep-
resentative images are shown. (C) Trichrome staining of the masses retrieved from subcutaneous injection with 
Ad-BMP9 infected iMAD cell only (a), Ad-BMP9 infected iMAD cells mixed with PPCN scaffold (b) or Ad-GFP infected 
iMAD cells mixed with PPCN scaffold (c). Representative images are shown. 
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sis, insulin sensitivity, aging, fertility and fecun-
dity, as well as buffering body temperature [43, 
44]. In mammals, adipose tissue is typically 
classified by morphological appearance as 
being either white adipose tissue (WAT) or 
brown adipose tissue (BAT). WAT (the primary 
site of energy storage) is mostly composed of 
adipocytes and is found throughout the body 
[44]. The anatomical location of WAT is often 
classified as being visceral or subcutaneous. In 
rodents, WAT depots include the anterior sub-
cutaneous WATs (asWATs) (such as interscapu-
lar and axillary WAT), inguinal WAT, perigonadal 
WAT, retroperitoneal WAT, and mesenteric  
WAT. Thus, adipose tissue is complex and  
heterogeneous [42]. It is conceivable that 
AD-MSCs derived from different anatomical 
locations may exhibit different progenitor 
characteristics. 

The cellular diversity of adipose tissue has 
become more appreciated over the past few 
decades. This leads to the increased interest in 
its potential use as a cell source [46]. The dis-
sociation and separation of adipose tissue into 
a single cell suspension was first described in 
the 1990s [97, 98], ushering in a new era of 
study of the different cellular components of 
adipose tissue and the subsequent identifica-
tion of the adipocyte precursor cell or the pre-
adipocyte [99-101]. Ultimately, the preadipo-
cyte became a focal point for the emerging field 
of tissue engineering [46, 48]. Adipose tissue is 
dynamic, responding to homeostatic and exter-
nal cues. The formation and maintenance of 
adipose tissue is essential to many biological 
processes and when perturbed leads to signifi-
cant diseases. Nonetheless, the molecular 
mechanisms underlying adipose tissue devel-
opment and regulation of adipose stem cells 
remain to be fully understood [42-47]. 

Although AD-MSCs are extensively used in 
experimental tissue engineering, optimal and 
effective regulators for AD-MSC-based bone 
tissue engineering remain to be thoroughly 
characterized

AD-MSCs have been shown to undergo osteo-
genic differentiation upon dexamethasone 
treatment [102]. AD-MSCs can also differenti-
ate into bone cells in 2-dimensional and 
3-dimensional tissue engineered constructs 
using various scaffold materials, including col-
lagen, poly lactic-co-glycolic acid (PLGA), car-

bon nanotubes, silk sponges, or self-assem-
bling spheroids [103-108]. Pretreated AD-MSCs 
with dexamethasone/VD3 (1,25-dihydroxyvita-
min D3) greatly improved their osteogenic 
capabilities [109]. The feasibility of in vivo bone 
regeneration by transplantation of ADSCs with-
out prior in vitro osteogenic differentiation was 
demonstrated [110]. Local transplantation of 
human multipotent adipose-derived stem cells 
was shown to accelerate fracture healing via 
enhanced osteogenesis and angiogenesis 
[111]. Interestingly, dura mater was shown to 
stimulate human adipose-derived stromal cells 
to undergo bone formation in mouse calvarial 
defects [112]. Consistent with our prior report-
ed results [30], silencing noggin expression sig-
nificantly increased osteogenic differentiation 
in in human AD-MSCs [113, 114]. Similar to 
what we found in other sources of MSCs [115], 
histone deacetylase inhibitors can promote  
the osteogenic potential of adipose-derived 
stem cells [116]. BMPs, mostly BMP2, was 
shown to improve bone formation from AD- 
MSCs although it remains to be determined if 
efficient bone formation can be achieved by 
using BMP alone [103, 117-125]. 

Although numerous studies have shown that 
AD-MSCs can be induced to undergo osteogen-
ic differentiation by different biological factors 
with or without scaffold materials, the efficien-
cy for bone tissue engineering using AD-MSCs 
needs to be optimized. In this study, we have 
demonstrated that BMP9 can induce robust 
ectopic bone formation in the iMADs. Our  
findings are supported by two recent studies 
that showed that BMP9 is highly effective in 
inducing osteogenic differentiation of rabbit 
and human adipose-derived progenitor cells  
in vitro [126, 127]. Our results also demon-
strated that the thermoresponsive biodegrad-
able scaffold PPCN may be used as a valuable 
and versatile vehicle for cell-based therapies 
and tissue engineering [56]. Furthermore, the 
established iMAD cells should provide a valu-
able resource for the study of AD-MSC biology, 
which will subsequently enable us to develop 
novel and efficacious strategies for bone tissue 
engineering. 
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Supplemental Table 1. Primers used for 
qPCR analysis
Name Oligo Sequence
mouse Gapdh ACCCAGAAGACTGTGGATGG

CACATTGGGGGTAGGAACAC
mouse Runx2 CCGGTCTCCTTCCAGGAT

GGGAACTGCTGTGGCTTC
mouse Osx GGGAGCAGAGTGCCAAGA

TACTCCTGGCGCATAGGG
mouse Ocn CCAAGCAGGAGGGCAATA

TCGTCACAAGCAGGGTCA
Mouse Sox9 GGCAAGCAAAGGAGACCA

GCAGGCAGACTCCAGCAT
Mouse Pparγ2 ACTGCCGGATCCACAAAA

TCTCCTTCTCGGCCTGTG
SV40 T antigen TCAGGCCCCTCAGTCCTC

TTCAGGGGGAGGTGTGGG


