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Abstract

Background: Pathogenic mutations in the granulin gene (GRN) are causative in 5-10% of pa-
tients with frontotemporal dementia (FTD), mostly leading to reduced progranulin protein
(PGRN) levels. Upcoming therapeutic trials focus on enhancing PGRN levels. Methods: Fluc-
tuations in plasma PGRN (n = 41) and its relationship with cerebrospinal fluid (CSF, n = 32) and
specific single nucleotide polymorphisms were investigated in pre- and symptomatic GRN
mutation carriers and controls. Results: Plasma PGRN levels were lower in carriers than in
controls and showed a mean coefficient of variation of 5.3% in carriers over 1 week. Although
plasma PGRN correlated with CSF PGRN in carriers (r = 0.54, p = 0.02), plasma only explained
29% of the variability in CSF PGRN. rs5848, rs646776 and rs1990622 genotypes only partly
explained the variability of PGRN levels between subjects. Conclusions: Plasma PGRN is rela-
tively stable over 1 week and therefore seems suitable for treatment monitoring of PGRN-
enhancing agents. Since plasma PGRN only moderately correlated with CSF PGRN, CSF sam-

pling will additionally be needed in therapeutic trials. © 2016 The Author(s)
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Introduction

Frontotemporal dementia (FTD), a common type of presenile dementia, shows an auto-
somal dominant inheritance in 20-30% [1]. Pathogenic mutations in granulin (GRN) are a
major cause of heritable FTD and mostly reduce progranulin protein (PGRN) levels in blood
and cerebrospinal fluid (CSF) by haploinsufficiency [2-6]. PGRN plays an important role in
neurite outgrowth and inflammation, which may be the link to neurodegeneration [7].

As PGRN levels vary greatly between individuals, various genetic and environmental
regulators may play a role [5, 8-10]. A number of single nucleotide polymorphisms
(SNPs) have beenassociated with altered CSF or plasma PGRN levels: rs5848 (GRN), rs646776
[near sortilin 1 (SORT1)] and rs1990622 [near transmembrane protein 106B (TMEM106B)]
[10-14].

Current FTD research is shifting towards disease-modifying agents, and sensitive
biomarkers are essential to evaluate these potential agents in the clinic. Histone deacetylase
inhibitors, alkalizing reagents and inhibitors of vacuolar ATPase, have been shown to
enhance PGRN expression in carrier-derived cells and might therefore inhibit the disease
process [15, 16]. Although blood PGRN poorly correlates to CSF PGRN in healthy controls
and Alzheimer’s disease, sporadic FTD and amyotrophic lateral sclerosis [10, 17, 18], this
information is lacking in GRN mutation carriers. To use PGRN levels as biomarkers in thera-
peutic trials on PGRN-enhancing agents, a better understanding in GRN mutation carriers is
needed on correlations between levels in blood and CSF, fluctuations over time and vari-
ability between subjects.

In this study, patients and presymptomatic carriers of pathogenic GRN mutations were
studied to investigate (1) the correlation between plasma and CSF levels in GRN mutation
carriers, (2) the fluctuations of plasma PGRN over time, and (3) the associations between
three SNPs (rs5848, rs646776 and rs1990622) and PGRN levels in plasma and CSF.

Methods

Subjects

A group of 57 (37 women, 20 men) asymptomatic first-degree relatives of patients with
FTD caused by a pathogenic GRN mutation (at-risk group) was selected from our longitudinal
neuropsychological and MRI study in genetic FTD [19]. Participants were selected depending
on the availability of plasma and/or CSF (no biosample available: n = 10). The participants
originate from three different families with GRN mutations (p.Ser82Valfs, p.GIn125* or
p-Val411Serfs mutation). After screening of these GRN mutations [20], participants were
divided into those with (presymptomatic carriers, n = 28) and those without a pathogenic
GRN mutation (controls, n = 29); investigators and at-risk individuals remained blinded to the
individual carrier status. Plasma was available from all 57 at-risk individuals; a lumbar
puncture was carried outin 28 of them (16 presymptomatic GRN carriers and 12 controls, see
online suppl. fig. 1; see www.karger.com/doi/10.1159/000447738 for all online suppl.
material). Longitudinal blood samples for the determination of variability of plasma PGRN
were collected in 37 at-risk subjects (18 presymptomatic GRN carriers and 19 controls), and
the other 20 subjects did not participate, mainly because of logistical reasons (e.g. long travel
distance) or a lack of motivation.

Additionally, 10 patients with a pathogenic GRN mutation (p.Ser82Valfs, p.GIn125%
p.Val411Serfs and p.GIn130Serfs) were included from our previously described cohorts [21,
22].Plasmawas available from 7 patients (longitudinal sampling in 4) and CSF from 7 (plasma
also available in 4).
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The study was approved by the medical ethics committee. All participants or legal repre-
sentatives provided written informed consent for the blood and/or CSF collections.

Plasma and CSF Collection

Blood collections were performed according to standard procedures. For longitudinal
analyses, blood was collected in a local hospital or nursing home at 5 time points during
1 week: 0 h, 6 h,12 h, 24 h and 7 days. The collections at the time points 0 h, 24 h and 7 days
were performed in the morning, while the 6-hour time point was performed after noon and
the 12-hour time point in the evening. To diminish the burden for FTD patients resident in a
nursing home, the venipuncture at 12 h was omitted (n = 3). To assess the influence of fasting
on plasma PGRN, participants fasted for a minimum of 8 h before the venipuncture at 24 h.
Plasma was isolated from K;EDTA-coated tubes (Becton Dickinson) by direct centrifugation
at 1,300 relative centrifugal force for 20 min at room temperature, aliquoted and directly
stored at -80°C.

CSF was collected using standard procedures into polypropylene tubes. The first 1-3 ml
were discarded and samples were centrifuged in the polypropylene tubes at 2,000 relative
centrifugal force for 10 min at +4°C. CSF was aliquoted into polypropylene vials and immedi-
ately stored at -80°C.

Laboratory Methods

All measurements were performed blinded to the mutation status and clinical stage.
PGRN concentrations in plasma and CSF samples were determined using a qualified immu-
noassay based on an enzyme-linked immunosorbentassay (ELISA) kit from BioVendor (Brno,
Czech Republic) following kitinstructions. Low, medium and high PGRN concentration quality
control samples were run on each assay plate with an acceptance coefficient of variation (CV)
cutoff of <20%. PGRN replicates with a CV of >20% were excluded from the analyses. CSF was
diluted 1:2 and plasma 1:40. All reported concentrations fell within the qualified range of the
assays. PGRN concentrations were determined on a standard curve by plotting optical density
versus concentration, using four-parameter logistic curve-fitting.

DNA was extracted from whole blood following standard procedures. SNPs rs5848 [NM_
002087.2(GRN):c.*78C>T], rs646776 [NM_001408.2(CELSR2):c.*1859C>T, near SORTI] and
rs1990622 [NM_000007.13:g.12283787A>G, near TMEM106B] were genotyped using
Tagmanassays(respectiveassaynumbersC_7452046_20,C_3160062_10andC_11171598_10;
Life Technologies, Carlsbad, Calif,, USA) on a 7900HT Fast Real-Time PCR System (Applied
Biosystems, Carlsbad, Calif., USA). Genotypes were assigned using SDS v3.1 software (Applied
Biosystems).

Statistical Analysis

Statistical analyses were performed using SPSS 21.0 for Windows (Chicago, Ill., USA) and
GraphPad Prism 6 (LaJolla, Calif.,, USA), applying a significance level of p < 0.05. Comparisons
between two groups were made by Mann-Whitney U tests because of non-normally distributed
data; multiple groups were compared by Kruskal-Wallis tests. Pearson’s correlation coeffi-
cient (r) was used to correlate two normally distributed variables; otherwise, Spearman’s
correlation coefficient (rs) was used. To assess the variability (variance) in CSF PGRN levels
accounted for by plasma PGRN, the coefficient of determination (R? = r?) was used [10]. Age
at onset (AAO) was defined as the age of first symptoms noted by a caregiver. For the longi-
tudinal blood withdrawals, repeated-measures ANOVAs were used and variability per indi-
vidual was assessed by the CV (ratio of the standard deviation to the mean) and compared
between the groups with t tests. In the case of longitudinal withdrawals, the median of each
individual was used for comparisons of single plasma PGRN values; for plasma-CSF correla-
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Table 1. Subject characteristics

Plasma available (n = 64) CSF available (n = 35)
controls GRN mutation controls GRN mutation
carriers carriers
Number (male) 29 (11) 35(12)2 12 (4) 23(9)
Number of symptomatic subjects - 7 - 7
MMSE (range) 30 (25-30)°¢ 30 (0-30)° 30 (28-30) 29 (18-30)
AAO, years (IQR) - 59.1 (57.6-65.8)¢ - 57.6 (55.1-65.5)°¢
Age at collection, years (IQR) 58.6 (51.8-63.5) 58.1 (53.4-64.3) 58.1 (50.8-64.0) 57.4 (54.7-61.0)
Time between onset and collection,
years (range) - 2.3 (-1.2t05.3) - 2.0 (-1.2t05.0)
Time between plasma and CSF
collection, days (range) 35 (0-265) 19 (0-597) 35(0-265) 19 (0-597)
PGRN level, ng/ml (range) 28.5(21.5-39.2) 8.0 (5.2-11.3) 0.76 (0.60-1.25) 0.29 (0.15-0.46)

Values are displayed as medians. MMSE = Mini-Mental State Examination; IQR = interquartile range.

aMutations: p.Ser82Valfs, n =23; p.GIn125* n=9; p.Val411Serfs, n = 2; p.GIn130Serfs, n = 1. b Presymptomatic GRN mutation
carriers median MMSE score = 30 (range 26-30), symptomatic carriers median MMSE score = 18 (range 0-26). € Only known
AAO in 7 patients and 1 presymptomatic carrier who converted after collection.

tions, we used the plasma sample closestin time to the lumbar puncture. Associations between
SNP genotypes and PGRN levels were analyzed by multivariate regression with GRN mutation
status, age and gender as covariates.

Results

Cohort Characteristics

The baseline characteristics of the cohort are displayed in table 1. Presymptomatic
carriers, controls and patients did not differ in age (p = 0.08). Mini-Mental State Examination
scores were lower in patients than in at-risk individuals (p < 0.01); no differences were found
between controls and presymptomatic carriers (p = 0.51).

Plasma PGRN Levels

GRN mutation carriers had lower plasma PGRN levels than controls, without any overlap
between the groups (p < 0.001; table 1; fig. 1a). Median level in carriers was 28% of that in
the controls. Maximum variation between subjects was a factor of 1.8 in controls and 2.2 in
carriers (ratio of the highest to the lowest expression per group). PGRN levels did not differ
between presymptomatic carriers and patients (p = 0.51). Differences between various muta-
tions did not reach significance (p = 0.06), and limited numbers across the mutations did not
allow for post hoc testing. Plasma PGRN did not correlate with age (fig. 2a), gender or AAO.

CSF PGRN Levels

Median CSF PGRN in carriers was 39% of that in controls, without overlap of the levels
between the groups (p < 0.001; table 1; fig. 1b). In carriers, the lowest expression level of the
CSF PGRN was 3.1 times lower than that of the highest expression level; in controls this was
a 2.1-fold difference. CSF PGRN did not differ between presymptomatic carriers and patients
(p =0.58), or between various GRN mutations (p = 0.16). CSF PGRN did not correlate with age
(fig. 2b), gender or with AAO.
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Fig. 1. PGRN levels in plasma and CSF. PGRN in plasma from healthy controls (n = 29), presymptomatic GRN
mutation carriers (n = 28) and GRN patients (n = 7) (a) and in CSF from healthy controls (n = 12), presymp-
tomatic GRN mutation carriers (n = 16) and GRN patients (n = 7) (b). Each individual is represented as a data
point and labeled by type of mutation. Horizontal lines are median plasma levels per group.
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Fig. 2. PGRN levels as a function of age. Scatterplots of PGRN levels in plasma (a) and CSF (b) by age at col-
lection in healthy controls (squares), presymptomatic GRN mutation carriers (triangles) and GRN patients
(diamonds). To prevent disclosure of genetic status, a 23-year-old subject was excluded from the graph (but
not from the analyses).
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Correlation between Plasma and CSF

Within the group of subjects with both plasma and CSF samples (16 presymptomatic
carriers, 4 GRN patients and 12 controls), PGRN plasma levels correlated significantly with
CSF levels (rs = 0.80, p < 0.001; fig. 3). The median interval between blood and CSF collection
was 32 days (range 0-597; see table 1). The correlation between PGRN levels in CSF and
plasma collected on the same day in 13 subjects (6 presymptomatic carriers, 3 GRN patients
and 4 controls) was similar to the total group (rs = 0.78, p = 0.002). The correlation between
PGRN levels in plasma and CSF was weaker when both subgroups were separately analyzed:
r=0.54 (p = 0.02) in carriers and r = 0.21 (p = 0.51) in controls. The coefficient of determi-
nation, R?, was 0.29 in carriers; this means that in our group of carriers, 29% of the variability
in CSF PGRN levels is explained by the variability in plasma PGRN levels and the remaining
71% are still unaccounted for.

Longitudinal Plasma PGRN Levels

Plasma PGRN levels were found to be stable over 1 week in carriers and controls (fig. 4),
with amean CV in carriers of 5.3% (range 2.3-9.7) and in controls of 4.7% (range 1.4-8.6; not
statistically different, p = 0.32). Repeated-measures analyses showed no significant differ-
ences over the five time points (p = 0.13 in carriers and p = 0.053 in controls); the trend for a
difference in controls was caused by a nonsignificant lower plasma PGRN at 6 versus O h (p =
0.09, Bonferroni post hoc test). The fasting PGRN plasma levels (24-hour time point) were not
significantly different from other time points (e.g. fasting PGRN level vs. time point 0 h in
carriers, p = 0.18, paired t test).

Associations between SNPs and PGRN Levels

The associations of the SNPs with PGRN levels are displayed in online supplementary
table 1 and online supplementary figure 2. GRN mutation carriers had lower PGRN plasma
levels with each additional minor allele (A) of rs5848 (GRN) without an effect in CSF. In
contrast, in the control group an effect was found in the CSF only. The minor allele (G) of
rs646776 (near SORT1) was associated with lower PGRN levels in plasma of GRN mutation
carriers, without a significant effect in controls or in CSF. For rs1990622 (near TMEM106B),
the minor allele (C) was associated with lower plasma PGRN levels in the entire group of
subjects; no significant associations were observed for CSF.
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Fig. 4. Longitudinal plasma PGRN. PGRN levels over time in plasma of healthy controls (n = 19, squares),
presymptomatic GRN mutation carriers (n = 18, triangles) and GRN patients (n = 4, diamonds). Each with-
drawal is represented with a data point; lines connect data points of each individual. At the 12-hour time
point, 3 data points are missing (all GRN patients).

Discussion

This study showed that CSF PGRN levels in alarge series of presymptomatic GRN mutation
carriers were already lower than in age-matched controls. Plasma PGRN levels strongly
correlated with CSF levels; however, this was largely explained by the difference in GRN
carrier status and in carriers, only 29% of the variability in CSF PGRN was explained by
plasma PGRN. Plasma PGRN levels within subjects fluctuated by 5% over a 1-week period,
which has major implications for the clinical trial design aiming at PGRN restoration. Known
SNPs only partly explained variation in plasma and CSF PGRN levels between subjects.

The significantly lower plasma PGRN levels in GRN mutation carriers than in healthy
controls found in this study, and the similar levels in presymptomatic carriers and patients
are in line with previous reports [4, 5, 8, 9, 11]. The gap between plasma PGRN levels in our
carriers versus noncarriers was even larger and the spread of PGRN levels was smaller than
in previous studies [4, 5, 8]. This might be explained by a standardized collection of samples
and the use of a new qualified ELISA assay with strict performance acceptance criteria and
quality control samples on each plate. As previously suggested, plasma PGRN can serve as a
reliable screening tool for pathogenic GRN mutations in patients with seemingly sporadic
FTD or with an unspecified early-onset dementia [4, 5, 9]. Plasma PGRN can also serve as a
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rapid ex vivo screening tool in patients with variants of unknown significance in GRN. This
identification of pathogenic GRN mutations becomes even more important with forthcoming
potential treatments increasing PGRN expression.

PGRN levels in CSF of presymptomatic carriers and patients did not show overlap with
controls at all ages, which is in line with earlier reports in small series of GRN patients [4, 6].
With the development of PGRN-enhancing therapies, a crucial question remains whether and
at what age enhancing PGRN will have an effect on disease course. As this study showed for
the first time that CSF PGRN levels are already reduced in the presymptomatic stage, addi-
tional biomarkers (clinical, neuroimaging and/or biochemical) are needed to determine
disease onset and to track disease progression in therapeutic trials.

The strong correlation between peripheral and CSF PGRN levels contrasts with a weaker
correlation found in studies in healthy controls (partial r = 0.17 and r = 0.36) and no signif-
icant correlation in sporadic FTD [10, 17, 18]. This could be explained by the clear dichotomy
in PGRN levels between GRN mutation carriers and noncarriers; our observed correlation
was mainly driven by GRN genotype, as subgroup analyses by carrier status showed lower
correlations. In our opinion, plasma PGRN levels can serve as an easily accessible biomarker
to assess target engagement for potentially disease-modifying agents. However, since plasma
PGRN levels in carriers explained only 29% of the variability of CSF PGRN levels, plasma
PGRN cannot predict CSF PGRN. Moreover, these and previous data suggest a differential
regulation of PGRN in plasma/serum versus CSF, and likely the majority of CSF PGRN is
synthesized in the central nervous system [10, 18, 23]; therefore, it could also be that PGRN-
enhancing agents have differential effects on different tissues. Although it is unknown
whether CSF indeed reflects PGRN levels in the brain and/or interstitial space [18], drug
effects could be missed in the worst case if solely relying on plasma PGRN, and CSF sampling
will additionally be needed to evaluate effects of pharmacological interventions. The perfor-
mance of plasma versus CSF PGRN as a surrogate biomarker depends on the place and size
of effect of potential PGRN-restoring agents, and remains to be investigated in longitudinal
trials.

This first observation of stable PGRN levels over a 1-week period in carriers has important
implications for therapeutic trials of pharmacological agents aiming to restore PGRN levels.
Itis in line with the findings of no significant differences over a longer time period in mainly
noncarriers [23]. The mean observed CV over a week of 5% can be technically explained by
the assay variability. Plasma PGRN did not alter under fasting conditions, which additionally
indicates that plasma PGRN levels can be a suitable biomarker of target engagement.
Furthermore, our data can support sample size estimations, greatly facilitating clinical trial
design: using intrasubject over intersubject variability significantly reduces trial size in this
rare disease.

It was recently published that more commonly used PGRN ELISA kits (Adipogen and
R&D) detected CSF PGRN in non-GRN carriers only at the lower detection range of the kits
[24]. Because CSF PGRN of GRN carriers is at least 50% lower, we opted for the more sensitive
protocol of Biovendor. R&D and Biovendor yielded similar PGRN concentrations; additionally,
Biovendor was qualified to detect low ranges of CSF PGRN (qualified range: 0.018-2.1 ng/ml,
data not shown). A limitation is that comparison with studies that used Adipogen and meta-
analyses for cutoff levels would be complicated, due to different normality values among the
kits.

PGRN levels are known to vary widely among subjects and several factors have been
found which partly explain this variability. In this study, neither age at collection, nor gender
were correlated with PGRN levels, in contrast to some earlier reports in noncarriers [4, 5, 10,
12, 13]. This might be explained by the limited age range and the small sample size. However,
in carriers, previous studies did not detect a correlation with age, similar to our result [8, 9].
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The same holds true for AAO, for which conflicting results have been reported and this study
did not find a correlation [5, 8, 9].

Several SNPs have been found to influence PGRN levels: rs5848 in GRN, rs646776 near
SORT1, and rs1990622 near TMEM106B. The correlation between lower PGRN levels and the
minor allele of rs5848 in our series is in line with findings from previous studies [10, 12, 25].
Probably microRNA-659 binds more efficiently to this minor allele, resulting in translational
suppression of PGRN [26]. The significantly lower plasma PGRN levels with each minor allele
in our GRN mutation carriers suggest that the translational suppression also takes place when
there is only one functional GRN allele.

In our GRN mutation carriers and in previous studies, rs646776 (near SORT1) correlated
significantly with plasma PGRN levels, but not with PGRN CSF levels [10, 13, 27]. This SNP is
probably aliver-specific regulator of SORT1 and therefore only a peripheral modifier [10, 28].

The minor allele (C) in rs1990622 (TMEM106B) was not associated with higher plasma
PGRN levels, in contrast to the strong association in GRN patients and healthy controls found
in previous studies [11, 14]. Such an association was supported by a proposed functional link
between TMEM106B and PGRN and by a delay in AAO with each minor allele [11, 14, 29-31].
Our findings might be explained by analysis in a few families resulting in genetic bias. Larger
cohorts are needed in order to investigate the exact role of TMEM106B on PGRN and AAO in
various genetic backgrounds.

Major strengths of our study include longitudinal plasma collections over a week within
the same individuals, uniformly performed by a single investigator and collection protocol.
Furthermore, presymptomatic carriers and controls were well matched since they originate
from the same families. A methodological weakness of this study is the interval of more than
1 day between plasma and CSF collection in half of the cases. However, a subgroup analysis
of samples collected on the same day showed a correlation comparable to that in the entire
group. This might be expected given the demonstrated low variability in plasma PGRN levels
over time in this study and in CSF PGRN levels recently reported [23]. Future studies are
warranted to analyze variations between plasma sampled more than 1 week apart and fluc-
tuations in PGRN CSF over time in GRN mutation carriers. Additionally, the population was
too small to get robust conclusions on the effect of the studied SNPs on PGRN levels in GRN
mutation carriers and should be studied in larger cohorts.

To conclude, PGRN levels in plasma and CSF were already low in presymptomatic GRN
mutation carriers and separated completely from noncarriers. Although PGRN levels in
plasma and CSF strongly correlated, plasma PGRN levels only explain 29% of the variability
of CSF PGRN levels in GRN mutation carriers, and therefore both blood and CSF sampling is
needed in PGRN-enhancing trials. Plasma PGRN levels can serve as biomarker of target
engagement for potentially disease-modifying agents addressing PGRN steady state, as they
were relatively stable over 1 week. Further research is required to elucidate which other
factors are associated with PGRN regulation, with emphasis on the differences between the
regulation in plasma and CSF.
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