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ported hematopoiesis and showed multipotent differentiation ca-

pacity [1, 2]. In the following years, being depicted as ‘mesenchy-

mal stem/stromal cells’ (MSCs), in particular their differentiation 

potential and ‘stemnesss’ suggested the potential applicability of 

MSCs in a field that later became regenerative medicine. To date, 

MSCs have been isolated and characterized from a great variety of 

postnatal organs such as bone, BM, periosteum, synovial mem-

brane/fluid, adipose tissue (AT), skeletal muscle, skin, periodon-

tium and pancreatic islets, as well as from prenatal tissues like um-

bilical cord (blood) (UC(B)), amniotic fluid (AF) and placenta 

[3–7].

Numerous studies investigating in the multipotentiality of 

MSCs emphasized the capability of MSCs to differentiate not only 

in vitro and in vivo into adipogenic, osteogenic, chondrogenic, en-

dothelial and myogenic lineages [8–14], but also into epithelial [15, 

16] and neural cell types [17, 18]. There is growing scepticism 

about functional differentiation capacities of MSCs beyond adipo-

cytes, osteocytes, and chondrocytes [19–21]. Yet, evidence of thera-

peutic capacities of MSCs in animal studies, modeling diseases 

such as stroke, myocardial ischemia or diabetes [22–24], raised 

great expectations that MSCs could be used as ‘multi-talent cell 

source’ for cell therapeutics with broad clinical applicability. Prom-

ising early clinical proof-of-concept studies for treatment of graft-

versus-host disease [25–28] and regenerative applications [23, 29] 

appear to point towards this direction yet. Nevertheless, we are still 

waiting for the sustainable translation of MSC therapies to the 

clinic.

In the following, we will discuss achievements and challenges of 

the development of MSC therapies in regenerative medicine, high-

lighting specific in vitro preconditioning strategies prior to cell 

transplantation to increase their therapeutic efficacy.
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Summary
Mesenchymal stem/stromal cells (MSCs) are becoming 
increasingly important for the development of cell thera-
peutics in regenerative medicine. Featuring immu-
nomodulatory potential as well as secreting a variety of 
trophic factors, MSCs showed remarkable therapeutic ef-
fects in numerous preclinical disease models. However, 
sustainable translation of MSC therapies to the clinic is 
hampered by heterogeneity of MSCs and non-standard-
ized in vitro culture technologies. Moreover, potent MSC 
therapeutics require MSCs with maximum regenerative 
capacity. There is growing evidence that in vitro precon-
ditioning strategies of MSCs can optimize their therapeu-
tic potential. In the following we will discuss achieve-
ments and challenges of the development of MSC thera-
pies in regenerative medicine highlighting specific in 
vitro preconditioning strategies prior to cell transplanta-
tion to increase their therapeutic efficacy.

© 2016 S. Karger GmbH, Freiburg

Introduction

More than four decades ago Alexander Friedenstein identified 

bone marrow(BM)-derived fibroblastoid clonogenic cells that sup-
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The Heterogeneity of MSCs and Non-Standardized 
ex vivo Culture Technologies

In the human bone and BM, which are currently a major source 

for MSC therapeutics (table 1), MSC subpopulations, such as fibro-

blastoid reticular stromal cells, adipose stromal cells, round stro-

mal cells and bone lining cells, reside in distinct microanatomical 

localizations [30]. In addition, the perivascular niche harbors cells 

featuring MSC phenotypes as shown for various organs [4, 30, 31]. 

Due to the low frequency of MSCs in the BM (below 0.1% of nucle-

ated cells [32]), manufacturing substantial numbers of MSC doses 

for therapeutic applications requires isolation/enrichment of MSCs 

as well as their in vitro expansion.

Currently, it is unclear how in detail, most importantly on func-

tional level, the in vivo heterogeneity of MSCs is reflected by their 

in vitro culture, i.e. if, and if yes to which extent, different MSC 

phenotypes feature different functional properties. The most 

widely used MSC isolation and expansion technique is sub-cultur-

ing adherent cells from BM mononuclear cell fraction, enriched by 

density gradient [33], or from the stromal vascular fraction (SVF), 

obtained by enzymatic treatment of lipoaspirate [6]. These proce-

dures, or alternative isolation techniques such as collagen and fi-

brin matrices or specific culture conditions (e.g. low oxygen, media 

enriched with growth factors), may select for certain MSC subpop-

ulations and/or promote their in vitro expansion [34, 35]. In addi-

tion to considerable donor-donor variations, BM- and AT-MSC 

preparations feature significant heterogeneity in vitro as shown by 

a highly variable expression profile of marker sets potentially de-

fining MSC subpopulations, e.g. CD140a, CD146, CD200, CD201, 

or CD271 [33, 36]. In addition, CD106 and CD271 expression is 

dynamic (decreasing) during the course of MSC in vitro culturing 

[35]. In contrast, CD73, CD90, and CD105 feature high and stable 

expression of MSCs in vitro, and therefore, together with a tri-line-

age differentiation capacity and absence of hematopoietic markers, 

were elected by the International Society of Cell Therapy (ISCT) to 

characterize human MSC preparations [8]. 

Another variable to be considered for the development of MSC 

therapies is the influence of so far only poorly defined blood com-

ponents such as human platelet lysate (HPL) used for media sup-

plementation. Compared to fetal bovine serum, media supple-

mented with HPL or other human blood components are superior 

for the growth promotion and differentiation potential of MSCs 

[37–39]. Further studies are required to assess a possible influence 

of human blood components on the  therapeutic efficacy of MSCs 

but also their potential immunogenicity.

Possible Implications of MSC Heterogeneity on 
Their Regenerative Potential

To address the question whether or not, and if yes to what extent, 

the heterogeneity of MSCs might affect their therapeutic potential in 

regenerative medicine,in the following, we will discuss the variables 

source and subpopulations with respect to the MSC function. 

Given their multipotentiality, it might be obvious to focus on 

the differentiation potential of MSCs in order to assess its function 

Source of MSCs Condition Total number of  

clinical trials

Autologous Allogeneic

BM-MSCs Ischemia* 28 21  8

Bone regeneration 18, thereof 9 TE# 14  3

Graft rejection 12  4  9

Degenerative diseases§ 12  9  2

Lung diseases†  9  3  6

Multiple sclerosis  9  9  0

Amyotrophic lateral sclerosis  3  3  0

AT-MSCs Ischemia* 10  6  2

Degenerative diseases§  8  7  1

Crohn’s disease  3  1  2

Spinal cord injury  2  2  0

Liver cirrhosis  2  2  0

Multiple sclerosis  2  2  0

Amyotrophic lateral sclerosis  2  1  1

BM-MSCs GvHD 23  1 20

AT-MSCs GvHD  3  1  2

*Including myocardial infarction, stroke, and critical limb ischemia.
# Tissue engineering, e.g. MSCs seeded on bioceramic plates or immobilized in allogeneic bone prior to  

implantation.
§e.g. osteoarthritis, degenerative disc disease.
†e.g. emphysema, respiratory distress syndrome.

Table 1. Most frequent conditions  

for MSCs therapies clinical trials
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pertinent to tissue regeneration. However, this approach poses sev-

eral challenges: first, how to assess MSC differentiation on a func-

tional level, and second, how to translate observations of in vitro 

differentiation to the ultimately relevant regenerative setting in 

vivo.

Detection of markers such as glial fibrillary acidic protein, nes-

tin, synaptophysin or β tubulin III/Tuj1 by ‘neurogenic’ differenti-

ated MSCs [17, 18, 40] without evidence of neurotransmitter-mod-

ulated neuron-specific electrophysiological properties might not be 

sufficient to prove the neurogenic differentiation capacity of MSCs 

[19]. The limited applicability of ‘lineage-specific markers’ to assess 

MSC differentiation also refers to the numerously claimed cardio-

myogenic differentiation potential of MSCs. Specifically native 

MSCs have been shown to express ‘cardiomyogenic markers’ (e.g. 

troponin I or atrial natriuretic protein), as well as MSCs after treat-

ment with differentiation media, without featuring functional my-

ogenic properties (e.g. formation of contractile cell structures) [21, 

41]. Yet, given the heterogeneity of MSCs and our still limited un-

derstanding of the biology of MSCs, the existence of probably rare 

MSC subpopulations featuring true transdifferentiation potential 

could not completely be ruled out at this point, in particular as 

MSC differentiation is a clonal event [21, 42]. 

Regarding influence of source, UCB-MSCs had impaired adipo-

genic differentiation potential compared to AT-MSCs, BM-MSCs 

[6, 43], and BM-MSCs showed greater osteogenic differentiation 

potential compared to UCB-MSCs, AT-MSCs, or placenta-derived 

MSCs [43, 44]. Interestingly, BM-MSCs showed variable osteo-

genic differentiation potential depending on the harvest technique 

(reamer/irrigator/aspirator, spoon, fine-needle aspiration) and the 

anatomical localizations (femur, iliac crest) [45]. Amongst postna-

tal sources, BM-MSCs appear highly applicable for regeneration of 

cartilage defects featuring acceptable graft integration and biologi-

cal similarities to cartilage tissue [46]. Comparing MSCs only from 

fetal sources, UCB-MSCs showed greater chondrogenic differenti-

ation capacity than MSCs from amniotic fluid [47]. A recent study 

compared two cell types from the same source (UCB), i.e. UCB-

mononuclear cells and UCB-MSCs, with cord matrix(CM)-MSCs 

regarding their therapeutic potential in a rat stroke model. All 

tested cell types showed therapeutic efficacy; however, more severe 

complications could be detected in the CM-MSC group [48].

Identification and quantification and/or enrichment of potent 

MSC subpopulations could mark a significant step towards opti-

mized and standardized MSC therapies for regenerative medicine. 

Regarding possible differences of regenerative potential between 

MSC subpopulations, several studies tackled this complex and 

technically challenging problem. To date, different strategies have 

been developed to functionally characterize MSC subpopulations 

and to assign MSC subpopulation phenotypes to function. 

First, investigating a substantial number of BM-MSC prepara-

tions in vitro, correlation analyses suggested an association of sur-

face markers (CD10, CD71, CD106, CD119, CD146, CD166, and 

CD271) in order to assess the differentiation and clonogenic po-

tential of BM-MSCs [33]. Another study applied a broad antibody 

panel (>200 markers) to compare AT-MSC surface after osteogenic 

or adipogenic differentiation to undifferentiated AT-MSCs. Here, 

an increased expression of CD164 was associated with an osteo-

genic differentiation, whereas CD36, CD40, CD146, CD164, and 

CD271 were higher expressed after adipogenic differentiation [49]. 

Another correlation concept identified, in addition to gene ex-

pression modulation experiments, the transcription factor TWIST1 

as being significantly involved in BM-MSC function such as dif-

ferentiation, support of angiogenesis and immunomodulation. 

Based on these observations, a ‘clinical indication prediction scale’ 

was developed assigning a more pro-angiogenic potential at higher 

TWIST1 expression to BM-MSCs, whereas a lower TWIST1 ex-

pression indicated a more pronounced immunomodulatory func-

tion of BM-MSCs [50].

Second, positive selections and subsequent functional analyses 

of MSC subpopulations could mark a further step forward. How-

ever, with the limitations of a potentially decreasing purity during 

sub-culturing and/or producing ‘culture artifacts’, as interplay of 

subpopulations might be relevant for their function, the CD271+ 

MSC subpopulation is abundant in intramedullary cavities of the 

long bones, and CD271+ sorted BM-MSCs featured greater osteo-

genic differentiation potential compared to non-sorted BM-MSCs 

[32, 51]. Meanwhile, first steps have been taken towards clinical-

grade GMP production of CD271+ sorted BM-MSCs for bone re-

generation [52]. Amongst placenta-derived MSCs, a greater osteo-

genic differentiation potential could be assigned to the CD146+ 

subpopulation, whereas, after sorting, CD146– MSCs could not 

form mineralized extracellular matrix, an indicator for functional 

osteogenic differentiation [53].

Third, MSC subpopulations may be defined by their ‘perfor-

mance’ during in vitro culture, e.g. proliferation potential. A recent 

study compared BM-MSCs with long-term growth potential (‘high 

growth’) with BM-MSCs featuring lower cumulative population 

doublings and cumulative cell numbers (‘low growth’). The study 

detected differences with respect to their osteogenic differentiation 

potential in vitro and in vivo. Specifically, ‘low growth’ BM-MSCs 

appeared to be more potent in osteogenic differentiation in vitro, 

whereas in vivo application of ‘high growth’ BM-MSCs induced 

larger volumes of ectopic bone in a rodent model [54].

Fourth, novel technologies, such as high-resolution microfluidic 

single-cell transcriptional profiling, allow clustering of subpopula-

tions within MSC preparations [55]. Applying a combined library 

of surface markers with targets that are regarded as being indica-

tive for MSC regenerative function, a recent study identified a pro-

vascular phenotype within the BM-MSC preparation that might be 

applicable for regeneration of the brain (stroke), the heart (myo-

cardial infarction) or other clinical indications where improvement 

of vascularization is needed [56].

MSCs Secrete Trophic Factors and Produce  
Extracellular Vesicles

The aforementioned limited evidence of the functional differen-

tiation capacity of MSCs together with the observation that MSCs 
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exert regenerative potential even without long-term survival after 

in vivo transplantation [57] led to the conclusion that trophic fac-

tors, released by MSCs, mainly mediate their therapeutic effects 

[58]. Indeed, various studies confirmed that MSCs produce and se-

crete a great variety of factors that are supposed to exert regenera-

tive effects [33, 59, 60]:

– Angiopoietin-1: induction of angiogenesis, promotion of myo-

cytes survival in myocardial infarction, increased survival of 

implanted MSCs, reduction of infarct size and fibrosis

– Brain-derived neurotrophic factor (BDNF):reduction of infarct 

size, promotion of neuronal tissue survival and differentiation

– Erythropoietin: angiogenesis, anti-apoptotic effects

– Fibroblast growth factor 1/2/4/7/9 (FGF-1/2/4/7/9): induction 

of angiogenesis, anti-apoptotic and anti-fibrotic effects, prolif-

erative effects

– Glial cell-derived neurotrophic factor (GDNF): reduction of in-

farct size and axonal growth, promotion of dopaminergic neu-

rons, motoneurons survival and morphological differentiation

– Granulocyte/macrophage-colony stimulating factor (G/M-CSF): 

progenitor cell mobilization, anti-apoptotic effects

– Hepatocyte growth factor (HGF): progenitor cell mobilization, 

induction of angiogenesis, promotion of cell growth, anti-

apoptotic and anti-fibrotic effects

– Insulin-like growth factor 1/2 (IGF-1/2): progenitor mobiliza-

tion, induction of renal tubular cells proliferation, anti-apop-

totic effects

– Leukemia inhibitory factor (LIF): progenitor cell mobilization

– Nerve growth factor (NGF): neuroprotective effects

– Platelet-derived growth factor (PDGF): proliferative effects

– Stromal cell-derived factor 1 (SDF-1): progenitor cell mobilization

– Secreted frizzled-related protein 2 (Sfrp-2): myocardial surviv-

al and repair after ischemic injury

– Stanniocalcin 1 (STC-1): anti-apoptotic effects

– Transforming growth factor β1/2/3 (TGF-β1/2/3): stem cell dif-

ferentiation and protection, tubulogenesis in kidney, anti-

apoptotic effects

– Vascular endothelial growth factor (VEGF): induction of an-

giogenesis, stimulation of peritubular capillaries proliferation, 

progenitor cell mobilization, anti-apoptotic effects.

Interestingly, the secreted factor profile of AT-MSCs appears to 

be different compared to BM-MSCs [61]. To date, only few studies 

identified specific trophic factors of MSCs as relevant for regenera-

tion of distinct pathologies (e.g. BDNF for stroke [62–64] and 

VEGF for myocardial infarction [65]).

There is growing evidence that extracellular vesicles (EVs) re-

leased by MSCs contribute to the therapeutic repertoire of the 

trophic factors of MSCs [66, 67]. Application of MSC-derived EVs 

has shown efficacy in various animal models such as myocardial 

infarction, limb ischemia, wound healing, or kidney, liver and lung 

injury [68, 69]. Although promising, before a sustainable transla-

tion into the clinic as possible alternative to MSC-containing thera-

peutics, MSC-EVs need to be defined more clearly and to be 

proven similar or superior with regard to efficacy and safety com-

pared to engrafted MSCs.

The most frequent conditions in regenerative medicine for MSC 

therapies in clinical trials include ischemia (myocardial infarction, 

stroke, critical limb ischemia), degenerative diseases (osteoarthri-

tis, degenerative disc disease), and bone regeneration with BM-

MSCs as the most frequently used source (table 1). Interestingly, in 

total more MSC clinical trials have been conducted on regenerative 

medicine therapies than on GvHD.

Concepts of MSC Preconditioning

As pointed out in the previous section, MSC therapies are prom-

ising options to support organ and tissue regeneration. The protec-

tive effects of MSCs, their conditioned medium (CM), or MSC-EVs 

have been shown to support regeneration after various organ and 

tissue injuries. Yet, transplantation of MSCs or application of MSC-

CM or MSC-EVs require MSCs with maximum regenerative capac-

ity. Therefore, the development of new strategies to improve the 

regenerative efficiency of MSCs is urgently needed. In vitro pre-

treatment (‘preconditioning’) strategies can enhance survival, en-

graftment, and paracrine properties of MSCs and, therefore, opti-

mize their reparative and regenerative capacity. In the following 

section, we summarize different MSC preconditioning technologies 

that have been developed in the last decade. Specifically, we focus 

on preconditioning regimens tested in in vivo disease models, and 

not only in vitro studies with appropriate animals for control, i.e. 

animals treated with non-preconditioned cells.

To date, various in vitro preconditioning strategies have been 

applied to enhance the regenerative capacity of MSCs [59]. MSC 

preconditioning includes modulation of culture atmosphere (hy-

poxic or anoxic), 3D culture, addition of trophic factors (growth 

factors, cytokines, or hormones), lipopolysaccharides, and phar-

macological agents. The factors secreted by MSCs in response to 

the preconditioning regime are manifold and exert immunomodu-

latory or immunosuppressive anti-apoptotic, pro-angiogenic, and 

trophic effects [59]. The secretome (or the paracrine profile) of 

pretreated MSCs varies according to the preconditioning regimen 

used. Different preconditioning methods either activate or sup-

press different molecular signals and signal transduction cascades. 

The cellular responses are complex, and, in most cases, the pre-

treatment procedure affects a great number of factors, and not only 

a single, specific molecule or protein. In contrast, it should be men-

tioned that another approach to enhance the release of a specific 

regenerative factor is to overexpress a single factor in MSCs [70–

74]. Nevertheless, these genetically engineered MSCs are not re-

viewed in this article.

Preconditioning by Environmental Variations

Several studies showed that preconditioning by hypoxia or an-

oxia substantially enhanced the regenerative potential of MSCs 

(table  2) [75–82]. Exposure of MSCs to reduced oxygen partial 

pressure induced the expression of genes involved in migration 
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Table 2. Selected recent studies using preconditioned MSCs in in vivo modelsa 

Preconditioning regimen Source of  

MSCs/species

In vivo model/species Main findings of cell transplantation 

(versus non-preconditioned MSCs)

Year of publication 

[reference]

Hypoxia BM-MSCs, human hind limb ischemia, mouse increased restoration of blood flow 2008 [75]

Hypoxia BM-MSCs, mouse myocardial infarction,  

mouse

increased angiogenesis, reduced cell  

death and apoptosis of implanted cells

2008 [76]

Hypoxia AT-MSCs, human acute kidney injury,  

rat

improved renal function, improved  

vascularization and histological injury

2014 [77] 

Hypoxia AT-MSCs, mouse acute kidney injury,  

mouse

ameliorated renal function, lower levels  

of pro-inflammatory cytokines

2016 [78]

Anoxia BM-MSCs, mouse myocardial infarction,  

mouse

increased left ventricular ejection,  

reduced apoptotic cardiomyocytes

2006 [87] 

Anoxia BM-MSCs, rat diabetic cardiomyopathy,  

rat

increased capillary density, attenuated  

myocardial fibrosis, increased fractional  

shortening of diabetic heart

2008 [79] 

3D spheroid culture BM-MSCs, human peritonitis, mouse better lung trafficking, more effective in  

suppressing inflammatory responses

2010 [88]

EGF BM-MSCs, mouse hind limb ischemia, mouse recovery of blood flow and angiogenesis 2010 [118] 

PDGF-BB BM-MSCs, human myocardial infarction, mouse enhanced functional recovery 2015 [96] 

TGF-β BM-MSCs, mouse acute myocardial injury, rat enhanced myocardial functional recovery 2010 [92]

GDNF AF-MSCs, human acute kidney injury, mouse ameliorated renal function and tubular injury, 

increased MSC homing to the tubulointerstitial 

compartment

2012 [93] 

IGF-1 BM-MSCs, mouse acute kidney injury, mouse improved cell migration capacity, reduction in 

tubular necrosis, restored renal function 

2013 [94]

FGF-2, IGF-1, BMP-2 BM-MSCs, rat myocardial infarction, rat smaller infarct size, better cardiac function, 

enhanced gap junction formation

2008 [91] 

TNF-α AT-MSCs, human cutaneous wound-healing  

model, rat

accelerated wound closure, angiogenesis, 

proliferation, improved wound repair 

2011 [95]

SDF-1 BM-MSCs, rat myocardial infarction, rat reduction in infarct size and fibrosis, significant 

improvement in cardiac function, enhanced cell 

survival, engraftment, and vascular density

2008 [90] 

Angiotensin-II BM-MSCs, rat myocardial infarction, rat better cardiac function, less cardiac fibrosis,  

smaller infarct size, higher expression of VEGF  

in ischemic myocardium

2015 [103]

Melatonin BM-MSCs, rat focal cerebral ischemia, rat reduced apoptosis, reduced brain infarction  

and improved neurobehavioral outcomes

2014 [104] 

Melatonin BM-MSCs, rat acute kidney injury, rat increased MSC survival, proliferation of  

renal cells, accelerated renal recovery

2008 [105] 

Oxytocin UC-MSCs, human myocardial infarction, rat increased ejection fraction, lower cardiac  

fibrosis and macrophage infiltration

2012 [119] 

LPS BM-MSCs, mouse myocardial infarction, rat enhanced survival of engrafted MSCs and 

neovascularization, stimulated expression  

of VEGF, enhanced recovery of cardiac function

2009 [108] 

TLR3 activation (Poly(I:C)) BM-MSCs, porcine cardiomyopathy, hamster improved cardiac function, decreased  

inflammatory cells and cytokines

2012 [120] 

Hydrogen peroxide WJ-MSCs, human myocardial infarction, mouse improvement in left ventricular contractility, 

increased neovascularization and reduced 

myocardial fibrosis

2012 [121] 

Deferoxamine BM-MSCs, rat streptozotocin-induced  

diabetes, rat 

increased homing of MSCs in pancreas 2013 [111] 

aWe applied a PubMed search using the terms ‘preconditioning’ and ‘mesenchymal stem’. In addition, we only focus on preconditioning regimens tested in in vivo 

disease models and not simply in vitro studies with appropriate control animals, i.e., animals treated with non-preconditioned cells.

AF-MSCs = Amnion fluid-derived MSCs; AT-MSCs = adipose tissue-derived MSCs; BM-MSCs = bone marrow-derived MSCs; BMP = bone morphogenetic 

protein; EGF = epidermal growth factor; FGF = fibroblast growth factor; GDNF = glial cell-derived growth factor; IGF-1 = insulin-like growth factor-1; LPS = 

lipopolysaccharide; PDGF = platelet-derived growth factor; Poly(I:C) = polyinosinic:polycytidylic acid; SDF-1 = stromal cell-derived factor-1; ROS = reactive 

oxygen species; TGF-  = transforming growth factor- ; TLR = Toll-like receptor; TNF-  = tumor necrosis factor- ; VEGF = vascular endothelial growth factor; 

WJ-MSCs = Wharton`s jelly-derived MSCs.
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and homing (e.g. CXCR4 and SDF-1), mainly regulated by the ac-

tivity of hypoxia-inducible factor 1α (HIF-1α) [83]. Moreover, the 

culture of MSCs in a hypoxic environment appears to be more 

similar to the real in situ setting of MSCs than ‘artificial’ standard 

culture conditions (21% O2) [40]. Notably, the cellular responses to 

hypoxia in vitro seem to vary between different oxygen concentra-

tions (0.1–5% O2) (reviewed in [82]). 

In vitro preconditioning by hypoxia was shown to stimulate the 

secretion of growth factors, cytokines, and other proteins and the 

release of EVs (exosomes and microvesicles) from MSCs [84]. In 

this case, EVs in turn were also shown to carry a variety of biomol-

ecules such as growth factors, receptors, enzymes, transcription 

factors, signaling and immunomodulatory molecules, DNA, RNA 

transcripts, and noncoding RNA including retrotransposons, vault 

RNA, long non-coding RNAs and microRNAs [85, 86]. 

Hypoxia preconditioning has also been shown to enhance cell 

survival and proliferation [77, 80–82]. Also, hypoxic pre-incuba-

tion of MSCs induced metabolic changes that resulted in higher in 

vivo cell survival after transplantation [81]. It was also shown that 

culture in hypoxia enhanced the angiogenic potential of MSCs and 

improved their survival in both in vitro and in vivo studies [80, 81]. 

The involved downstream signaling pathways are the translocation 

of HIF-1α to the nucleus with the activation of gene expression 

(e.g. VEGF), but also the generation of reactive oxygen species 

(ROS) and phosphorylation of Akt and MAPK ERK1/2 [82]. 

The positive in vivo effects of hypoxic preconditioned and sys-

temically applied (i.v.) MSCs have been shown in a rat model of is-

chemic acute kidney injury [77]. In this study, vascularization, ap-

optosis, renal injury, and levels of serum creatinine as well as blood 

urea nitrogen were significantly improved in the group that re-

ceived preconditioned MSCs compared with the non-pretreated 

control groups [77]. Also, anoxic preconditioning has been shown 

to enhance MSC survival and to promote their regenerative capac-

ity [79]. Mechanistically, anoxia-induced increased phosphoryla-

tion of cell survival factors such as Akt and endothelial nitric oxide 

synthase are discussed [87]. 

A report by Bartosh and coworkers [88] showed that MSCs cul-

tured as 3D spheroids had increased therapeutic potential. Specifi-

cally, the investigators used a hanging drop protocol to induce the 

spheroid formation of MSCs and found that these MSCs expressed 

the anti-inflammatory protein TNF-α-stimulated gene/protein 6 

(TSG-6) at very high levels in vitro. Another very interesting result 

of this study was that larger numbers of the cells trafficked through 

the lung after infusion and were recovered in spleen, liver, kidney, 

and heart. The 3D spheroid MSCs were about one-fourth the vol-

ume of MSCs from adherent standard cultures, which may explain 

the enhanced trafficking through the lung [88]. Another study 

from this group demonstrated that cell activation in 3D culture 

also depends critically on the culture medium used [89]. 

Specifically, the authors described that only chemically defined, 

xeno-free media supplemented with human serum albumin re-

sulted in compact spheres with high cell viability and high expres-

sion of anti-inflammatory (PGE2, TSG-6) and anti-cancer mole-

cules (TRAIL, IL-24) [89].

Growth Factors, Cytokines, Chemokines, Hormones

In addition to the culture environment, several growth factors 

or other small molecules were shown to enhance the regenerative 

capacity of MSCs in vitro. Indeed, the growth factors EGF, GDNF 

and IGF-1, the pro-inflammatory cytokine TNF-α, the chemokine 

SDF-1 (CXCL12), or hormones such as angiotensin-II have been 

shown to enhance regenerative capacity or the paracrine functions 

of MSCs (table 2) [90–98].

Previously, a functional EGF receptor was identified on MSCs 

with evidence of an active EGF signal transduction [99]. EGF pro-

moted in vitro expansion of MSCs without altering their multipo-

tency [97, 98, 100], and the effects of EGF on MSC cell motility and 

migration are also well described [98–100]. Pretreatment of MSCs 

with EGF enhanced the release of factors such as VEGF, HGF, HB-

EGF, IL-6, and IL-11, but not FGF-2 [97, 101]. VEGF and HGF 

play a pivotal role in MSC-mediated accelerated wound healing 

through inducing angiogenesis and improving oxygen supplies to 

the ischemic tissues [97]. EGF treatment has also been shown to 

enhance MSC motility, which is required for repopulation of MSCs 

within the wound bed [97]. Furthermore, the functional outcome 

of hind limb ischemia has been shown, most likely due to the deliv-

ery of pro-angiogenic factors by MSCs [97].

Herrmann et al. [92]  have shown that TGF-β increased the 

VEGF production of MSCs in vitro and, to a greater extent, in 

combination with TNF-α or hypoxia. VEGF production was up-

regulated by a p38 MAPK-dependent mechanism and could be 

suppressed by p38 MAPK inhibition. Furthermore, the investiga-

tors infused TGF-β-preconditioned MSCs immediately before my-

ocardial ischemia/reperfusion injury and could show that the post-

ischemic myocardial functional recovery was improved in hearts 

infused with preconditioned MSCs compared with untreated 

MSCs or vehicle. 

Treatment with CM derived from TNF-α-preconditioned MSCs 

accelerated wound healing and angiogenesis in vivo [95]. In addi-

tion, TNF-α-pretreated MSCs increased the release of cytokines, 

chemokines, and proteases, as shown by proteomic analysis. This 

study identified the enhanced secretion of 118 proteins into the 

culture medium upon TNF-α incubation [102]. Specifically, the 

TNF-α-induced secretome of MSCs included many molecules 

known to be critically involved in inflammatory processes (e.g. 

IL-6, IL-8, and MCP-1). Inflammation is a key response to tissue 

injury and is critical for regeneration, with many cytokines being 

associated with this process. Enhanced expression of IL-6, IL-8, or 

MCP-1 goes along with enhanced migration of monocytes to the 

site of injury, hereby promoting a pro-inflammatory response. 

Hormones such as angiotensin-II or melatonin were used to 

pretreat MSCs before their use in in vivo models. Pretreatment of 

MSCs with angiotensin-II resulted in an improved cardiac function 

and a reduced occurrence of cardiac fibrosis, a smaller infarct size, 

and a higher expression of VEGF and von Willebrand factor in is-

chemic myocardium [103]. Another study examined the effect of 

melatonin pretreatment of MSCs in vivo after transplantation into 

the ischemic brain [104]. MSCs preconditioned with melatonin re-
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duced brain infarction, improved neurobehavioral outcomes, and 

showed increased angiogenesis and VEGF expression [104]. In ad-

dition, MSCs treated with melatonin displayed an increased ex-

pression of HGF and FGF-2 [105]. CM from melatonin-treated 

MSCs stimulated tube formation of endothelial progenitor cells 

and proliferation of renal proximal tubular cells in vitro. Moreover, 

the study showed that melatonin pretreatment strongly increased 

MSC survival after transplantation in a model of acute kidney in-

jury. This effect was concomitant with an increased angiogenesis, 

proliferation of renal cells, and accelerated recovery of renal func-

tion [105].

Preconditioning Regimens Using Pharmacological 
or Chemical Agents

Alternative preconditioning concepts to prime MSCs in vitro 

prior to their use in in vivo models include pretreatment with ator-

vastatin, curcumin, and several other pharmacological or chemical 

agents. 

Atorvastatin, a statin used as a lipid-lowering agent and for pre-

vention of events associated with cardiovascular disease, enhanced 

the expression of CXC chemokine receptor 4 (CXCR4) on MSCs 

and stimulated MSC migration in vitro [106]. The significant role 

of SDF-1 and its receptor CXCR4 in mobilization and migration of 

MSCs to sites of injury has been elucidated [90, 107]. Therefore, 

MSC pretreatment with atorvastatin was tested in an in vivo model 

of myocardial infarction [106]. Li et al. [106]  found an increased 

migration and homing of MSCs toward the infarcted myocardium 

compared to non-pretreated MSCs and suggested that atorvastatin 

pretreatment is an effective preconditioning regimen to promote 

the cell-therapeutic potential of MSCs. In addition, enhanced re-

generative efficacy of MSC transplantation has also been shown 

after MSC preconditioning with LPS [108]. LPS, an endotoxin of 

Gram-negative bacteria, is known as the ligand of Toll-like recep-

tor-4, which is expressed by MSCs. In a model of myocardial in-

farction, LPS pretreatment ameliorated the cardiac function, re-

duced fibrosis, stimulated expression of VEGF, and activated the 

PI3K/Akt pathway [108].

Curcumin, an agent extracted from the spice turmeric, has been 

reported to show potent antioxidant and anti-inflammatory prop-

erties and free radical-scavenging activity [109]. A study by Liu et 

al. [109] showed that pretreatment of MSCs with curcumin im-

proved the tolerance to oxidative stress injury and resulted in an 

enhancement of the therapeutic potential of MSCs in myocardial 

repair after infarction. 

Pharmacological MSC preconditioning with diazoxide, a mito-

chondrial ATP-sensitive potassium channel opener, protected cells 

from oxidative stress injury by upregulating the expression of 

FGF-2 and HGF [110]. In an in vivo model of myocardial infarc-

tion, diazoxide preconditioning improved the survival rate of the 

infused MSCs, reduced the infarct size, and increased left ventricu-

lar function compared to the transplantation of non-pretreated 

MSCs [110]. 

Preconditioning with deferoxamine, an iron-chelating drug, 

stabilized HIF-1α under normoxic conditions as well as the activity 

of two metalloproteases [111]. Notably, the stabilization of HIF-1α 

resulted in an increased activity as well as in increased transcrip-

tion of genes involved in cell migration [112]. Deferoxamine pre-

conditioning prior to transplantation also increased homing of 

MSCs through affecting chemokine receptors as well as metallo-

proteases [111]. 

ROS and reactive nitrogen species are biologically active oxi-

dants and are regarded as important physiological signaling mole-

cules. Various reports indicate the role of ROS as second messen-

gers in the O2 sensing [113, 114]. In a previous study, ROS precon-

ditioning has been shown to enhance the pro-angiogenic proper-

ties of MSCs [114]. Applying a pharmacological preconditioning 

strategy with the mitochondrial inhibitors antimycin and rotenone 

to modulate ROS generation in MSCs, the authors found that this 

regimen strongly improved revascularization and the number of 

MSC-derived CD31+ cells in the ischemic area. Furthermore, ROS 

generation increased MSC secretion of the pro-angiogenic and 

anti-apoptotic factors VEGF and HGF, but did not affect the ability 

of MSCs to differentiate into cells with endothelial phenotype in 

vitro [114].

Another study showed that MSC preconditioning with valproat 

and lithium chloride promoted functional recovery, increased an-

giogenesis, and reduced the infarcted zone in the brain in a rat cer-

ebral artery occlusion model [115]. Additionally, increased migra-

tion and homing of MSCs towards the ischemic site, possibly me-

diated by an increased CXCR4 expression, was observed [115]. 

And What about Current Clinical Studies on MSC 
Preconditioning Therapies?

As mentioned above, recent data clearly indicate that a func-

tional improvement of the regenerative capacities of MSCs could be 

obtained by applying different MSC preconditioning regimens in 

vitro and after MSC infusion in different in vivo models. Clinical 

trials using MSCs have been expanding quickly in the last decade. 

However, although various MSCs preconditioning strategies have 

been developed and have been already evaluated in animal models, 

currently only three clinical trials are registered on www.clinicaltri-
als.gov (table 3). All three clinical studies use a comparable (but not 

equal) preconditioning regimen (hypoxia, ischemic precondition-

ing) for in vitro pretreatment of BM-MSCs; three different patholo-

gies have been investigated (table 3). The purpose of the first study 

is to evaluate the efficacy of hypoxia-preconditioned autologous 

BM-MSCs for patients with ischemic heart diseases. The second 

study examines the regeneration of the lung in patients suffering 

from pulmonary emphysema after transplantation of hypoxia-pre-

conditioned autologous BM-MSCs. Currently, only these two stud-

ies are listed on www.clinicaltrials.gov, and the study protocol of the 

third study was published in a scientific journal [116]. The objective 

of this study is to evaluate the efficacy of preconditioned MSCs in 

patients with ischemic stroke. The chosen pretreatment (‘ischemic 
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preconditioning’) is in vitro culture of MSCs in media supple-

mented with autologous serum that is obtained at the acute phase of 

stroke from patients. A previous study from this group with rat 

MSCs cultured in media supplemented with serum obtained from a 

rat stroke model showed an increased expansion rate of MSCs with 

decreased cell death, increased trophic factor secretion, and in-

creased migration capacity compared to MSCs cultured in media 

supplemented with fetal bovine serum. In addition, another study 

showed recently that stroke serum priming of MSCs upregulated 

the expression of miRNA-20a, which promoted MSC proliferation 

by regulating the cell cycle inhibitor p21 CDKN1A [117].

In summary, due to the limited number (and to date not pub-

lished results) of clinical trials using preconditioning strategies to 

optimize the regenerative capacity of MSCs (or their CM), more 

clinical trials investigating the effects of different preconditioning 

regimens in varying pathological situations are urgently needed.

Final Remarks

In summary, transplantation of preconditioned MSCs has 

shown promising results. Whereas not finally proven, it seems 

clear that manifold mechanisms are involved in the increased ben-

efit of cell therapy using preconditioned MSCs (fig. 1). As shown 

by numerous experimental studies reviewed in this article, the en-

hancement of the therapeutic potential of MSCs by precondition-

Study Identifier

The STem Cell Application Researches and Trials In NeuroloGy-2  

(STARTING-2) Study [116] 

Condition: Stroke, ischemic

Intervention: Transplantation of autologous BM-MSCs preconditioned with autologous serum  

obtained at acute phase of stroke (‘ischemic preconditioning’)

Study start date: November 2012

NCT01716481     

Clinical Study of the Efficacy and Safety of the Application of Allogeneic Mesenchymal (Stromal)  

Cells of Bone Marrow, Cultured Under the Hypoxia in the Treatment of Patients With Severe 

Pulmonary Emphysema

Condition: Pulmonary emphysema

Intervention: Infusion of allogeneic BM-MSCs, in vitro preconditioned  

under 1% hypoxia

Study start date: March 2014

NCT01849159

Therapy of Preconditioned Autologous BMMSCs for Patients with  

Ischemic Heart Disease

Conditions: Acute myocardial infarction; ischemic cardiomyopathy

Intervention: Transplantation of autologous BM-MSCs with hypoxia precondition and endothelial 

preinduction

Study start date: November 2015 

NCT02504437

Table 3. Current 

clinical trials using 

MSCs after precondi-

tioning to enhance their 

therapeutic efficacy 

(www.clinicaltrials.gov).

Fig. 1. Mechanisms involved in the enhanced 

therapeutic potential of preconditioned MSCs.
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ing is mediated by a great variety of mechanisms at which enhance-

ment of paracrine factors release by pretreated MSCs appears as 

highly relevant mechanism. Nevertheless, other events are likely 

involved, such as upregulation of different surface proteins/recep-

tors or enhanced survival of transplanted cells. The complete ef-

fects and the whole secretome of MSCs after different precondi-

tioning regimens have not been investigated in a comprehensive 

manner yet. Advances in high-throughput technologies, protein 

and RNA arrays, and bioinformatics have already facilitated analy-

sis of the secretome including EVs and will continue to help identi-

fying the factors released by MSCs under different precondition 

regimens [81]. In addition, data from different in vivo models are 

often conflicting and hampered by varying MSC isolation proto-

cols, culture or proliferation methods, preconditioning regimen 

and schedule, application sites, and numbers of transplanted MSCs 

[59]. To date, methods for in vitro pretreatment or precondition-

ing, possibly by combination of factors, have not been optimized to 

improve MSCs or their conditioned medium-based therapies, and, 

therefore, need to be substantially improved in future works. 

A huge gap between experimental approaches and their applica-

tion is observed in the clinic. To date, clinical studies confirming 

the preclinical results are missing. Thus, additional research using 

in vivo studies to determine the exact underlying mechanisms and, 

in particular, clinical trials to show the regenerative efficacy and 

the benefit of preconditioned MSCs are required and are expected 

in future years. Nevertheless, encouraging preclinical studies fuel 

the hope that preconditioning regimens can enhance the regenera-

tive capacities of MSC therapies. 
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