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Introduction

Aging, rheumatic heart diseases, and the growing prevalence of 

heart and vascular system conditions increased the incidence of 

 severe valvular dysfunctions (e.g., stenosis and insufficiency) that 

require surgically implanted valve replacements. With over 300,000 

valves implanted worldwide yearly, the global prosthetic heart 

valve market comprising mechanical and bioprosthetic replace-

ments [1] is expanding [2]. Due to their durability, the mechanical 

valves are the gold standard treatment for patients up to 60 years, 

even though the life-long anticoagulant treatment required to pre-

vent thrombosis [3] reduces the patient’s quality of life [4]. Bio-

prosthetic valves based on glutaraldehyde-fixed xenogeneic (e.g. 

bovine pericardium or porcine valves) or allogeneic (e.g. from 

human donor) materials that preserve the native-like geometry and 

structure mitigate the need for anticoagulants by ensuring a more 

physiological hemodynamic profile. 

The standard surgical procedure to replace the valve is highly 

invasive and uses a cardiopulmonary bypass machine to provide 

the extracorporeal circulation and ventilation for the patient. De-

spite the good perioperative and long-term results, this procedure 

cannot be performed on patients with more comorbidities [5]. In 

addition, prosthesis-associated complications (e.g., thromboembo-

lism, infection, bioprosthetic valve degeneration and calcification, 

mechanical valve failure) have still considerable impact on patient’s 

life [6]. 

A possible alternative for young patients, but suitable only for 

small valvular defects (e.g., small perforations or isolated spots of 

endocarditis), is represented by the reconstructive procedures (i.e., 

valve repair). The aim of valve repair is to replace the damaged area 

of the leaflet with a patch of autologous, or xenogeneic and glutar-

aldehyde-fixed, pericardium [7]. This technique has the great ad-

vantage of eliminating the complications associated with the valve 
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Summary
The incidence of severe valvular dysfunctions (e.g., ste-
nosis and insufficiency) is increasing, leading to over 
300,000 valves implanted worldwide yearly. Clinically 
used heart valve replacements lack the capacity to grow, 
inherently requiring repetitive and high-risk surgical in-
terventions during childhood. The aim of this review is 
to present how different tissue engineering strategies 
can overcome these limitations, providing innovative 
valve replacements that proved to be able to integrate 
and remodel in pre-clinical experiments and to have 
promising results in clinical studies. Upon description of 
the different types of heart valve tissue engineering (e.g., 
in vitro, in situ, in vivo, and the pre-seeding approach) 
we focus on the clinical translation of this technology. In 
particular, we will deepen the many technical, clinical, 
and regulatory aspects that need to be solved to endure 
the clinical adaptation and the commercialization of 
these promising regenerative valves. 
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replacement [6]. However, it is primarily used for mitral valve dis-

ease because of the enhanced complexity of performing the recon-

structive surgery in the aortic environment.

To overcome the limited applicability of the valve repair and to 

extend the surgical valve replacement to the increasing number of 

patients with higher perioperative risk profile, surgeons introduced 

the use of catheters to implant minimally invasively the valves [8]. 

To be successful, this method requires the combination of a crim-

pable stent and a valve that can be folded into a delivery device 

without breaking. Considering these requirements, currently the 

only valves available for this approach are the bioprosthetic ones. 

Interestingly, the minimally invasive procedure is now considered 

as the treatment of choice for those frail elderly patients previously 

considered as inoperable because of comorbidities. The possibility 

of extending this technique also to a younger patient cohort is ap-

pealing but limited by the use of glutaraldehyde-fixed bioprosthe-

ses that, especially in children, undergo degenerative failure [9]. 

Additionally, both mechanical and bioprosthetic valves lack the 

capacity to remodel and grow with the patient, inherently leading 

to multiple surgeries to replace the valve, especially in pediatric pa-

tients, with an increasing risk of morbidity and mortality. This 

strengthens the need for regenerative heart valve replacements 

suitable for pediatric patients and for the minimally invasive im-

plantation technique.

The aim of this review is to present how tissue engineering 

strategies can overcome these limitations, providing innovative 

valve replacements with regenerative and growth capacity (see 

‘Tissue Engineering Approaches for Heart Valve Replacements’ 

below). The clinical translation of these tissue engineering ap-

proaches has been reviewed in ‘Clinical Translation of Tissue-En-

gineered Valve Replacements’ (see below), focusing not only on the 

clinical trials but also on the still open technical, clinical, and regu-

latory challenges that need to be solved to endure the clinical adap-

tation of these regenerative valves. Finally, a critical conclusion will 

summarize how these regenerative replacements will offer a life-

long solution for the increasing numbers of cardiovascular patients 

worldwide.

Tissue Engineering Approaches for Heart Valve  
Replacements

Tissue engineering has been proposed as a possible approach to 

fulfill the need for valve replacements able to remodel, regenerate, 

and grow with the patient [10]. 

The original in vitro heart valve tissue engineering paradigm, as 

defined in 1993 by Langer and Vacanti [11], comprises a 3D scaf-

fold seeded with autologous cells and subsequent in vitro tissue 

formation in a bioreactor. Once the new extracellular matrix 

(ECM) is formed, the living construct can be implanted enabling 

further in vivo tissue growth and remodeling.

Since then, significant progress has been made in the develop-

ment and application of bioresorbable materials for the develop-

ment of a tissue-engineered heart valve (TEHV). In general, the 

scaffold should be biocompatible, favor cell adhesion, and have 

sufficient porosity, permeability and thrombus resistance. In addi-

tion, material degradation should be carefully balanced with matrix 

formation in order to always retain sufficient mechanical proper-

ties to sustain the cyclic loading of the heart. 

Nowadays, several materials that can fulfill these specific re-

quirements have been investigated as scaffold for TEHVs. Alloge-

neic and xenogeneic heart valves provide the ideal geometry for a 

starter scaffold; however, they required glutaraldehyde-fixation to 

prevent the immunological response that limits cell infiltration and 

remodeling potential of the replacement [12]. Decellularization of 

these valves favors the long-term graft durability and preserves the 

biomechanical properties, without impeding cell infiltration [13]. 

Natural-based polymers such as gelatin, collagen, and fibrin are 

fast degrading non-toxic materials with low mechanical properties 

and a non-immunogenic response. On the other hand, biodegrad-

able synthetic polymers such as poly-glycolic acid (PGA) and poly-

lactic acid (PLA) have tunable mechanical properties that can be 

suitable for the development of strong and durable valve replace-

ments with thin and flexible leaflets. Moreover, the material can be 

tuned to ensure sufficient mechanical properties at the time of im-

plantation and controlled scaffold degradation while endogenous 

tissue is formed over time. The large variety of possible materials 

and scaffold fabrication methods suitable for the development of 

polymeric valve replacements have been reviewed elsewhere 

[14–16].

By using different combinations of cells and scaffold material, 

researchers have developed TEHVs following the classic in vitro 

tissue engineering approach (see ‘Technical Challenges: Cell and 

Scaffold Optimization’ below). More recently, cell-free constructs 

aimed at exploiting the regenerative capability of the body to re-

populate the scaffold have been introduced in a technique defined 

in situ tissue engineering (see ‘Clinical Challenges: Beating the 

Gold Standard Valve Replacements’ below). Other methodologies, 

such as the pre-seeding and the in vivo approach, are reviewed in 

‘Regulatory Challenges: Towards Commercialization’ (see below).

In vitro TEHVs

To create in vitro TEHVs, researchers combine different bio-

compatible scaffolds with autologous cells capable of producing a 

collagen-rich ECM. A variety of cell types have been described for 

this scope. The most popular autologous cell sources used are the 

vascular-derived myofibroblasts and endothelial cells harvested 

from the recipient saphenous [17] or forearm [18] vein. Alterna-

tively, cells derived from bone marrow, adipose tissue, and periph-

eral blood have also the potential to generate heart valves in vitro 

[19–23]. In contrast to vascular cells, these cell sources can be ob-

tained without surgical intervention, thereby enabling potential 

adaption into in a routine clinical scenario.

Similarly, a multitude of scaffold materials, ranging from poly-

meric substrates to decellularized tissues, have been used for the 

pre-clinical evaluation of in vitro produced TEHVs (table 1). De-
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cellularized xenografts cultured in vitro with myofibroblast and 

endothelial cells showed enhanced in vivo functionality and en-

dothelialization in a sheep model [24]. Compared to xenogeneic 

tissues, allogeneic valves favor proliferation, differentiation, and 

survival of the seeded cells [25], but the availability of valve allo-

grafts is limited by donor shortage. Therefore, easily available bio-

degradable synthetic and natural polymers have been extensively 

applied and proved to be suitable for the fabrication of in vitro 

TEHVs based on autologous cells and bioreactor systems to en-

hance cell proliferation and tissue formation. Promising results 

were reported by several groups for both in vitro [19, 26–28] and in 

vivo models [22, 29–36] (table 1). In 1995, Shinoka and colleagues 

Table 1. Overview of some pre-clinical evaluations of TEHVs in large animal models 

Scaffold material Cells Implantation Main results Year

In-vitro TEHV

PGA autologous 

ECs and MyoFBs 

surgical replacement of one pulmonary 

leaflet of lambs

11 weeks follow-up

ECM remodeling, no stenosis nor regurgitation

the cells were retained upon implantation 

1995–1996

[24, 37]

PGA + P4HB autologous 

ECs and MyoFBs

surgical replacement of the pulmonary 

valve of lambs

20 weeks follow-up

increased ECM and endothelialization over time

no stenosis, native-like mechanical properties 

2000

[29]

Fibrin autologous ECs 

and MyoFBs

surgical replacement of the pulmonary 

valve of adult sheep

12 weeks follow-up

tissue remodeling and endothelialization

contraction of the leaflet

insufficiency over time

2009

[32]

PGA + PLA autologous 

ECs and MyoFBs

surgical replacement of the pulmonary 

valve of lambs

20 weeks follow-up

good early remodeling 

leaflet functionality reduced with time

increased regurgitation over time

2010

[31]

PGA + P4HB autologous 

ECs and MyoFBs

transcathether replacement of the  

pulmonary valve of adult sheep

8 weeks follow-up 

mobile but thickened leaflets

endothelialization and remodeling

2010

[33]

Pre-seeded TEHV

Decellularized ovine 

pulmonary valve

autologous ECs surgical replacement of the pulmonary 

valve of sheep

improved endothelialization 2006

[82]

PGA + P4HB autologous 

BMC pre-seeding

transcathether replacement of the 

 pulmonary valve of Chacma baboons

4 weeks follow-up

successful implantation

good leaflet function

host cell repopulation and endothelialization

2011

[83]

In-situ cell-free TEHV

Decellularized ovine 

aortic valve

– surgical replacement of the aortic valve 

of adult sheep

9 months follow-up 

sufficient functionality

no degeneration

minor calcifications

2009

[84]

PGA + P4HB MyoFBs, then  

decellularized

transcathether replacement of the 

 pulmonary valve of Chacma baboons

8 weeks follow-up

mobile and thin leaflets

recellularization and

endothelialization

2013

[45]

PGA + P4HB MyoFBs, then  

decellularized

transcathether replacement of the 

 pulmonary valve of adult sheep

24 weeks follow-up

ECM remodeling and host cell repopulation 

compromised coaptation at late time points

2014

[44]

Decellularized  

porcine aortic  

valve

– surgical replacement of the aortic valve 

of adult pigs

15 months follow-up

adequate functionality

cell repopulation and remodeling

vasa vasorum

2014

[85]

Fibrin dermal FBs, then 

decellularized

surgical replacement of the aortic valve 

of adult sheep

24 weeks follow-up

ECM remodeling and host cell repopulation;

no calcification

good functionality

2015

[36]

ECs = Endothelial cells; ECM = extracellular matrix; FBs = fibroblasts; MyoFbs = myofibroblasts; PGA = poly-glycolic acid; P4HB = poly-4-hydroxybutyrate;  

PLA = poly-lactic acid.
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[37] were the first to successfully implant in lamb a tissue-engi-

neered leaflet based on the biodegradable polymer PGA and on au-

tologous vascular-derived cells. In a similar approach, Hoerstrup et 

al. [29] showed physiological-like mechanical behavior and signs of 

remodeling and endothelialization of a TEHV implanted in the 

pulmonary position in lambs. More recently, the possibility to 

merge the TEHVs with the innovative, minimally invasive tran-

scathether technique was proven feasible in sheep [33]. 

Despite encouraging early results, thickening of the leaflets has 

been observed in several studies in which in vitro cultured autolo-

gous cells were used [31, 33]. The thickening, due to excessive 

ECM formation [38], is most likely an effect of the immune re-

sponse towards the in vitro expanded cells present in the valves 

[39] and results in leaflet retraction and consequent valve insuffi-

ciency [33]. 

In situ TEHVs

The in situ tissue engineering approach relies on the regenera-

tive capacity of the body to remodel and form new tissue by re-

cruiting endogenous (circulating) cells while the scaffold degrades 

over time after providing the initial mechanical functionality [15, 

16]. When compared to the classical in vitro method, this tech-

nique represents a straightforward alternative to produce off-the-

shelf available implants that are designed to guide and control cell 

recruitment and remodeling towards a native-like functional living 

tissue [16]. The cell-free scaffold is particularly important for this 

approach, as it should possess sufficient mechanical properties im-

mediately upon implantation and favor endogenous cell adhesion 

and growth. Being allogeneic tissues hardly available, decellular-

ized xenogeneic materials have gained large interest for this appli-

cation [13], showing promising functionality and re-cellularization 

upon implantation in sheep [40], pigs [41], and dogs [42] (table 1). 

Nevertheless, the risk for disease transmission and immune reac-

tion to the use of xenogeneic materials have motivated researchers 

to develop new strategies to achieve engineered off-the-shelf avail-

able allogeneic valve replacements. 

By decellularization of TEHVs obtained via the classic in vitro 

approach, we have obtained non-immunogenic valve substitutes 

with intact mechanical and biological properties [43]. This ap-

proach solved the thickening and retraction of the leaflets that was 

previously reported for living TEHVs [33], by introducing also the 

off-the-shelf availability of the product. In addition, it can be effi-

ciently combined with the transcathether approach, without limit-

ing valve functionality and remodeling potential, as demonstrated 

in sheep [44] and baboons [45]. With a similar approach, others 

investigated the use of fibrin-based decellularized TEHVs, show-

ing good in vitro [46] and in vivo functionality, with almost com-

plete cell repopulation in the systemic circulation of sheep [36]. 

Despite the promising pre-clinical results of these decellularized 

valves, the time and cost associated with scaffold production 

pushed the researchers to develop new alternatives. Cell-free, 

readily available valves can be produced by using biodegradable 

and biocompatible polymeric materials; upon implantation, the 

polymer will provide a suitable environment for endogenous cell 

adhesion, and support ECM formation and remodeling towards a 

completely autologous tissue replacement when the starting mate-

rial is fully degraded [47]. 

Other Tissue Engineering Approaches

Another method to reduce the time and costs associated with 

the in vitro production of TEHVs is the pre-seeding of the scaffold 

with autologous cells. Although the most appropriate cell type for 

in vitro pre-seeding is not established yet, bone marrow-derived 

mesenchymal stem cells (MSCs) proved to be an attractive cell 

source. In fact, they were successfully used to re-seed decellularized 

matrices [25] and synthetic scaffolds [19, 35], showing differentia-

tion into a phenotype similar to valvular interstitial cells [48]. 

These cells also demonstrated anti-thrombogenic potential [49] 

and immunosuppressive properties [50], the ability to stimulate in 

vivo endothelialization [51], and differentiation potential into en-

dothelial cells, (myo)fibroblasts, and smooth muscle cells [25]. Im-

portantly, MSCs are easy to access, facilitating their translation into 

clinical practice [52]. Importantly, they may induce the homing 

and differentiation of autologous host cells through a paracrine se-

cretion of growth and chemotactic factors [53]. 

Another line of research, defined as in vivo tissue engineering, 

focus on exploiting the foreign body reaction upon subcutaneous 

implantation (e.g., in the peritoneal cavity) of a non-degradable 

mold. The formed fibrotic collagen-rich matrix encapsulating the 

foreign material [54] follows the shape of the mold, creating a 

TEHV [55]. The construct can be harvested and transplanted as a 

non-immunogenic, non-toxic, autologous replacement that may 

possess growth and regenerative capacity. A similar prototype has 

been tested under pulmonary conditions in vitro [55] and im-

planted using minimally invasive transcathether techniques as aor-

tic replacements in a recent study in goats [56]. Despite the early 

positive results, the remodeling of the collagenous matrix is ques-

tionable in humans: the thickness of the fibrotic capsule formed 

around the mold is uncontrollable, and the method is highly inva-

sive, requiring long in vivo pre-transplantation time to obtain me-

chanically robust grafts [57], making it an unsuitable techniques 

for emergency cases.

Clinical Translation of Tissue-Engineered Valve  
Replacements

Novel engineered valves with repair and growth capacity have 

the potential to provide a permanent solution for pediatric and 

young adult patients. However, the clinical adaptation of regenera-

tive valve replacements depends on their superiority compared to 

today’s bioprostheses in terms of functionality and durability. Clin-

ical trials have already been performed to investigate the function-

ality and remodeling potential of in vitro TEHVs based on decel-
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lularized allografts [58–60] and xenografts [18], seeded and cul-

tured with endothelial cells prior to implantation (table 2). By tar-

geting the capability of the body to self-regenerate, cell-free 

decellularized matrixes have also been tested in clinics as scaffold 

materials for the in situ approach (table 3). 

Despite the enormous progress in the development of TEHVs 

that show regenerative potential in the pre-clinical studies (table 1) 

and the clinical trials exploring the potentiality of the tissue engi-

neering approaches (tables 2, 3), a clinically relevant product is not 

yet realized, and many technical, regulatory, and clinical challenges 

still need to be solved.

Technical Challenges: Cell and Scaffold Optimization

To prevent in vivo deterioration, TEHVs should be able to re-

generate similarly to the native valve, where valvular interstitial 

cells synthesize and remodel the ECM ensuring growth and repair 

[61]. 

Seeding and culturing endothelial and endothelial progenitor 

cells proved to be a valuable method to reduce scaffold thrombo-

genicity and inflammatory response (table  2). In vitro cultured 

TEHVs based on decellularized human pulmonary valves seeded 

with endothelial cells have demonstrated excellent hemodynamic 

performance and good functionality in clinical trials up to 10 years 

[59]. Thanks to the good functionality and the lack of degenera-

tion, calcification and immunoreactivity, the use of decellularized 

allografts for both pulmonary and aortic valves is promising, with 

minimal occurrence of re-operations and possibility for adaptive 

growth [62, 63]. Unfortunately, the availability of allografts is lim-

ited by donor shortage, leaving unmet the need for off-the-shelf 

available regenerative heart valve replacements. Clinical translation 

of the easily accessible xenogeneic valves, based on decellularized 

porcine tissues, has contradictory results, with reported sudden 

structural failure, severe stenosis, and need for re-operation in 

above 50% of the patients [64–66]. The causes of these failures re-

side in the residual immunogenicity of the decellularized xenoge-

neic tissue that determines a severe inflammatory response [64, 

67]. These dramatic results underline the preference for allogeneic 

material for clinical application and exemplify the need for novel 

alternative valves.

As the applicability of autologous in vitro cultured TEHVs is 

limited by the donor-to-donor variability and logistical hurdles, 

the use of an off-the-shelf available decellularized engineered valve 

may provide a solution. The less mature, in vitro grown ECM of 

the decellularized tissue-engineered matrices is hypothesized to 

allow for enhanced cell infiltration, leading to better repopulation 

capacity upon in vivo implantation [44]. However, the complete 

decellularization of the tissue is crucial as residual cells and cell 

remnants might lead to a strong inflammatory response and valve 

calcification [68]. 

Scaffold geometry and material porosity determine the level of 

cell infiltration and can be controlled using different methods of 

scaffold fabrication (e.g., electrospinning, mold casting, particulate 

leaching, and 3D-printing) [69]. Additionally, by immobilizing 

specific biomolecules (e.g., proteins, peptides, and antibodies), im-

proved biocompatibility as well as cell recruitment and differentia-

tion can be obtained [15]. As an example, the controlled release of 

inflammatory cytokines and chemokines (e.g., IL-8 and monocyte 

chemotactic protein-1), which are potent cell attractants and acti-

vators, was hypothesized to determine the fate of the implanted 

scaffold towards either a successful integration or a pathological 

chronic outcome [53]. 

In order to profit from the full potential of scaffold materials for 

in situ tissue engineering, multidisciplinary in-depth knowledge on 

the material properties, scaffold design, and scaffold functionaliza-

tion is required. 

Clinical Challenges: Beating the Gold Standard Valve 

Replacements

To encourage the adaptation of the TEHVs in routine clinical 

practice the off-the-shelf availability and the sterility of the product 

Table 2. Overview of clinical studies investigating the potentiality of in vitro TEHVs using decellularized pulmonary allografts and xenografts as starting  scaffold 

material

Cells Culture Patient cohort Main results Year

Allografts

Autologous vascular ECs 4 weeks in bioreactor 1 adult patient 1 year follow-up

excellent functionality

2002

[58]

Autologous blood progenitor  

cells 

3 weeks in bioreactor 2 pediatric patients 3 years follow-up

safe and feasible procedure

good functionality, even if mild to moderate regurgitation

2006

[60]

Autologous vascular ECs 4 weeks in bioreactor 11 patients 10 year follow-up

excellent hemodynamics

no signs of degeneration or calcification

2011

[59]

Xenografts 

Autologous vascular ECs 4 weeks in bioreactor 12 patients 5 years follow-up

good functionality

no signs of degeneration

2007

[18]
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as well as the ease of handling of the device and suitability for the 

different implantation techniques are highly relevant. Minimally 

invasive transcathether implantation techniques have had a rapid 

evolution in the past 10 years, reducing the risks and costs associ-

ated with the intervention. Being limited only to the use of bio-

prostheses, the transcathether techniques can be potentially com-

bined with the different types of TEHVs, as demonstrated in sheep 

[33, 44, 70], goats [56], and baboons [45]. In addition, the feasibil-

ity of combining TEHVs with a clinically used stent and delivery 

device was also recently shown [71]. Still, to enable the full regen-

erative potential of transcathether valves, this approach should be 

complemented by innovative stent designs that allow for controlled 

dilatation or reabsorption upon implantation [72]. 

In addition, the different regenerative potential among patients 

is of great concern, because cell infiltration, adhesion, and ECM 

production may be age-dependent and influenced by comorbidi-

ties. To predict the clinical outcome from the results of pre-clinical 

experiments, a clear correlation between animal and human data 

has to be identified. The development of specific in vitro model 

systems would be beneficial to study the inter-patient and inter-

species variability in the response to the implanted materials. Fur-

ther, the phenotype of the macrophages recruited into the im-

planted scaffold can potentially forecast the direction of the in vivo 

remodeling response to either chronic inflammation or healing 

[73]. 

Clinical success of the TEHV replacements depends on logistics 

considerations: off-the-shelf availability, ease of storage, and trans-

portation. For replacements based on living cells, the only method 

to increase the product lifetime is by cryopreservation. To limit 

damage to the tissue caused by the freezing process [74], research-

ers have introduced the use of different methods (e.g., cryoprotec-

tive media [75] and vitrification [76]) to control the ice crystal for-

mation. Similarly, lyophilization can improve the shelf life of decel-

lularized tissues or engineered matrix. To retain the structural in-

Table 3. Overview of clinical studies investigating the potentiality of in-situ TEHVs based on decellularized allografts and xenografts as scaffold material

Type of valve Surgical procedure Patient cohort Main results Year

Allografts

Decellularized pulmonary  

valve

Ross procedure 15 patients 6 months follow-up

promising hemodynamics and functionality

good morphology

2003

[86]

Decellularized pulmonary  

valve

Ross procedure 11 patients 18 months follow-up

reduction of the immunogenic response

promising functionality

2005

[87]

Decellularized aortic valve aortic root replacement 22 patients 1 year follow-up

good functionality

low to none immunoreactivity

2005

[88]

Decellularized aortic valve aortic root replacement 41 patients 4 years follow-up

adequate hemodynamics

structural integrity over time

no calcification

2010

[89]

Decellularized pulmonary  

valve

Ross procedure 29 patients 5 years follow-up

promising functionality and hemodynamic profile

2011

[90]

Decellularized pulmonary  

valve

pulmonary valve  

replacement

38 patients 5 years follow-up

100% freedom from re-operation

adaptive growth in pediatric patients 

2011

[62]

Decellularized pulmonary  

valve

pulmonary valve  

replacement

93 patients 10 years follow-up

100% freedom from re-operation

good functionality and hemodynamic profile

2016

[63]

Xenografts

Decellularized porcine  

valve

Ross procedure 50 patients 2 years follow-up

physiological-like behavior

36% needed a re-operation

2005

[91]

Decellularized porcine  

valve

pulmonary valve  

replacement

16 young patients stenosis

severe thickening of the intima

2010

[66]

Decellularized porcine  

valve

right ventricle outflow  

tract

61 patients  

(18 in infancy)

3 years follow-up

100% freedom of re-operation for pediatric patients

favorable performance and functionality

2011

[92]

Decellularized porcine  

valve

pulmonary valve  

replacement

26 young patients average life span of 19 months

14 failures that required re-operation

stenosis and insufficiency of the valve

foreign body response and inflammation

no endothelial cell coverage

2013

[65]
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tegrity and the final geometry of the product, the use of sucrose 

solution and/or the optimization of the freezing cycle temperatures 

may be necessary [77]. Finally, biodegradable polymer-based 

TEHVs for in situ applications do not require special processing, 

gaining further interest in the community. 

Optimization of the processes required to ensure product steril-

ity, availability, ease of handling, storage, and transportation will 

lead to the clinical success of the TEHV replacements.

Regulatory Challenges: Towards Commercialization 

The growing market for heart valve prostheses, valued at USD 

2.87 billion in 2014 and estimated to grow to USD 4.80 billion by 

2020 [2], attracts the attention of many biomedical companies. 

However, the novel TEHVs are difficult to assign in the classical 

Food and Drug Administration (FDA) classification. In fact, de-

vices containing living cells that have a clear pharmacological, im-

munological, or metabolic effect on the human body are usually 

classified as biological or pharmaceutical products. At the same 

time, decellularized materials or tissue-engineered constructs, 

where the matrix is the major mechanism of action and the func-

tion occurs by physical means (e.g., heart valves, blood vessels), can 

be either classified as medical or biological devices. Therefore, 

there is still the need for the FDA and other regulatory agencies 

worldwide to formulate regulations and documents to clarify these 

issues [78].

Before moving from bench to bedside, the production and test-

ing of the TEHVs should be performed in accordance to technical 

norms (e.g., ISO 13485 Medical Devices – Quality Management 

System – Requirements for Regulatory Purposes [79]; ISO 10993 

Biological Evaluation of Medical Devices [80]; ISO 5840 Cardio-

vascular Implants – Cardiac Valve Prosthesis [81]) and the product 

should be evaluated by an accredited notified body. To be able to 

accommodate for the different technical guidelines and require-

ments of Europe, Japan and the USA, the production, pre-clinical 

and clinical evaluation of the product should be performed in ac-

cordance to the International Council on Harmonisation of Tech-

nical Requirements for Registration of Pharmaceuticals for Human 

Use (ICH). The ICH guidelines aim at ensuring safety (e.g., to un-

cover potential risks like carcinogenicity or genotoxicity), quality 

(e.g., stability studies, definition of thresholds for impurities, and 

good manufacturing practice compliance), and efficacy (e.g., re-

lated to the design, conduct, safet,y and reporting of clinical trials) 

of the product.

The process of harmonization would lead to the production of a 

product ready for commercialization in the different areas, while 

ensuring quality, safety, efficacy, and regulatory obligations to pro-

tect public health.

Conclusions 

Lifetime expectancy is constantly increasing, leading to more 

and more patients in need of a valve replacement with prolonged 

durability. In order to solve this problem, several tissue engineer-

ing approaches have been developed over the last years, showing 

promising in vitro, pre-clinical, and even clinical results. Engi-

neered valve replacements with regenerative capacity have the po-

tential to offer a lifelong solution for the increasing numbers of 

cardiovascular patients worldwide. However, their translation into 

clinics depends on their superiority compared to today’s biopros-

thetic valves. Despite the enormous progress in the development of 

TEHVs that have showed regenerative potential in pre-clinical 

studies, a clinically relevant product is not yet realized. Therefore, 

research in the field of cardiovascular tissue engineering should 

focus on the understanding of the structural and biological proper-

ties of the native valves that ensure its efficiency and functionality. 

The most recently introduced in situ approaches that enable off-

the-shelf availability and exploit the regenerative capacity of the 

body to remodel and form new tissue upon orthotopic implanta-

tion were reviewed here. These prostheses hold large promises for 

clinical translation, as they represent a less complex and substan-

tially less costly alternative to replacements obtained via the classic 

in vitro tissue engineering paradigm. By improving scaffold fabri-

cation strategies, it will become possible to replicate the physiologi-

cal complexity and instruct cell differentiation and remodeling of 

seeded or endogenously recruited cells. Despite the necessary fu-

ture developments, preclinical results demonstrated that engi-

neered artificial valves do bare regenerative capacity and promise 

to improve the quality of life of younger and older patients alike.
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