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ABSTRACT

Chromosome stability models are usually qualita-
tive models derived from molecular-genetic mech-
anisms for DNA repair, DNA synthesis, and cell divi-
sion. While qualitative models are informative, they
are also challenging to reformulate as precise quan-
titative models. In this report we explore how (A)
laboratory experiments, (B) quantitative simulation,
and (C) seriation algorithms can inform models of
chromosome stability. Laboratory experiments were
used to identify 19 genes that when over-expressed
cause chromosome instability in the yeast Saccha-
romyces cerevisiae. To better understand the molec-
ular mechanisms by which these genes act, we ex-
plored their genetic interactions with 18 deletion
mutations known to cause chromosome instability.
Quantitative simulations based on a mathematical
model of the cell cycle were used to predict the
consequences of several genetic interactions. These
simulations lead us to suspect that the chromosome
instability genes cause cell-cycle perturbations. Cell-
cycle involvement was confirmed using a seriation
algorithm, which was used to analyze the genetic in-
teraction matrix to reveal an underlying cyclical pat-
tern. The seriation algorithm searched over 10'* pos-
sible arrangements of rows and columns to find one
optimal arrangement, which correctly reflects events
during cell cycle phases. To conclude, we illustrate
how the molecular mechanisms behind these cell cy-
cle events are consistent with established molecular
interaction maps.

INTRODUCTION

Chromosome stability mechanisms maintain the proper
number of chromosomes during the cell cycle, while pre-
venting chromosomal aberrations, such as deletion, dupli-
cation or translocation of chromosomal segments. To better
understand disorders that lead to numerous inherited ge-
netic diseases (1) and cancers (2), it is important to under-
stand the fundamental molecular mechanisms of chromo-
some stability because such disorders are often associated
with abnormal chromosomes.

Our understanding of chromosome stability in humans
has been shaped by studies in yeast, Saccharomyces cere-
visiae. Yeast has many advantages to human studies; it is
genetically well characterized, easy to experiment with, and
many of its genes have homologues in humans. Mainte-
nance of chromosome stability involves the function of at
least 723 genes in yeast (3). Each specific gene is implicated
in chromosome stability because loss-of-function (4-8) or
over-expression (9) of the specific gene causes chromosome
instability. Generally, the yeast genes that affect chromo-
some stability function in DNA repair, replication, recom-
bination, chromosome segregation, cell cycle control (3).
Importantly, many of these genes function in processes that
are similar to the processes that affect human chromosome
stability in genetic disorders and/or cancers (10).

While the biology of individual genes offers insight into
molecular mechanisms, the systems biology of combina-
tions of genes is equally insightful. Consider, for example,
mutations in pairs of chromosome stability genes that have
been combined into a common strain to identify positive or
negative genetic interactions between those genes (11-14),
which often forms the basis of mechanistic models of bio-
logical processes, such as cell cycle (15). However, usually
these models are either manually formulated using a lim-
ited set of pre-selected genes or automatically formulated
using clustering algorithms. The phenotypes of these com-
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binations can often reveal synergistic or suppressive effects,
allowing the genes to be placed in relation to one another
in the context of a molecular model, when the molecular
function of at least one of the interaction partners is known
(16). Formally, these genetic interactions can be represented
as n x m matrices of vectors, which represent the positive or
negative genetic interactions between the respective genes
(17).

Automated algorithms for formulating functional mech-
anisms using novel sets of gene interaction data have not
yet been fully developed beyond clustering functionally re-
lated interacting gene groups. Such clustering methods are
mathematically arbitrary, thus have little a priori biological
basis. This study uses matrix seriation (18), a method that
reorders a matrix of gene—gene interaction into a cyclical ar-
rangement, if one exists, instead of a clustered arrangement
made by the currently popular clustering algorithms. The
seriation method is inspired by the famous “Traveling Sales-
man Problem’ (19) to calculate an optimal cycle among the
genetic interaction data, with the assumption that the opti-
mal arrangement likely coincides with an optimum tempo-
ral biological process cycle. Therefore, seriation is particu-
larly suited to modeling the cell cycle or chromosome main-
tenance during the cell cycle. In this work, we investigate the
method of seriation to provide insights about the biological
mechanisms of genes that affect chromosome stability.

MATERIALS AND METHODS
Strains

Chromosome stability assays and Fluorescence Activated
Cell Sorting (FACS) assays were performed on cultures of
the diploid strain YPH275 of S. cerevisiae (MATa/ MATo
ura3-52 lys2-80 ade2-101 trpl-Al his3-A200 leu2-Al CF
[TRPI1 SUP11 CEN4]), provided by Prof. Phil Hieter (20).
Synthetic dosage lethality and suppression were assayed
by transforming individual haploid deletion mutant strains
from the gene knockout strain library (21-23) and the
parental strain BY4741 (MATa his3Al leu2 AO metl5A0
ura3 A0) as control with selected plasmids.

Plasmids

The MORF (Movable Open Reading Frame) library con-
sists of two-micron plasmids each having one tagged gene
of interest under the control of a galactose-inducible (GAL)
promoter (24). Strains of E. coli containing the MORF
plasmid library were obtained from Dr Elizabeth Gray-
hack and Dr Eric Phizicky (University of Rochester Medi-
cal School, Rochester, NY). Individual MORF clones were
verified by sequencing, and were introduced into the appro-
priate yeast strains by transformation, and confirmed upon
recovery by resequencing.

Chemicals and media

Chromosome instability reported by discrete red sectors on
pink colonies was assayed on synthetic yeast growth me-
dia lacking uracil, which contained 5-6 mg/1 of adenine to
optimize color formation (25). Plates containing 2% galac-
tose + 1% raffinose were used to induce gene expression

regulated by the GAL promoter on MORF plasmids while
plates containing 2% glucose were used to repress gene ex-
pression regulated by the GAL promoter. Enriched yeast
growth medium was YP with added glucose (YPD) (25).

Transformation of MORF plasmids into yeast

To induce overexpression of genes, we transformed liquid
cultures of cells obtained from uniformly pink colonies of
YPH275 with plasmids selected from the MORF library.
YPH?275 cultures were incubated with aeration at 30°C for
2 days in 100 ml of YP media including either 2% glucose
(YPD) or 1% raffinose (YPRaff) (25). Approximately 2.5 x
10'! cells were centrifuged into a pellet that was resuspended
in 10 ml of transformation buffer (0.20 M LiAc, 0.10 M
dithiothreitol, 40% mass per volume of polyethylene glycol,
2.6% mass per volume of dimethyl sulfoxide, and 500 w1 of
single-stranded DNA). Aliquots of 300 .l were mixed with
5 plof plasmid DNA that was extracted using the Miniprep
Kit from Qiagen. The mixture was heated for 30 min at 45°C
and then mixed with 540 wl of YPD media. 100 wl aliquots
were plated onto glucose-containing media lacking uracil
and grown for two or three days at 30°C; the transformants
were frozen in 8% dimethyl sulfoxide.

Prescreening MORF library plasmids for candidate chromo-
some instability genes

Prescreening was performed as illustrated in Figure 1. Plas-
mid DNA comprising the entire MORF library was parti-
tioned into prescreening sets each including approximately
384 individual MORF plasmid DNA preparations. These
DNA preparations were pooled into mixtures of 384 plas-
mids that were used to transform YPH275 (with the expec-
tation that only one MORF plasmid would generally be in-
troduced into any particular transformant cell).

Subsequently, 10 wl of transformants were spotted in a
dilution series on solid synthetic media plates (containing
galactose, raffinose, minimal adenine, and no uracil) us-
ing a Beckman Coulter Biomek FXP liquid handler robot;
YPH?275 transformed with the empty MORF vector plas-
mid BG1766 was the negative control and pGAL::CLBS
(26) or pGAL::YRBI (9) MORF plasmid was the positive
control.

Colonies were allowed to form, allowed to develop colony
color, and dilution spots with separable colonies were ex-
amined for increased frequencies of red sectors relative to
the negative control. Putative hit plasmids were extracted
from the corresponding colonies, plasmid DNA confirmed
by sequencing. Increased rates of plasmid instability were
subsequently confirmed by retransformation into YPH275
followed by the Chromosome Stability Assay method de-
scribed below.

To perform additional hypothesis-driven experiments us-
ing preselected plasmids, experiments were performed as
above, but without the first step of pooling MORF plasmids
and without the later step of confirming the DNA sequence
of plasmids after observing frequent sectors.
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Figure 1. Flowchart illustrating the strategy for identifying chromosome instability genes. *See Patra ez al. arXiv preprint arXiv:1311.2554, 2013.

Chromosome stability assay

To assay for MORF plasmids that affect chromosome sta-
bility, we performed a color-based assay using colonies of
the transformed strain YPH275 (Figure 2). Transformants
were single colony purified on YPD plates, followed by plat-
ing on synthetic dextrose media lacking uracil to select for
the plasmids. The transformants were resuspended in water,
diluted, and plated for single colonies on media containing
(A) glucose (synthetic dextrose containing minimal adenine
and lacking uracil) and (B) galactose (galactose plus raffi-
nose media containing minimal adenine and lacking uracil).
After one week of growth at 30°C, plates were shifted (in
multiple replicates for each strain) to 4°C and incubated for
two weeks to allow red sectors to darken. In some sets of
experiments, plates remained at that temperature for an ad-
ditional 2 weeks to allow any non-specific pink color to fade
without compromising the darkening of the red sectors.
The number of sectors per colony was assumed to fol-
low a Poisson (u) distribution where P(X = x) = ¢ i,“ X
> 0. Because the sum of n Poisson (i) distributions is a
Poisson (nu) distribution, the total number of sectors on

a plate having n colonies is Poisson (nu), or % A
Poisson regression to model the mutation rate per colony
was performed using an offset to adjust for the number of
colonies on each plate; specifically, we optimized the 8 pa-
rameter vector in logs; = logn; + B1x; + Baxa + ... + Bux,,
where s; is the number of sectors on plate i, #; is the total
number of colonies on plate i, and x; equals one or zero
to represent the jth gene*sugar interaction (27). (Note that
the constant term B, was omitted from the model so that

each ¢ could be interpreted as the mutation rate for the
Jjth gene*sugar.) The significance of the differences between
the estimated parameters 8; were computed using a Z-test
using the Z values for each parameter estimate 8;. Signifi-
cant differences between g, for a gene on galactose versus
the empty vector on galactose were determined by using a
Bonferonni adjusted P value threshold of 0.01. The Pois-
son Regression was generated using SAS Software (Univer-
sity Edition). This technique builds on that of a dissertation
(28), which instead reported a test of dependence of sector
frequency on sugar type without using the Poisson distribu-
tion to quantify the rates of mutation per colony.

Synthetic dosage interaction

Individual MORF plasmids were introduced by transfor-
mation into specific haploid deletion mutant strains selected
from the yeast knockout library. Transformants were se-
lected on synthetic dextrose plates lacking uracil, and sin-
gle colony purified. The BioRad SmartSpec 3000 optical
density reader was used to establish equal titers among
the transformants and to dilute each 10-, 100- and 1000-
fold. Four dilutions (1x, 10x, 100x and 1000 x ) were spot-
ted in duplicate onto galactose-containing and glucose-
containing solid synthetic media lacking uracil (the glucose-
containing media was a control to check whether all strains
at all dilutions grew equally). Three replicates of each ex-
periment were plated and incubated at 30°C.

Growth of a given transformant in a deletion mutant
strain was compared with the growth of the transformant
containing the same plasmid in the wild-type background
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Figure 2. Chromosome stability assay to confirm screened candidates. (A)
Colony color of yeast strain YPH275 containing the empty vector BG1766
on media containing galactose and raffinose, or (B) glucose. (C) Example
of red sectored colonies. Specifically,a MORF plasmid containing the gene
NDTS80 was introduced into yeast strain YPH275 and plated on media
containing galactose and raffinose, or (D) glucose.

strain BY4741 on the same plate by photographing and es-
timating the extent of growth at each dilution. The empty
MOREF vector plasmid was used as a control. Some genetic
interactions were repeatedly validated to ensure consistency.

When the growth of the deletion mutant strain carry-
ing the MORF plasmid was indistinguishable from that of
the wild-type background strain carrying the same MORF
plasmid in all dilutions, the interaction received a score of
4. Scores of 1, 2 or 3 represented poorer growth of the mu-
tant compared to the wild-type discernible at the various
dilutions; thus, score 1 represented the most affected strain,
whereas score 3 represented the least affected. The interac-
tion score of 7 represented higher levels of growth of the
mutant strain carrying the MORF plasmid compared to
the wild type strain carrying the same MORF plasmid (the
quantity seven was chosen so that the lowest score and the
highest score are numerically equidistant from the score for
normal growth). See the supplementary file S1 for an exam-
ple of this assay.

Seriation of matrices of genetic interaction

An unsorted matrix M was built using 19 row vectors of
MOREF plasmids, including the empty vector plasmid, and
18 column vectors of deletion mutants. As noted above, we
used a score of 1 to represent synthetic dosage lethality, 2
or 3 to represent levels of synthetic dosage sickness, 4 to
represent normal growth or that data were not available and
7 to represent suppression.

Given the matrix of genetic interactions M, it is compu-
tationally intensive (and NP hard) to find the one optimal
arrangement of the 19 row vectors of M that minimizes the
sum over all of the 18-dimensional Euclidean distances be-
tween the rows of data vectors (29). Nevertheless, the op-
timal rearrangement of the row vectors that minimizes this
sum of 18-dimensional Euclidean distances can be solved
using integer linear programming (30,31) because the total
number of row vectors in our work is sufficiently small.

This optimization task is similar to the famous ‘Trav-
eling Salesman Problem’, except that the two-dimensional
Euclidean distance between two cities in the traditional
Traveling Salesman Problem is replaced here by the 18-
dimensional Euclidean distance between the data vectors of
scores in rows i and j of our matrix M.

Specifically, if we denote our 18-dimensional Euclidean
distances d;;, our optimization task is to find a vector x;;
comprised of zeros and ones (where one represents the ad-
jacency between rows i and j), while minimizing D(x) =
> i~ jdixij subject to the constraints that 27:1 Xij = 2, Xjj
>0,i=1,2,..,n,i#j,and Xij = Xji.

This optimization problem was solved using Mathemat-
ica Version 10.2 (a commercial software platform from Wol-
fram Research, Inc. 2015), by using the ‘FindShortestTour’
function, specifying the ‘Method’ ‘IntegerLinearProgram-
ming’ and the ‘Distance Function’ of ‘EuclideanDistance’.
To sort the columns in addition to the rows, the resulting
matrix was transposed and ‘FindShortestTour’ was used to
re-sort the transposed matrix using the same method and
distance function.

Fluorescence activated cell sorting analysis

To measure the effects of MORF plasmids on the percent-
age of cellsin G1, we prepared cultures of YPH275 for scan-
ning by Imaging Flow Cytometry (32). Transformants were
grown at 30°C in 96-well plates that contained 200 pl of syn-
thetic dextrose media lacking uracil. After 2 days of growth,
10 wl of cells were inoculated into fresh 96-well plates and
grown overnight in synthetic complete media with raffinose
and lacking uracil. For 16 h at 30°C, the pGAL promot-
ers were induced using synthetic complete media with 2%
galactose and lacking uracil, and cell density was monitored
to obtain cultures at the exponential growth phase.
Approximately 2 x 10° cells at the mid exponential
phase were harvested by centrifugation and fixed using 70%
ethanol by gently mixing at 4°C. The fixed cells were col-
lected by centrifugation, which were then washed in wa-
ter. The cells were treated with 1 mg/ml RNAse A (Sigma)
for 4 h at 37°C. After centrifugation, the pellets were in-
cubated with 1 mg/ml of Proteinase K (Invitrogen) for 1
h at 50°C. Cells were collected by centrifugation and re-



suspended with 1 wM of SYTOX green (Invitrogen) in 50
mM Tris (pH 7.5).

Cells were scanned by an imaging flow cytometer, Amnis
ImageStreamX (Amnis Inc., Seattle, WA, USA). 25 000 cell
images were acquired and the intensity of the DNA image
(green channel; 480-560 nm) was recorded along with the
aspect ratio of the cell image (brightfield).

The Mathematica function ‘FindClusters’ (Wolfram Re-
search Inc., Version 10.2 2015) was used to compute four
clusters based on standardized Z-scores of the intensity
and aspect ratio in each experiment (where each Z-score is
s—men where x; is a raw observation, Xmean 18 the mean
of those raw observations, and s is the standard deviations
of those raw observations. Compared to the other clusters,
the cluster for G1 was assumed to have the high aspect ratio
and low DNA intensity. The percentage of cells in G1 was
estimated by dividing the number of cells in the G1 cluster
by the total number of cells. Note that this technique builds
on that of a dissertation (28) which instead assumed prede-
termined thresholds of DNA intensity and aspect ratio to
demarcate cells in G1.

RESULTS

Identifying genes causing chromosome instability upon over-
expression

YPH?275 is a diploid strain homozygous for ade2-101 ochre
mutation, and also contains the dominant ochre-suppressor
gene SUPII on a supernumerary chromosome fragment
(20). The loss of the supernumerary chromosome or the
SUPII gene is signaled by the accumulation of a red pig-
ment in the colony (or colony sector) due to defective ade-
nine biosynthesis in the absence of SUPI!. In principle, the
loss of SUP11 can also result from ectopic gene conversion
to supll present at the allelic locus, but this frequency is
generally low compared to the frequency of loss of SUPI1
by mitotic nondisjunction or recombination.

The increased frequency of red colonies/sectors on galac-
tose relative to the background levels on glucose is a mea-
sure of chromosome instability induced by the MORF plas-
mids (26). With the expectation that many genes that affect
the stability of chromosomes when over-expressed remain
to be identified, we took two independent approaches for
prescreening genes, which are described below. The results
of confirmation assays applied to these prescreened genes
are summarized in Table 1.

1. In a model-independent approach, we prescreened
the entire MORF library using a technique previously de-
scribed (9); using this technique Ouspenski et al. discovered
30 genes that induce chromosome instability upon over-
expression, but had estimated that 58 genes had remained to
be discovered. That work had used a smaller cDNA library
compared to the MORF library that we use in this work.

By adopting their prescreen technique followed by sub-
sequent confirmation, we confirmed eight MORF plas-
mids as capable of inducing chromosome instability when
over-expressed on galactose, including XRS2, HFII, ELGI,
CLNI, GRX2, NOP6, SPCI19, and GPGI. These pheno-
types had not previously been discovered. We also con-
firmed YRBI, which Ouspenski et al. had previously dis-
covered, and we have used this plasmid as a positive con-
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trol in our confirmation assays. Using the same assumptions
as Ouspenski ez al. (9) for sampling, we estimate to have
missed at least 40 additional genes using this prescreening
technique.

2A. Our second approach was a model-dependent ap-
proach. We had noted the possibility that abnormal expres-
sion of meiosis related genes in mitotic cells might cause
mitotic chromosome instability. Ouspenski ef al. had not
explored this extensively because their cDNA library had
originated from vegetatively growing cells that were presum-
ably not sporulating. To explore this further, we chose 25
meiosis-related genes (see supplementary file S2) and pre-
screened these for galactose induced chromosome instabil-
ity. Only two of these genes, NDT80 and RECS, induced
chromosome instability in our subsequent confirmation as-
says (i.e. a hit-rate of 8% of the prescreened meiosis genes).
Ouspenski ef al. had not previously reported NDT80 and
RECS.

Predominantly red sectors, characteristic of the clonal
loss of the supernumerary chromosome, against a light pink
colony background (characteristic of the ochre-suppressed
ade2-101 phenotype) that are unaccompanied by white sec-
tors (characteristic of cells with additional copies of the
supernumerary chromosome) occurred in strains contain-
ing pGAL::NDT80 and pGAL.::RECS. This observation
indicated that these genes mostly induced chromosome
loss without non-disjunction, or that hyperploidy and/or
SUPII dosage might be toxic to those strains, causing se-
lective loss of aneuploid cells.

2B. In addition to prescreening meiosis-specific genes,
we also prescreened various genes that function in mitotic
cell cycle control or that had been previously assayed for
dosage suppression based on Patra et al., arXiv preprint
arXiv:1311.2554, 2013. This set also included genes that
complement or suppress temperature sensitive mutations.
We prescreened 295 of these plasmids (see supplementary
file S2) and subsequently assayed 58 of these to confirm 19
additional genes that induce chromosome instability (about
6% of the 295 prescreened). The confirmed genes include
BMTS5, CDC4, CDC5, CDC6, CDC20, CDHI, CW(C24,
HMLa2, IME2, MCM3, MOT2, NRMI, SLD3, SLM4,
SPO7, YDR387C, YGLI82C and YLR053C. Note that
HMLa?2 is ordinarily silenced, but is regulated by an in-
ducible pGAL promoter in the MORF library. In addition,
we reconfirmed the positive control CLB5 (26).

We quantified the chromosome loss rate per colony
(Kcolony) induced by the prescreened MORF plasmids rel-
ative to that by the empty vector BG/766 by Poisson re-
gression as described in Methods. Table 1 shows the results
of these computations. The confirmation Assays 2, 5, 7, 8,
9, 10, 11 and 12 include genes pre-identified by the chro-
mosome instability prescreen described above that was sim-
ilar to that of Ouspenski et al. Confirmation Assay 4 in-
cludes genes pre-identified by prescreening genes that nor-
mally function during meiosis. The confirmation Assays 1,
3 and 6 include genes that were chosen because of their role
in cell cycle control or because they were previously assayed
for dosage suppression. In view of the results of confirma-
tion Assay 6, we propose naming the uncharacterized ORF
YDR387C to CINI0.
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Table 1. Influence on chromosome loss rate of conditional over-expression of genes identified through the prescreen

Prescreened Wecolony Prescreened Wcolony Prescreened Wecolony Prescreened Wecolony
Gene (n colonies) Gene (n colonies) Gene (n colonies) Gene (n colonies)
Assay 1 Assay 3 Assay 6 Assay 9
MOT2 0.28 *(769) MCM3 0.80 * (290) CDC4 0.25 * (318) CLNI 0.73 * (41)
NRM]I 0.26 * (828) CDC5 0.47 * (104) YDR387C 0.07 * (2708) GRX2 0.52 * (61)
CDC20 0.21 * (800) CLB5 (+) 0.34 * (230) CLNI 0.07 * (1344) NOP6 0.42 * (77)
CLB5 (+) 0.09 * (1033) IME2 0.19 * (148) BMTS 0.06 * (455) SPCI9 0.34 * (96)
YLR053C 0.08 * (1132) SLD3 0.09 * (182) HMLa2 0.05 * (3637) YRBI (+) 0.32 * (275)
SPO7 0.07 * (1791) CWC24 0.05 * (946) SLM4 0.05 * (274) GPGI 0.28 * (79)
CDC6 0.05 * (844) YIL025C 0.02 (284) YGLIS2C 0.05 * (1616) YFLO51C 0.18 (60)
CDHI 0.03 * (1429) SMC2 0.02 (711) YOSI 0.02 (996) GSP2 0.16 (95)
MIX23 0.03 (1184) PANG 0.01 (650) YALO6GYOW 0.02 (1792) DASI 0.14 (132)
YHM?2 0.02 (624) BMH?2 0.01 (564) MOT3 0.02 (863) GSH2 0.10 (111)
BFRI 0.02 (612) CLB? 0.01 (107 RPS24B 0.02 (1020) Vector (-) 0.05 (477)
ARP9 0.02 (1108) PRPI6 0.01 (1242) AIM26 0.02 (1640) Assay 10
RRT6 0.02 (1508) T2 0.01 (264) PGDI 0.02 (299) YRBI (+) 0.66 (6)
YDR476C 0.02 (881) SUA7 0.01 (937) CLN2 0.01 (1563) CcoQl10 0.00 (35)
PGAI 0.02 (367) Vector (-) 0.01 (934) Vector (-) 0.01 (2876) Vector (-) 0.00 (14)
T2 0.02 (1552) YKL202W 0.01 (394) SYSI 0.01 (941) Assay 11
Vector (-) 0.01 (3760) VPS9 0.00 (402) CKA2 0.01 (288) YRBI (+) 0.28 * (157)
YNLI98C 0.01 (1088) wSsc2 0.00 (813) RPLI6A 0.01 (2898) ERP4 0.05 (775)
CDC40 0.01 (1937) PTR2 0.00 (567) PCL9 0.00 (2100) 00130 0.04 (749)
MBBI 0.01 (2508) MSB3 0.00 (609) CLB5 (+) 0.00 (3557) YPLO7IC 0.04 (678)
FADI 0.01 (1286) TRPI 0.00 (969) Assay 7 Vector (-) 0.04 (139)
SWTI 0.00 (2516) Assay 4 YRBI (+) 0.84 (6) YNL226 W 0.03 (614)
SRB? 0.00 (4916) NDT80 0.79 * (498) RPL20A4 0.08 (867) ADY4 0.02 (457)
Assay 2 CLB5 (+) 0.36 * (157) ORCI 0.05 (840) Assay 12
XRS2 0.54 * (66) RECS 0.35 * (838) SRPI4 0.03 (670) SPCI9 0.41 * (173)
YRBI (+) 0.39 *(57) Vector (-) 0.07 (475) RHO4 0.01 (619) GRX2 0.39 *(230)
HFII 0.06 * (842) Assay 5 Vector (-) 0.00 (5) CLNI 0.28 * (68)
MSMI 0.04 (289) YRBI (+) 0.60 * (58) Assay 8 Vector (-) 0.00 (149)
SYCI 0.03 (383) ELGI 0.33 * (317) YRBI (+) 0.78 * (82)
JID1 0.02 (321) DCGI 0.01 (289) POL32 0.08 (543)
YERIS2C 0.02 (215) Vector (-) 0.00 (55) Vector (-) 0.02 (142)
Vector (-) 0.02 (355) YJLO77W-B 0.02 (596)
YGLOS2W 0.01 (539) RET3 0.01 (450)

TFBS 0.01 (375)

*These chromosomal loss rates per colony (Wco/ny) are significantly different from that of the isogenic strain harboring the empty MORF vector, under
identical conditions in the same experimental set (Z-test, Bonferroni-adjusted P < .01). The Z-test was used to compare the chromosomal loss rates based
on the Poisson parameters estimated from a Poisson regression. See Materials and Methods.

Note that some sector-inducing genes are not reported
because red sectors were difficult to distinguish visu-
ally from pink sectors. The excluded results are those of
pGAL:: YMLOO7-C,pGAL:: YAR023C,pGAL:: MESI, and
pGAL::MHTI. In addition, one batch, confirmation Assay
7, the positive control had a small number of colonies plated
and hence an insignificant mutation rate per colony.

Modeling chromosome instability, genetic interactions, and
mitotic slippage

We investigated whether a formal method for discovering
chromosomal instability genes could be devised by first us-
ing a mathematical model of cell cycle that is consistent with
known evidence and then simulating the model to incorpo-
rate perturbations in cell mechanisms. Our expectation was
that such an approach might predict chromosome instabil-
ity genes and dosage suppression of cell cycle gene muta-
tions, which indirectly should predict chromosome instabil-
1ty.

Specifically, we sought to model the downstream bio-
chemical effects of the mitotic spindle checkpoint, which en-
sures that chromosomes are properly aligned and oriented
in preparation for the metaphase-to-anaphase transition.

Loss-of-function mutations of the spindle checkpoint genes
mpsl, madl, mad2, mad3, bubl or bub3, all of which affect
this process, cause chromosome instability (6,33-36).

In the presence of a functional M-phase spindle check-
point, cells will usually undergo proper cell division but do
occasionally bypass checkpoint arrest and undergo prema-
ture chromosome segregation. This latter effect has been
called ‘mitotic slippage’ or ‘adaptation’, and can occur af-
ter periods of cell cycle checkpoint arrest (37). The conse-
quences of one generation of mitotic slippage may often in-
clude aneuploidy and inviability (38,39).

The spindle checkpoint genes noted above encode pro-
teins that regulate the sequestration and subsequent release
of Cdc20p to trigger the metaphase-to-anaphase transition
at the appropriate time (40-42). Such mechanisms are gen-
erally thought to be important for chromosome stability
and genetic interactions. We use a system of coupled linear
differential equations to model cell cycle events (15), and
systematically varied certain parameters for behavior of the
numerical solutions that could simulate irregularities in cell
cycle oscillations and thus might predict chromosome insta-
bility and dosage suppression.
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Figure 3. Simulations of the timecourse of in silico cellular mass (MASS),
budding (BUD), development of origins of replication (ORI) and spindle
formation (SPN) in a wildtype model (left), checkpoint-activated model
(center) and a model with CDC20 overexpression in a checkpoint-activated
background. Actuating the checkpoint signaled by Bub2p was simulated
by increasing the bub2 variable to a fixed value of 1 and lowering the /rel
variable to a fixed value of 0.1, while CDC20 overexpression was simulated
by increasing the basal synthesis rate of CDC20 from 0.006 to 1 dimension-
less unit, with the normal period being 90 min.

In the model, protein concentration, phosphorylation,
protein complex formation, etc., of the minimal compo-
nents of cell cycle regulation are modeled using kinetic rate
laws combined with algebraic constraints and conditional
logic as described previously by Chen et al. (15). Alteration
of parameters in this mathematical model can simulate gene
deletion, gene dosage effects, binding affinity changes and
several other perturbations (15).

For example, setting the rate constant for Cdc20p basal
synthesis k{ ;.5 to a higher value simulates a higher level
of CDC20 gene expression driven by the GAL promoter:
AL = K, cgeng + K caengl Mem1] = kg caeao[ Cd 20T,

where [Cdc20T] s the total concentration of active and in-
active Cde20p, &; ;.9 1s the rate constant for basal synthe-
Sis, K ¢4e00 18 the rate constant for Memlp-dependent syn-
thesis of Cdc20p, [Mcm]l] is the concentration of Mcmlp
protein, and kg4, cae0 s the rate constant for Cdc20p degra-
dation. The reasons for using these exact variables were de-
fined previously (15).

Cell cycle arrest was numerically simulated in the model
in a systematic manner, resulting in loss of periodicity of
protein concentrations and loss of execution of a proper
sequence of cell cycle milestone events (see the ‘robustness
criteria’]. Upon mathematically generating cell cycle blocks
through a primary perturbation we systematically searched
the parameter space in the system of equations to identify
secondary perturbations that would allow resumption of
the cell cycle (Figure 3). Changes of values in parameters
that would cause the simulated cell cycles to resume their
periodic behavior were noted.

For the purpose of this investigation, we focused on the
simulated gain-of-function perturbations. In this manner,
we identified genes that bypassed the arrest induced by loss
(or ‘in silico mutation’) of genes that actuate the check-
point signaling genes. In our simulations CDC20, CDH]I,
CDCI5,CDCI4, TEMI, CDC6, SICI and SWI5 bypassed
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pGAL::CDC6
pGAL::CDH1 ¢
PGAL::CDC20 ¢
pGAL::CDC14
pGAL::CDC15 ¢
PGAL::TEM1 -

cdcbA
temi1A
cdc15A
cdc14A
cdc20A
cdh1A ¢

Figure 4. In silico predictions of genetic interactions. Cell cycle checkpoint
arrest were simulated by removing the product of the genes listed along the
x-axis. These blocks were overcome by simulating over-expression of the
genes listed on the y-axis.

the checkpoint that is actuated by the Bub2 protein (Table
2).

Simplistic predictions of our simulation are that CDCI15
over-expression should suppress an upstream teml A mu-
tation (15,43); CDC14 over-expression should suppress an
upstream cdcl5A (44) or temlA mutation (45); and ei-
ther CDC20 or CDHI overexpression should suppress a
upstream teml A cdcl5A, or cdcl4A mutation (Figure 4).
While some of these are indeed true (15) a more general
expectation is that over-expression of CDC20, CDC6 and
CDH|1 should at minimum cause checkpoint bypass in nor-
mal cell cycle, thus may cause chromosome instability. Con-
sistently, CDC20, CDC6 and CDHI do so (Table 1). We
could not confirm the effects of CDCI4, TEMI, and SICI
over-expression because of inadequate color formation in
our assays. CDCI5 could not be tested because the MORF
plasmid was not available.

In Silico seriation of cell cycle models

The model formulated by Chen ez al (15) is a minimal
model that sufficiently captures most of the landmark
events of the cell cycle in budding yeast. This model how-
ever, was designed for a different intent than the one to
which we subjected it; therefore, it has limited power for
predicting cell cycle genes that cause chromosome instabil-
ity. For example, not all genes that are known to partici-
pate in cell cycle control are engaged in the model, nor are
all known functions of the genes in the model are explicitly
simulated.

How does one re-engineer a complex cell cycle model to
integrate additional chromosome instability genes? We pro-
pose seriating rows of novel genetic interaction data to up-
date the underlying biochemical model that is captured by
these interactions. Indeed, if the seriation approach is valid
using data derived from in vivo experiments, then it should
also be valid using data derived from in silico modeling.

To illustrate that the approach is valid in silico, let each
of the rows of binary data in Figure 4 represent a posi-
tion in hyperspace. The shortest tour is the path through
the hyperspace that visits each of the data points exactly
once and returns to the starting point (see Materials and
Methods). As shown in Figure 4, the shortest tour deter-
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Table 2. Genes predicted to induce mitotic slippage, bypassing the checkpoint actuated by Bub2 protein in silico

Slippage predictors Slippage parameter

Gene Parameter Wild-type parameter Low High
CcDC20 K. caero 0.006 0.98 2.40
CDHI  can 0.010 0.13 0.90
CDCI5 [Cdcl5T] 1.000 5.50 >403.00
CDCl4 ks, cdc1a 0.200 0.27 0.40
TEM]I [Tem1p] 1.000 40.40 403.00
sIci ! el 0.012 0.20 0.29
cDCs K caes 0.024 0.24 0.32
SWis K guis 0.005 0.10 0.18

mined by integer linear programming appears to re-derive
the progression of gene function that qualitatively under-
lies this cell cycle model. Specifically, we have a cyclical se-
ries: Cdc6p— Temlp— CdclSp— Cdcldp— Cdc20p —
Cdhlp— Cdc6p again. This cyclical order reflects both
the x-axis and the y-axis after seriation (see Materials and
Methods for seriation details).

Seriation of a matrix of genetic interactions to form a genetic
model for chromosome instability induction

We hypothesized that some of the chromosome-instability
genes might be affecting chromosome stability due to their
adverse effects on the cell cycle. If true, it is predicted that
these genes should affect relative lengths of the cell cycle in
a predictable manner. As demonstrated in silico, one way to
numerically identify whether a set of vectors have systematic
effects on a cyclically timed series of events is to conduct
seriation analysis on the matrix of vectors.

Based on the oy estimated as described in the
above section, 19 plasmids were chosen for matrix seri-
ation analysis. The corresponding genes are CDC4, CLNI,
ELGI, YGLIS2C, NRMI1, NDT80, IME2, RECS, CDC5,
YRBI, CLB5, MOT3, CDC20, XRS2, YDR387C, MOT2,
HMLa2, CSE4 and HHT? (of which CSE4 and HHT?
were included despite undetermined mutation rates). Due
to resource limitations and logistical constraints, other plas-
mids having low pcosny estimates were not included in this
set of 19 MOREF plasmids.

These 19 MORF plasmids were introduced into 18 dele-
tion mutant strains, each of which gene deletions were pre-
viously reported to cause defective chromosome stability by
Yuen et al. (6) in Supplementary Table S3 of that work.
Specifically we chose these deletion mutant strains because
they had scored positively in all three of the assays per-
formed by Yuen et al. (6) including the Chromosome Trans-
mission Fidelity Assay the A-Like Faker Assay, and the Bi-
mater Assay. Out of 33 deletion mutant strains matching
these criteria, we chose those that could be transformed suc-
cessfully with MORF plasmids.

The strain containing rad9 A was included to make these
genetic interaction assays comparable to previous studies
which had also used rad9 A (9). Unlike the other 17 deletion
mutant strains the rad9 A strain had scored negatively in the
Chromosome Transmission Fidelity Assay but positively in
the A-Like Faker Assay and the Bimater assay (6).

The resulting 331 combinations (11 strains could not be
constructed for technical reasons) were assayed for syn-

thetic growth defect or suppression of growth defects as
described in Methods. The resulting matrix of suppres-
sion synthetic dosage lethality, and synthetic dosage sick-
ness is illustrated in Figure 5 and supplementary file S1.
Not shown are the rows for pGAL::HHT2, pGAL::CDC4,
pGAL::CLNI, and pGAL::HM L«?2, which are identical to
the row for the empty vector. Note that this matrix has no
dimension of time: the possibility that the MORF plasmids
might be exhibiting the genetic interactions observed here
might have to do with any temporally cyclical phenomenon
(such as the cell cycle) is implicit.

The matrix was seriated by Integer Linear Programming
(see Materials and Methods) for optimizing the total of the
Euclidean-distance metrics between pairs of row vectors.
The optimum sequence of the rows in the matrix had a total
space of 355 687 428 095 999 permutations. The observed
optimal order of the MORF genes following seriation is
given in Figure 5. When we listed the genes Gene Ontology
annotations (46) of the deletion mutant genes we recognized
that the observed series form a kinetically coherent model
approximating the temporal order of cell biological events
that occur during cell cycle:

1. DNA damage sensing (e.g. TOFI1, RAD9, MEC3);

2. Kinetochore-centromere cohesion (e.g. IML3, CHLI);

3. Helicase activity (e.g. CHLI);

4. Spindle checkpoint delay (e.g. MAD?2);

5. DNA stress response (e.g. SPT21; DDCI, MMS22,
RAD54);

6. Attachment of kinetochore to microtubules (e.g.

MCM21),
7. Initiation of anaphase (e.g. MADI);
8. The progression through the spindle assembly check-
point (e.g. CHL4);
9. Chromosome segregation (e.g. MCM?22);
10. Inhibition of cohesion between sister chromatids (e.g.
RADGI);
11. Re-linking sister chromatid cohesion to DNA synthe-
sis (e.g. CTF4). This function is followed cyclically by
DNA damage sensing again.

We predict that one gene of unknown function, LGEI,
has a similar function to the cyclically adjacent genes
MCM?21 (functioning in kinetochore attachment) and
MADI (functioning in the spindle checkpoint). We predict
that the dubious open reading frame YLR235C is similar to
the cyclically adjacent DNA damage sensing genes RAD9
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Figure 5. Seriation of genetic interactions results in a cyclical matrix. We report synthetic dosage lethality (represented as small blue circles), two levels of
synthetic dosage sickness (two progressively lighter shades of blue), unchanged growth (yellow), and suppression (large red circles). To seriate the matrix, the
rows (columns) of the matrix of genetic interactions are rearranged using integer linear programming to minimize the sum of the n-dimensional Euclidean
distances over all pairs of adjacent n-dimensional row vectors (column vectors). The spatial distances of separation between adjacent rows and adjacent
columns are proportional to the n-dimensional Euclidean distance between two separated rows or columns, respectively. The resulting order of the genes
forms a model of the order of the respective functions of the genes during the cell cycle. The first row (column) is adjacent to the last row (column). Not
shown are the rows for pGAL::HHT2, pGAL::CDC4, pGAL::CLNI, and pGAL:: HM L2, which are identical to the row for the empty vector.

and MEC3, perhaps because the deletion of YLR235C
overlaps with the deletion of TOP3 (topoisomerase I11).
To arrange the over-expressed genes and the respective
annotations (46) of those genes we again minimized the to-
tal of the n-dimensional Euclidean distances rather than
maximizing that total. The model arrangement is:

1. Regulation of the Gl to S transition (e.g. CDC4,

CLNI);

DNA replication and repair (e.g. ELGI);

Exit from G1 (e.g. NRM1I)

Kinetochore function (e.g. CSE4)

Positive regulation of meiosis (e.g. NDT80, IME?2)

Sister chromatid cohesion during meiosis (e.g. RECS)

Various functions during meiosis or mitosis (e.g.

CDCy)

G1 to S transition (e.g. YRBI)

DNA synthesis during S phase (e.g. CLBY)

. Regulation of stress response (e.g. MOT3)

. Finish stage of Mitosis (e.g. CDC20)

. Double Strand Break Repair (e.g. XRS2)

. Regulation of DNA replication (e.g. MOT2). MOT2 is
followed cyclically by G1 functioning genes again.

AR

This second sequence is similar to the first sequence
above. Each predicts that DNA repair is followed by kine-
tochore function, followed by stress response, followed by
completion of mitosis, followed by DNA synthesis. This sec-
ond model includes an excursion into meiosis after exiting
G1 because meiosis-specific genes were used to build the
matrix.

Evaluating the model using fluorescence-activated cell sorting

Does the order of the over-expressed genes in the model cor-
rectly predict the order of the respective functions of the
genes during the cell cycle? To validate the model, we tested
whether genes that function to transition the cell cycle out
of G1 reduces the percentage of cells in G1 (47) while genes
that function to transition the cell cycle out of M Phase do
the opposite. The percentage of cells in G1 are inferred by
clustering two-dimensional data consisting of (i) normal-
ized DNA fluorescence and (ii) normalized aspect ratio of
the brightfield image. Of importance to note here is that
chromosome instability induced by plasmid overexpression
was conducted in the diploid strain YPHZ275 whereas the
temporal sequence of events were inferred from the syn-
thetic genetic interaction matrix based on cell viability in
haploid cells. Therefore the model validation experiments
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Figure 6. The percentage of cells in G1 measured by Fluoresence Activated
Cell Sorting (FACS). The arrangement peaks with pGAL:: MOT3. The or-
der of genes is arranged to match the order of the cycle in Figure 5. Recall
from Figure 5 that pGAL::CDC4, pGAL::CLNI and pGAL:: HM L2 had
no genetic interactions and are thus similar to the empty vector. Data for
pGAL::NRM1 are excluded because the results were irreprodicible among
replicates.

by FACS were conducted in the diploid YPH275 back-
ground.

Figure 6 shows the percentage of diploid cells in the G1
phase of the cell cycle for YPH275 strains carrying the re-
spective MORF plasmids, when grown in the presence of
galactose. The order of the genes in this figure is sorted to
match the order of the cycle in Figure 5. Recall that the ge-
netic interaction data for CDC4, CLNI, and HM L2 that
are reported Figure 5 are identical to that of the empty vec-
tor. Data are not shown for 4IM26, a gene of unknown
function that was not tested for genetic interactions. With
AIM?26, we observed that the percentage of cells in G1 was
10%, 10% and 11%. Data for pGAL::NRM1 are excluded
due to technical difficulties.

Encouragingly we see further evidence of a cycle. The ar-
rangement from BG1766 to pGAL::IME2 to pGAL::CDC5
to pGAL::YRBI to pGAL::MOT3 progresses toward a
peak significantly (p=0.0062, Jonckheere-Terpstra Test, a
non-parametric test for ordered differences among classes).
Furthermore, the arrangement from pGAL::MOT3 to
pGAL::CDC20 to pGAL::YDR387C to pGAL::MOT?2
to BGI766 declines from that peak significantly (P =
0.0024, Jonckheere-Terpstra Test). Hence, the arrange-
ment supports a cyclically ordered model. Other over-
expressed genes, including pGAL::CDC4, pGAL::CLNI,
and pGAL:: HMLa?2 are not implicated in genetic interac-
tions in this work and, therefore, it is reasonable that those
percentages of cell in G1 do not appear to be trended (as-
suming that the data for pGAL.: HM La?2 includes one out-
lier point).

We observed that pGAL:: CDC20, induces a high percent-
age of cells in G1, while pGAL::CLB2 induces one of the
lowest percentage of cells in G1 (data for pGAL.: CLB2 that
is not in Figure 6: 8%, 8.5% and 8.4%, respectively, in three
replicate experiments). These results are intuitively under-

standable given previous observations that CDC20 func-
tions in a manner opposite to that of CLB2 (15,48).

DISCUSSION

A healthy cell must maintain chromosome integrity during
each phase of the cell cycle. Yet during the cell cycle defects
in DNA repair, DNA synthesis, and chromosome trans-
mission can cause chromosome instability. Mechanisms of
chromosome instability were previously explored by others,
including works that studied CDC5 over-expression (49,50)
and CDC20 over-expression (42,51-54). Here, we build a
cyclical model for chromosome stability by assaying the ge-
netic interactions of pairs of genes that each normally func-
tions to maintain chromosomes. First, we confirm that 19
genes affect chromosome stability by over-expressing the
respective genes using an assay for chromosome instabil-
ity. We then introduce plasmids containing these 19 genes
into 18 deletion mutant strains each of which is known
to cause chromosome instability. By conditionally overex-
pressing each of the 19 genes in each of the 18 deletion
strains, we observe 35 cases of synthetic dosage lethality,
64 of synthetic dosage sickness, and 26 of suppression (out
of 349 combinations tested including 18 empty-vector con-
trols). To the best of our knowledge, these are novel findings.
In addition, the genes with chromsome instability pheno-
types listed in Table 1 have not been previously reported,
except the positive controls YRBI (9) and CLB5 (26).

Chromosome instability and molecular interaction maps of
mitosis

CDC20 CDC4 and CDHI] function in the ubiquitination
of cell cycle control proteins including B cyclins (55-58).
Therefore, it is possible that negative regulation by these
genes is an indirect upstream process that causes down-
stream loss of function that is more directly responsible for
chromosome instability. Specifically, Cdc20p ubiquitinates
its target Clb5p (55); Nrm1p represses CLBS5 gene (59); and
Cdcdp degrades proteins that are involved in the activation
of CLBS5p (60). Thus c/b5 loss should cause chromosome
instability which has previously been reported (6,22,61).
Further downstream Clb5p perturbs the Mini Chromo-
some Maintenance Complex by phosphorylating Mcm3p
(62,63) triggering its nuclear export (64,65). Hence, loss of
clb5 should cause effects similar to that of MCM3 over-
expression. Moreover, we observed higher rate of chromo-
some instability induced by pGAL:: MCM3 than by any
other plasmid we tested. In conclusion, by comparing gain
of function and loss of function phenotypes, we see a
clearer relationship between established biochemical path-
way maps and chromosome instability (Figure 7).

While cell cycle control genes were confirmed to induce
chromosome instability, the genes that function in RNA ex-
port, phospholipid biosynthesis, and regulation of nuclear
envelope morphology appear to function upstream of these
core cell cycle control genes. We expect that a screen hav-
ing a lower false-negative rate would uncover more chro-
mosome instability genes including upstream modulators of
cell cycle control.



Figure 7. Biochemical reactions in the merged mitotic and meiotic life cy-
cle of yeast. Information were selected from biochemical maps of mitosis
(66) and meiosis (67). Clnlp starts the mitotic cell cycle (68) Nrmlp indi-
rectly represses expression of CLNI (59) Cdcdp indirectly activates ClbSp
(60) which is ubiquitinated by Cdc20p to restore G1 (55). Alternately the
presence of mating factor should affect MATw2, indirectly causing the pre-
existing Ndt80p to be activated by Ime2p (69) triggering Rec8p to func-
tion in chromatid cohesion and ultimately be degraded by CdcSp (70,71)
before the cell returns to G1 again. Based on this life cycle diagram the
functional arrangement of the chemical species in mitosis and meiosis, in-
terleaved into one cycle, align to the cycle suggested by matrix seriation.
Specifically, interleaving the mitotic and meiotic pathways yields the or-
dering CLNI1/CDC4/HMLa2— NRMI— NDTS80— IME2— REC8—
CDC5— CLB5— CDC20— back to CLN1/CDC4/HMLw2. Omitted
from the maps of mitosis and meiosis are proteins that less directly af-
fect these processes (ELGI, YGLIS2C, CSE4, YRBI, MOT3, XRS2,
YDR387C, and MOT?2). The saturation of the red color is proportional
to the highest chromosome instability rate reported for a corresponding
MOREF plasmid in Table 1.

A paradigm for analyzing genetic interactions

Given a large matrix of genetic interactions, ordinarily it is
computationally intractable (and NP hard) to compute all
permutations of the arrangements of the rows and columns,
which is necessary for finding an optimum arrangement of
entries for a given pattern of functional significance. Here,
using our small yet dense matrix we rearrange the matrix
into an optimal cycle. By optimally reordering the matrix
representation of these genetic interactions using integer
linear programming, we find that the optimal order of the
functions of the genes approximates the temporal order of
processes during the yeast cell cycle. To further validate this
theoretical approach, we computed in silico genetic interac-
tions derived from a predetermined cyclical model and con-
firmed that the predicted cycle was consistent. These results
suggest that matrices from other genetic experiments could
be computationally rearranged using this method to reveal
an underlying cycle that is biological meaningful.

If the seriation approach is a valid way to deduce cycli-
cal models from genetic interactions, then we expect that
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seriation of the in silico genetic interaction data should re-
produce the underlying qualitative assumptions about the
progression of events in the budding yeast cell cycle model
by Chen et al. (15). Encouragingly, we computed that seri-
ation of the matrix of the in silico genetic interactions results
in the arrangement of genes that closely matches the order
of the respective function of the genes in the model.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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