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Abstract

Big data are data on a massive scale in terms of volume, intensity, and complexity that exceed the 

capacity of standard analytic tools. They present opportunities as well as challenges to 

statisticians. The role of computational statisticians in scientific discovery from big data analyses 

has been under-recognized even by peer statisticians. This article summarizes recent 

methodological and software developments in statistics that address the big data challenges. 

Methodologies are grouped into three classes: subsampling-based, divide and conquer, and online 

updating for stream data. As a new contribution, the online updating approach is extended to 

variable selection with commonly used criteria, and their performances are assessed in a 

simulation study with stream data. Software packages are summarized with focuses on the open 

source R and R packages, covering recent tools that help break the barriers of computer memory 

and computing power. Some of the tools are illustrated in a case study with a logistic regression 

for the chance of airline delay.
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1. Introduction

A 2011 McKinsey report predicted shortage of talent necessary for organizations to take 

advantage of big data (Manyika et al., 2011). Data now stream from daily life thanks to 

technological advances, and big data has indeed become a big deal (e.g., Shaw, 2014). In the 

President's Corner of the June 2013 issue of AMStat News, the three presidents (elect, 

current, and past) of the American Statistical Association (ASA) wrote an article titled “The 

ASA and Big Data” (Schenker, Davidian and Rodriguez, 2013). This article echos the June 

2012 column of Rodriguez (2012) on the recent media focus on big data, and discusses on 

what the statistics profession needs to do in response to the fact that statistics and 

Correspondence to: Jun Yan, jun.yan@uconn.edu.
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statisticians are missing from big data discussions. In the followup July 2013 column, 

president Marie Davidian further raised the issues of statistics not being recognized as data 

science and mainstream academic statisticians being left behind by the rise of big data 

(Davidian, 2013). A white paper prepared by a working group of the ASA called for more 

ambitious efforts from statisticians to work together with researchers in other fields on 

national research priorities in order to achieve better science more quickly (Rudin et al., 

2014). The same concern was expressed in a 2014 president's address of the Institute of 

Mathematical Statistics (IMS) (Yu, 2014). President Bin Yu of the IMS called for 

statisticians to own Data Science by working on real problems such as those from genomics, 

neuroscience, astronomy, nanoscience, computational social science, personalized medicine/

healthcare, finance, and government; relevant methodology/theory will follow naturally.

Big data in the media or the business world may mean differently than what are familiar to 

academic statisticians (Jordan and Lin, 2014). Big data are data on a massive scale in terms 

of volume, intensity, and complexity that exceed the ability of standard software tools to 

manage and analyze (e.g., Snijders, Matzat and Reips, 2012). The origin of the term “big 

data” as it is understood today has been traced back in a recent study (Diebold, 2012) to 

lunch-table conversations at Silicon Graphics in the mid-1990s, in which John Mashey 

figured prominently (Mashey, 1998). Big data are generated by countless online interactions 

among people, transactions between people and systems, and sensor-enabled machinery. 

Internet search engines (e.g., Google and YouTube) and social network tools (e.g., Facebook 

and Twitter) generate billions of activity data per day. Rather than Gigabytes and Terabytes, 

nowadays, the data produced are estimated by zettabytes, and are growing 40% every day 

(Fan and Bifet, 2013). In the big data analytics world, a 3V definition by Laney (2001) is 

widely accepted: volume (amount of data), velocity (speed of data in and out), and variety 

(range of data types and sources). High variety brings nontraditional or even unstructured 

data types, such as social network sentiments and internet map usage, which calls for new, 

creative ways to understand the structure of data and even to ask intelligent research 

questions (e.g., Jordan and Lin, 2014). High volume and high velocity may bring noise 

accumulation, spurious correlation and incidental homogeneity, creating issues in 

computational feasibility and algorithmic stability (Fan, Han and Liu, 2014).

Notwithstanding that new statistical thinking and methods are needed for the high variety 

aspect of big data, our focus is on fitting standard statistical models to big data whose size 

exceeds the capacity of a single computer from its high volume and high velocity. There are 

two computational barriers for big data analysis: 1) the data can be too big to hold in a 

computer's memory; and 2) the computing task can take too long to wait for the results. 

These barriers can be approached with newly developed statistical methodologies and/or 

computational methodologies. Despite the impression that statisticians are left behind in 

media discussions or governmental summits on big data, some statisticians have made 

important contributions and are pushing the frontier. Sound statistical procedures that are 

scalable computationally to massive datasets have been proposed (Jordan, 2013). Examples 

are subsampling-based approaches (Kleiner et al., 2014; Ma, Mahoney and Yu, 2013; Liang 

et al., 2013; Maclaurin and Adams, 2014), divide and conquer approaches (Lin and Xi, 

2011; Chen and Xie, 2014; Song and Liang, 2014; Neiswanger, Wang and Xing, 2013), and 

online updating approaches (Schifano et al., 2015). From a computational perspective, much 

Wang et al. Page 2

Stat Interface. Author manuscript; available in PMC 2016 September 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



effort has been put into the most active, open source statistical environment, R (R Core 

Team, 2014a). Statistician R developers are relentless in their drive to extend the reach of R 

into big data (Rickert, 2013). Recent UseR! conferences had many presentations that directly 

addressed big data, including a 2014 keynote lecture by John Chambers, the inventor of the 

S language (Chambers, 2014). Most cutting edge methods are first and easily implemented 

in R. Given the open source nature of R and the active recent development, our focus on 

software for big data will be on R and R packages. Revolution R Enterprise ( RRE) is a 

commercialized version of R, but it offers free academic use, so it is also included in our 

case study and benchmarked. Other commercial software such as SAS, SPSS, and MATLAB 

will be briefly touched upon for completeness.

The rest of the article is organized as follows. Recent methodological developments in 

statistics on big data are summarized in Section 2. Updating formulas for commonly used 

variable selection criteria in the online setting are developed and their performances studied 

in a simulation study in Section 3. Resources from open source software R for analyzing big 

data with classical models are summarized in Section 4. Commercial software products are 

presented in Section 5. A case study on a logistic model for the chance of airline delay is 

presented in Section 6. A discussion concludes in Section 7.

2. Statistical Methods

The recent methodologies for big data can be loosely grouped into three categories: 

resampling-based, divide and conquer, and online updating. To put the different methods in a 

context, consider a dataset with n independent and identically distributed observations, 

where n is too big for standard statistical routines such as logistic regression.

2.1 Subsampling-based methods

2.1.1 Bags of little bootstrap—Kleiner et al. (2014) proposed the bag of little bootstraps 

(BLB) approach that provides both point estimates and quality measures such as variance or 

confidence intervals. It is a combination of subsampling (Politis, Romano and Wolf, 1999), 

the m-out-of-n bootstrap (Bickel, Götze and van Zwet, 1997), and the bootstrap (Efron, 

1979) to achieve computational efficiency. BLB consists of the following steps. First, draw s 
subsamples of size m from the original data of size n. For each of the s subsets, draw r 
bootstrap samples of size n instead of m, and obtain the point estimates and their quality 

measures (e.g., confidence interval) from the r bootstrap samples. Then, the s bootstrap point 

estimates and quality measures are combined (e.g., by average) to yield the overall point 

estimates and quality measures. In summary, BLB has two nested procedures: the inner 

procedure applies the bootstrap to a subsample, and the outer procedure combines these 

multiple bootstrap estimates. The subsample size m was suggested to be nγ with γ ∈ [0.5, 1] 

(Kleiner et al., 2014), a much smaller number than n. Although the inner bootstrap 

procedure conceptually generates multiple resampled data of size n, what is really needed in 

the storage and computation is a sample of size m with a weight vector. In contrast to 

subsampling and the m-out-of-n bootstrap, there is no need for an analytic correction (e.g., 

) to rescale the confidence intervals from the final result. The BLB procedure 

facilitates distributed computing by letting each subsample of size m be processed by a 
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separate processor. Kleiner et al. (2014) proved the consistency of BLB and provided high 

order correctness. Their simulation study showed good accuracy, convergence rate and 

remarkable computational efficiency.

2.1.2 Leveraging—Ma and Sun (2014) proposed to use leveraging to facilitate scientific 

discoveries from big data using limited computing resources. In a leveraging method, one 

samples a small proportion of the data with certain weights (subsample) from the full 

sample, and then performs intended computations for the full sample using the small 

subsample as a surrogate. The key to success of the leveraging methods is to construct the 

weights, the nonuniform sampling probabilities, so that influential data points are sampled 

with high probabilities (Ma, Mahoney and Yu, 2013). Leveraging methods are different from 

the traditional subsampling or m-out-of-n bootstrap in that 1) they are used to achieve 

feasible computation even if the simple analytic results are available; 2) they enable 

visualization of the data when visualization of the full sample is impossible; and 3) they 

usually use unequal sampling probabilities for subsampling data. This approach is quite 

unique in allowing pervasive access to extract information from big data without resorting to 

high performance computing.

2.1.3 Mean log-likelihood—Liang et al. (2013) proposed a resampling-based stochastic 

approximation approach with an application to big geostatistical data. The method uses 

Monte Carlo averages calculated from subsamples to approximate the quantities needed for 

the full data. Motivated from minimizing the Kullback–Leibler (KL) divergence, they 

approximate the KL divergence by averages calculated from subsamples. This leads to a 

maximum mean log-likelihood estimation method. The solution to the mean score equation 

is obtained from a stochastic approximation procedure, where at each iteration, the current 

estimate is updated based on a subsample of size m drawn from the full data. As m is much 

smaller than n, the method is scalable to big data. Liang et al. (2013) established the 

consistency and asymptotic normality of the resulting estimator under mild conditions. In a 

simulation study, the convergence rate of the method was almost independent of n, the 

sample size of the full data.

2.1.4 Subsampling-based MCMC—As a popular general purpose tool for Bayesian 

inference, Markov chain Monte Carlo (MCMC) for big data is challenging because of the 

prohibitive cost of likelihood evaluation of every datum at every iteration. Liang and Kim 

(2013) extended the mean log-likelihood method to a bootstrap Metropolis–Hastings (MH) 

algorithm in MCMC. The likelihood ratio of the proposal and current estimate in the MH 

ratio is replaced with an approximation from the mean log-likelihood based on k bootstrap 

samples of size m. The algorithm can be implemented by exploiting the embarrassingly 

parallel structure and avoids repeated scans of the full dataset in iterations. Maclaurin and 

Adams (2014) proposed an auxiliary variable MCMC algorithm called Firefly Monte Carlo 

(FlyMC) that only queries the likelihoods of a potentially small subset of the data at each 

iteration yet simulates from the exact posterior distribution. For each data point, a binary 

auxiliary variable and a strictly positive lower bound of the likelihood contribution are 

introduced. The binary variable for each datum effectively turn on and off data points in the 

posterior, hence the “firefly” name. The probability of turning on each datum depends on the 
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ratio of its likelihood contribution and the introduced lower bound. The computational gain 

depends on that the lower bound is tight enough and that simulation of the auxiliary 

variables is cheap enough. Because of the need to hold the whole data in computer memory, 

the size of the data this method can handle is limited.

The pseudo-marginal Metropolis–Hasting algorithm replaces the intractable target 

(posterior) density in the MH algorithm with an unbiased estimator (Andrieu and Roberts, 

2009). The log-likelihood is estimated by an unbiased subsampled version, and an unbiased 

estimator of the likelihood is obtained by correcting the bias of the exponentiation of this 

estimator. Quiroz, Villani and Kohn (2014) proposed subsampling the data using probability 

proportional-to-size (PPS) sampling to obtain an approximately unbiased estimate of the 

likelihood which is used in the MH acceptance step. The subsampling approach was further 

improved in Quiroz, Villani and Kohn (2015) using the efficient and robust difference 

estimator from the survey sampling literature.

2.2 Divide and conquer

A divide and conquer algorithm (which may appear under other names such as divide and 

recombine, split and conquer, or split and merge) generally has three steps: 1) partitions a 

big dataset into K blocks; 2) processes each block separately (possibly in parallel); and 3) 

aggregates the solutions from each block to form a final solution to the full data.

2.2.1 Aggregated estimating equations—For a linear regression model, the least 

squares estimator for the regression coefficient β for the full data can be expressed as a 

weighted average of the least squares estimator for each block with weight being the inverse 

of the estimated variance matrix. The success of this method for linear regression depends 

on the linearity of the estimating equations in β and that the estimating equation for the full 

data is a simple summation of that for all the blocks. For general nonlinear estimating 

equations, Lin and Xi (2011) proposed a linear approximation of the estimating equations 

with the Taylor expansion at the solution in each block, and, hence, reduce the nonlinear 

estimating equation to the linear case so that the solutions to all the blocks are combined by 

a weighted average. The weight of each block is the slope matrix of the estimating function 

at the solution in that block, which is the Fisher information or inverse of the variance matrix 

if the equations are score equations. Lin and Xi (2011) showed that, under certain technical 

conditions including K = O(nγ) for some γ ∈ (0, 1), the aggregated estimator has the same 

limit as the estimator from the full data.

2.2.2 Majority voting—Chen and Xie (2014) consider a divide and conquer approach for 

generalized linear models (GLM) where both the sample size n and the number of covariates 

p are large, by incorporating variable selection via penalized regression into a subset 

processing step. More specifically, for p bounded or increasing to infinity slowly, (pn not 

faster than o(enk), while model size may increase at a rate of o(nk)), they propose to first 

randomly split the data of size n into K blocks (size nk = O(n/K)). In step 2, penalized 

regression is applied to each block separately with a sparsity-inducing penalty function 

satisfying certain regularity conditions. This approach can lead to different variable selection 

among the blocks, as different blocks of data may result in penalized estimates with different 
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non-zero regression coefficients. Thus, in step 3, the results from the K blocks are combined 

by majority vote to create a combined estimator. The implicit assumption is that real effects 

should be found persistently and therefore should be present even under perturbation by 

subsampling (e.g. Meinshausen and Buhlmann, 2010). The derivation of the combined 

estimator in step 3 stems from ideas for combining confidence distributions in metaanalysis 

(Singh, Xie and Strawderman, 2005; Xie, Singh and Strawderman, 2011), where one can 

think of the K blocks as K independent and separate analyses to be combined in a meta-

analysis. The authors show under certain regularity conditions that their combined estimator 

in step 3 is model selection consistent, asymptotically equivalent to the penalized estimator 

that would result from using all of the data simultaneously, and achieves the oracle property 

when it is attainable for the penalized estimator from each block (see e.g., Fan and Lv, 

2011). They additionally establish an upper bound for the expected number of incorrectly 

selected variables and a lower bound for the expected number of correctly selected variables.

2.2.3 Screening with ultrahigh dimension—Instead of dividing the data into blocks of 

observations in step 1, Song and Liang (2014) proposed a split-and-merge (SAM) method 

that divides the data into subsets of covariates for variable selection in ultrahigh dimensional 

regression from the Bayesian perspective. This method is particularly suited for big data 

where the number of covariates Pn is much larger than the sample size n, Pn ≫ n, and 

possibly increasing with n. In step 2, Bayesian variable selection is separately performed on 

each lower dimensional subset, which facilitates parallel processing. In step 3, the selected 

variables from each subset are aggregated, and Bayesian variable selection is applied on the 

aggregated data. The embarrassingly parallel structure in step 2 makes the SAM method 

applicable to big data problems with millions or more predictors. Posterior consistency is 

established for correctly specified models and for misspecified models, the latter of which is 

necessary because it is quite likely that some true predictors are missing. With correct model 

specification, true covariates will be identified as the sample size becomes large; under 

misspecified models, all predictors correlated with the response variable will be identified. 

Compared with the sure independence screening (SIS) approach (Fan and Lv, 2008), the 

method uses the joint information of multiple predictors in predictor screening while SIS 

only uses the marginal information of each predictor. Their numerical results show that the 

SAM approach outperforms competing methods for ultrahigh dimensional regression.

2.2.4 Parallel MCMC—In the Bayesian framework, it is natural to partition the data into K 
subsets and run parallel MCMC on each one of them. The prior distribution for each subset 

is often obtained by taking a power 1/K of the prior distribution for whole data in order to 

preserve the total amount of prior information (which may change the impropriety of the 

prior). MCMC is run independently on each subset with no communications between 

subsets (and, thus, embarrassingly parallel), and the resulting samples are combined to 

approximate samples from the full data posterior distribution. Neiswanger, Wang and Xing 

(2013) proposed to use kernel density estimators of the posterior density for each data 

subset, and estimate the full data posterior by multiplying the subset posterior densities 

together. This method is asymptotically exact in the sense of being converging in the number 

of MCMC iterations. Wang et al. (2015) replaced the kernel estimator of Neiswanger, Wang 

and Xing (2013) with a random partition tree histogram, which uses the same block partition 
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across all terms in the product representation of the posterior to control the number of terms 

in the approximation such that it does not explode with m. Scott et al. (2013) proposed a 

consensus Monte Carlo algorithm, which produces the approximated full data posterior 

using weighted averages over the subset MCMC samples. The weight used (for Gaussian 

models) for each subset is the inverse of the variance-covariance matrix of the MCMC 

samples. The method is effective when the posterior is close to Gaussian but may cause bias 

when the distribution is skewed or has multi-modes. The consensus Monte Carlo principal is 

approached from a variational perspective by Rabinovich, Angelino and Jordan (2015). The 

embarrassingly parallel feature of these methods facilitates their implementation in the 

MapReduce framework that exploits the division and recombination strategy (Dean and 

Ghemawat, 2008). The final recombination step is implemented in R package 

parallelMCMCcombine (Miroshnikov and Conlon, 2014).

Going beyond embarrassingly parallel MCMC remains challenging because of storage 

issues and communication overheads. General strategies for parallel MCMC such as 

multiple-proposal MH algorithm (Calderhead, 2014) and population MCMC (Song, Wu and 

Liang, 2014) mostly require full data at each node.

2.3 Online updating for stream data

In some applications, data come in streams or large chunks, and a sequentially updated 

analysis is desirable without storing the data. Motivated from a Bayesian inference 

perspective, Schifano et al. (2015) extends the work of Lin and Xi (2011) in a few important 

ways. First, they introduce divide-and-conquer-type variance estimates of regression 

parameters in the linear model and estimating equation settings. These estimates of 

variability allow for users to make inferences about the true regression parameters based 

upon the previously developed divide-and-conquer point estimates of the regression 

parameters. Second, they develop iterative estimating algorithms and statistical inferences 

for linear models and estimating equations that update as new data arrive. Thus, while the 

divide-and-conquer setting is quite amenable to parallel processing for each subset, the 

online-updating approach for data streams is inherently sequential in nature. Their 

algorithms were designed to be computationally efficient and minimally storage-intensive, 

as they assume no access/storage of the historical data. Third, the authors address the issue 

of possible rank deficiencies when dealing with blocks of data, and the uniqueness 

properties of the combined and cumulative estimators when using a generalized inverse. The 

authors also provide methods for assessing goodness of fit in the linear model setting, as 

standard residual-based diagnostics cannot be performed with the cumulative data without 

access to historical data. Instead, they propose outlier tests relying on predictive residuals, 

which are based on the predictive values computed from the cumulative estimate of the 

regression coefficients attained at the previous accumulation point. Additionally, they 

introduce a new online-updated estimator of the regression coefficients and corresponding 

estimator of the standard error in the estimating equation setting that takes advantage of 

information from the previous data. They show theoretically that this new estimator, the 

cumulative updated estimating equation (CUEE) estimator, is asymptotically consistent, and 

show empirically that the CUEE estimator is less biased in their finite sample simulations 

than the cumulatively estimated version of the estimator of Lin and Xi (2011).
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3. Criterion-Based Variable Selection with Online Updating

To the best of our knowledge, criterion-based variable selection has not yet been considered 

in the online updating context. This problem is well worth investigating especially when 

access/storage of the historical data is limited. Suppose that we have K blocks of data in a 

sequence with Yk, Xk, and nk being the nk-dimensional vector of responses, the nk × (p + 1) 

matrix of covariates, and the sample size, respectively, for the kth block, k = 1, …, K, such 

that  and . Consider the standard linear regression 

model for the whole data with sample size ,

where β is the regression coefficient vector, and ε is a normal random vector with mean zero 

and variance θIn. Let ℳ denote the model space. We enumerate the models in ℳ by m = 1, 

2, …, 2p, where 2p is the dimension of ℳ. For the full model, the least squares estimate of β 

and the sum of squared errors based on the kth subset is given by 

and SSEnk,k. In the sequential setting, we only need to store and update the cumulative 

estimates at each k (see, e.g. Schifano et al., 2015).

Let  and  denote the cumulative estimates based on all 

data through subset k for model m, where pm is the number of covariates for model m. We 

further introduce the (p + 1) × (pm + 1) selection matrix P(m) = (em0, em1, … empm), where 

em0 is a vector with length (p + 1) and the first element as 1, and emj denotes a vector of 

length (p + 1) with 1 in the mjth position and 0 in every other position for all j > 0. Here (m1,

…, mpm) are not necessarily in sequence, but represents the index of selected variables in the 

full design matrix Xk. Define . Update a (pm + 1) × (pm + 1) matrix

where , and a (pm + 1) × 1 vector

where . After some algebra, we have
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and

With θ unknown, letting

the Akaike information criterion (AIC) and Bayesian information criterion (BIC) are 

updated by

To study the Bayesian variable selection criteria, assume a joint conjugate prior for (β(m), 

θ(m)) as follows: β(m)|θ(m) follows normal distribution with mean μ0, and precision matrix 

V0, θ(m) follows Inverse Gamma distribution with shape parameter ν0/2 and scale parameter 

τ0/2, e.g,

where μ0 is a prespecified (pm + 1)-dimensional vector, V0 is a (pm + 1) × (pm + 1) positive 

definite matrix, ν0 > 0, τ0 > 0. It can be shown that the deviance information criterion (DIC) 

(Spiegelhalter et al., 2002) is updated by

where ψ(x) = dlogΓ(x)/dx is the digamma function.

We examined the performance of AIC, BIC and DIC under the online updating scenario in a 

simulation study. Each dataset was generated from linear model , where εi's were 

independently generated from N(0, 100), xi = (1, xi1, xi2, xi3, xi4) were identically 

distributed random vectors from a multivariate normal distribution with mean (1, 0, 0, 0, 0) 

and marginal variances (0, 16, 9, 0.3, 3). Two correlation structures of (xi1, xi2, xi3, xi4) were 

considered: 1) independent and 2) AR(1) with correlation coefficient 0.9. Four different 

models as determined by the nonzeroness of β were considered: (−1, 3, 0, 0, 0), (−1, 3, 0, 

−1.5, 0), (−1, 3, 2, −1.5, 0), and (−1, 3, 2, −1.5, 1). The corresponding signal-to-noise ratios 
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were 1.44, 1.45, 1.81, and 1.83 in the independent case and 1.44, 1.29, 2.85, and 3.33 under 

the dependent case. The sample size of each block was set as nk = 100. The performance of 

the criteria was investigated with the cumulative estimates at block k ∈ {2, 25, 100}. For 

each scenario, 10,000 independent datasets were generated.

The percentages of models selected among the 24 models by each of the three criteria are 

summarized in Table 1. The entire row in bold represents the true model. Based on the 

simulation results, BIC performs extremely well when the number of blocks (k) is large, 

which is consistent with known results that the probability of selecting the true model by 

BIC approaches 1 as n → ∞ (e.g., Schwarz, 1978; Nishii, 1984). The BIC also performs 

better than AIC and DIC when the covariates are independent, even for small sample sizes. 

When covariates are highly dependent, AIC and DIC provide more reliable results when 

sample size is small. The performance of AIC and DIC is always very similar. The 

simulation results also confirm the existing theorem that AIC is not consistent (e.g., 

Woodroofe, 1982). In the big data setting with large sample size, BIC is generally 

preferable, especially when the covariates are not highly correlated.

4. Open Source R and R Packages

Handling big data is one of the topics of high performance computing. As the most popular 

open source statistical software, R and its add-on packages provide a wide range of high 

performance computing; see Comprehensive R Archive Network (CRAN) task view on 

“High-Performance and Parallel Computing with R” (Eddelbuettel, 2014). The focus of this 

section is on how to break the computer memory barrier and the computing power barrier in 

the context of big data.

4.1 Breaking the memory barrier

The size of big data is relative to the available computing resources. The theoretical limit of 

random access memory (RAM) is determined by the width of memory addresses: 4 gigabyte 

(GB) (232 bytes) for a 32-bit computer and 16.8 million terabyte (264 bytes) for a 64-bit 

computer. In practice, however, the latter is limited by the physical space of a computer case, 

the operating system, and specific software. Individual objects in R have limits in size too; an 

R user can hardly work with any object of size close to that limit. Emerson and Kane (2012) 

suggested that a data set would be considered large if it exceeds 20% of RAM on a given 

machine and massive if it exceeds 50%, in which case, even the simplest calculation would 

consume all the remaining RAM.

Memory boundary can be broken with an external memory algorithms (EMA) (e.g., Vitter, 

2001), which conceptually works by storing the data on a disk storage (which has a much 

greater limit than RAM), and processing one chunk of it at a time in RAM (e.g., Lumley, 

2013). The results from each chunk will be saved or updated and the process continues until 

the entire dataset is exhausted; then, if needed as in an iterative algorithm, the process is 

reset from the beginning of the data. To implement an EMA for each statistical function, one 

need to address 1) data management and 2) numerical calculation.
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4.1.1 Data management—Earlier solutions to oversize data resorted to relational 

databases. This method depends on an external database management system (DBMS) such 

as MySQL, PostgreSQL, SQLite, H2, ODBC, Oracle, and others. Interfaces to R are 

provided through many R packages such as sqldf (Grothendieck, 2014), DBI (R Special 

Interest Group on Databases, 2014), RSQLite (Wickham, James and Falcon, 2014), and 

others. The database approach requires a DBMS to be installed and maintained, and 

knowledge of structured query language ( SQL); an exception for simpler applications is 

package filehash (Peng, 2006), which comes with a simple key-value database 

implementation itself. The numerical functionality of SQL is quite limited, and calculations 

for most statistical analyses require copying subsets of the data into objects in R facilitated 

by the interfaces. Extracting chunks from an external DBMS is computationally much less 

efficient than the more recent approaches discussed below (Kane, Emerson and Weston, 

2013).

Two R packages, bigmemory (Kane, Emerson and Weston, 2013) and ff (Adler et al., 2014) 

provide data structures for massive data while retaining a look and feel of R objects. Package 

bigmemory defines a data structure big.matrix for numeric matrices which uses memory-

mapped files to allow matrices to exceed the RAM size on computers with 64-bit operating 

systems. The underling technology is memory mapping on modern operating systems that 

associates a segment of virtual memory in a one-to-one correspondence with contents of a 

file. These files are accessed at a much faster speed than in the database approaches because 

operations are handled at the operating-system level. The big.matrix structure has several 

advantages such as support of shared memory for efficiency in parallel computing, reference 

behavior that avoids unnecessary temporary copies of massive objects, and column-major 

format that is compatible with legacy linear algebra packages (e.g., BLAS, LAPACK) (Kane, 

Emerson and Weston, 2013). The package provides utility to read in a csv file to form a 

big.matrix object, but it only allows one type of data, numeric; it is a numeric matrix after 

all.

Package ff provides data structures that are stored in binary flat files but behave (almost) as 

if they were in RAM by transparently mapping only a section (pagesize) of meta data in 

main memory. Unlike bigmemory, it supports R's standard atomic data types (e.g., double or 

logical) as well as nonstandard, storage efficient atomic types (e.g., the 2-bit unsigned quad 

type allows efficient storage of genomic data as a factor with levels A, T, G, and C). It also 

provides class ffdf which is like data.frame in R, and import/export filters for csv files. 

A binary flat file can be shared by multiple ff objects in the same or multiple R processes 

for parallel access. Utility functions allow interactive process of selections of big data.

4.1.2 Numerical calculation—The data management systems in packages bigmemory 
or ff do not mean that one can apply existing R functions yet. Even a simple statistical 

analysis such as linear model or survival analysis will need to be implemented for the new 

data structures. Chunks of big data will be processed in RAM one at a time, and often, the 

process needs to be iterated over the whole data. A special case is the linear model fitting, 

where one pass of the data is sufficient and no resetting from the beginning is needed. 

Consider a regression model E[Y] = Xβ with n × 1 response Y, n × p model matrix X and p 
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× 1 coefficient β. The base R implementation lm.fit takes O(np + p2) memory, which can 

be reduced dramatically by processing in chunks. The first option is to compute X′X and X
′y in increments, and get the least squares estimate of β, β̂ = (X′X)−1X′Y. This method is 

adopted in package speedglm (Enea, 2014). A slower but more accurate option is to 

compute the incremental QR decomposition (Miller, 1992) of X = QR to get R and Q′Y, 

and then solve β from Rβ = Q′Y. This option is implemented in package biglm (Lumley, 

2013). Function biglm uses only p2 memory of p variables and the fitted object can be 

updated with more data using update. The package also provides an incremental 

computation of sandwich variance estimator by accumulating a (p + 1)2 × (p + 1)2 matrix of 

products of X and Y without a second pass of the data.

In general, a numerical calculation needs an iterative algorithm in computation and, hence, 

multiple passes of the data are necessary. For example, a GLM fitting is often obtained 

through the iterated reweighted least squares (IRLS) algorithm. The bigglm function in 

package biglm implements the generic IRLS algorithm that can be applied to any specific 

data management system such as DBMS, bigmemory, or ff, provided that a function 

data( reset = FALSE) supplies the next chunk of data or zero-row data if there is no 

more, and data( reset = TRUE) resets to the beginning of the data for the next iteration. 

Specific implementation of the data function for object of class big.matrix and ffdf are 

provided in package biganalytics (Emerson and Kane, 2013a) and ffbase (Jonge, Wijffels 

and van der Laan, 2014), respectively.

For any statistical analysis on big data making use of the data management system, one 

would need to implement the necessary numerical calculations like what package biglm 
does for GLM. The family of bigmemory provides a collection of functions for 

big.matrix objects: biganalytics for basic analytic and statistical functions, bigtabulate 

for tabulation operations (Emerson and Kane, 2013b), and bigalgebra for matrix operation 

with the BLAS and LAPACK libraries (Kane, Lewis and Emerson, 2014). Some additional 

functions for big.matrix objects are available from other contributed packages, such as 

bigpca for principal component analysis and single-value decomposition (Cooper, 2014), 

and bigrf for random forest (Lim, Breiman and Cutler, 2014). For ff objects, package 

ffbase provides basic statistical functions (Jonge, Wijffels and van der Laan, 2014). 

Additional functions for ff objects are provided in other packages, with examples including 

biglars for least angle regression and LASSO (Seligman, Fraley and Hesterberg, 2011) and 

PopGenome for population genetic and genomic analysis (Pfeifer et al., 2014).

If some statistical analysis, such as generalized estimating equations or Cox proportional 

hazards model, has not been implemented for big data, then one will need to modify the 

existing algorithm to implement it. As pointed out by Kane, Emerson and Weston (2013, p.

5), this would open Pandora's box of recoding which is not a long-term solution for scalable 

statistical analyses; this calls for redesign of the next-generation statistical programming 

environment which could provide seamless scalability through file-backed memory-mapping 

for big data, help avoid the need for specialized tools for big data management, and allow 

statisticians and developers to focus on new methods and algorithms.
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4.2 Breaking the computing power barrier

4.2.1 Speeding up—As a high level interpreted language, for which most of instructions 

are executed directly, R is infamously slow with loops. Some loops can be avoided by taking 

advantage of the vectorized functions in R or by clever vectorizing with some effort. When 

vectorization is not straightforward or loops are unavoidable, as in the case of MCMC, 

acceleration is much desired, especially for big data. The least expensive tool in a 

programmer's effort to speed up R code is to compile them to byte code with the compiler 
package, which was developed by Luke Tierney and is now part of base R. The byte code 

compiler translates the high-level R into a very simple language that can be interpreted by a 

very fast byte code interpreter, or virtual machine. Starting with R 2.14.0 in 2011, the base 

and recommended packages were pre-compiled into byte-code by default. Users' functions, 

expressions, scripts, and packages can be compiled for an immediate boost in speed by a 

factor of 2 to 5.

Computing bottlenecks can be implemented in a compiled language such as C/C++ or 

FORTRAN and interfaced to R through R's foreign language interfaces (R Core Team, 2014b, 

ch.5). Typical bottlenecks are loops, recursions, and complex data structures. Recent 

developments have made the interfacing with C++ much easier than it used to be 

(Eddelbuettel, 2013). Package inline (Sklyar et al., 2013) provides functions that wrap C/C+

+ (or FORTRAN) code as strings in R and takes care of compiling, linking, and loading by 

placing the resulting dynamically-loadable object code in the per-session temporary 

directory used by R. For more general usage, package Rcpp (Eddelbuettel et al., 2011) 

provides C++ classes for many basic R data types, which allow straightforward passing of 

data in both directions. Package RcpEigen (Bates, Francois and Eddelbuettel, 2014) 

provides access to the high-performance linear algebra library Eigen for a wide variety of 

matrix methods, various decompositions and support of sparse matrices. Package 

RcppArmadillo (Eddelbuettel and Sanderson, 2014) connects R with Armadillo, a 

powerful templated linear algebra library which provides a good balance between speed and 

ease of use. Package RInside (Eddelbuettel and Francois, 2014) gives easy access of R 

objects from C++ by wrapping the existing R embedding application programming interface 

(API) in C++ classes. The Rcpp project has revolutionized the integration of R with C++; it is 

now used by hundreds of R packages.

Diagnostic tools can help identify the bottlenecks in R code. Package microbenchmark 
(Mersmann, 2014) provides very precise timings for small pieces of source code, making it 

possible to compare operations that only take a tiny amount of time. For a collection of code, 

run-time of each individual operation can be measured with realistic inputs; the process is 

known as profiling. Function Rprof in R does the profiling, but the outputs are not intuitive 

to understand for many users. Packages proftools (Tierney and Jarjour, 2013) and aprof 
(Visser, 2014) provide tools to analyze profiling outputs. Packages profr (Wickham, 2014b), 

lineprof (Wickham, 2014c), and GUIProfiler (de Villar and Rubio, 2014) provide 

visualization of profiling results.

4.2.2 Scaling up—The R package system has long embraced integration of parallel 

computing of various technologies to address the big data challenges. For embarrassingly 
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parallelizable jobs such as bootstrap or simulation, where there is no dependency or 

communication between parallel tasks, many options are available with computer clusters or 

multicores. Schmidberger et al. (2009) reviewed the then state-of-the-art parallel computing 

with R, highlighting two packages for cluster use: Rmpi (Yu, 2002) which provides an R 

interface to the Message Passing Interface (MPI) in parallel computing; snow (Rossini, 

Tierney and Li, 2007) which provides an abstract layer with the communication details 

hidden from the end users. Since then, some packages have been developed and some 

discontinued. Packages snowFT (Sevcikova and Rossini, 2012b) and snowfall (Knaus, 

2013) extend snow with fault tolerance and wrappers for easier development of parallel R 

programs. Package multicore (Urbanek, 2014) provides parallel processing of R code on 

machines with multiple cores or CPUs. Its work and some of snow have been incorporated 

into the base R package parallel, which was first included in R 2.14.0 in 2011. Package 

foreach (Revolution Analytics and Weston, 2014) allows general iteration over elements in a 

collection without any explicit loop counter. Using foreach loop without side effects 

facilitates executing the loop in parallel with different parallel mechanisms, including those 

provided by parallel, Rmpi, and snow. For massive data that exceed the computer memory, 

a combination of foreach and bigmemory, with shared-memory data structure referenced 

by multiple processes, provides a framework with ease of development and efficiency of 

execution (both in speed and memory) as illustrated by Kane, Emerson and Weston (2013). 

Package Rdsm provides facilities for distributed shared memory parallelism at the R level, 

and combined with bigmemory, it enables parallel processing on massive, out-of-core 

matrices.

The “Programming with Big Data in R” project (pbdR) enables high-level distributed data 

parallelism in R with easy utilization of large clusters with thousands of cores (Ostrouchov et 

al., 2012). Big data are interpreted quite literally to mean that a dataset requires parallel 

processing either because it does not fit in the memory of a single machine or because its 

processing time needs to be made tolerable. The project focuses on distributed memory 

systems where data are distributed across processors and communications between 

processors are based on MPI. It consists of a collection of R packages in a hierarchy. 

Package pbdMPI provides S4 classes to directly interface with MPI to support the Single 

Program Multiple Data (SPMD) parallelism. Package pbdSLAP serves as a mechanism to 

utilize a subset of functions of scalable dense linear algebra in ScaLAPACK (Blackford et al., 

1997), a subset of LAPACK routines redesigned with the SPMD style. Package pbdBASE 
contains a set of wrappers of low level functions in ScaLAPACK, upon which package 

pbdMAT builds to provide distributed dense matrix computing while preserving the friendly 

and familiar R syntax for these computations. Demonstrations on how to use these and other 

packages from the pbdR are available in package pbdDEMO.

A recent, widely adopted open source framework for massive data storage and distributed 

computing is Hadoop (The Apache Software Foundation, 2014b). Its heart is an 

implementation of the MapReduce programming model first developed at Google (Dean and 

Ghemawat, 2008), which divides the data to distributed systems and computes for each 

group (the map step), and then recombines the results (the reduce step). It provides fault 

tolerant and scalable storage of massive datasets across machines in a cluster (White, 2011). 

Wang et al. Page 14

Stat Interface. Author manuscript; available in PMC 2016 September 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The model suits perfectly the embarrassingly parallelizable jobs and the distributed file 

system helps break the memory boundary. McCallum and Weston (2011, ch.5–8) 

demonstrated three ways to combine Hadoop and R. The first is to submit R scripts directly 

to a Hadoop cluster, which gives the user the most control and the most power, but comes at 

the cost of a Hadoop learning curve. The second is a pure R solution via package Rhipe, 

which hides the communications to Hadoop from R users. The package (not on CRAN) is 

from the RHIPE project, which stands for R and Hadoop Integrated Programming 

Environment (Guha et al., 2012). With Rhipe, data analysts only need to write R code for the 

map step and the reduce step (Guha et al., 2012), and get the power of Hadoop without 

leaving R. The third approach targets specifically the Elastic MapReduce (EMR) at Amazon 

by a CRAN package segue (Long, 2012), which makes EMR as easy to use as a parallel 

backend for lapply-style operations. An alternative open source project that connects R and 

Hadoop is the RHadoop project, which is actively being developed by Revolution Analytics 

(Revolution Analytics, 2014). This project is a collection of R packages that allow users to 

manage and analyze data with Hadoop: rhbase provides functions for database management 

for the HBase distributed database, rhdfs provides functions for Hadoop distributed file 

system (HDFS), rmr provides functions to Hadoop MapReduce functionality, plymr 

provides higher level data processing for structured data, and the most recent addition ravro 
provides reading and writing functions for files in avro format, an efficient data 

serialization system developed at Apache (The Apache Software Foundation, 2014a).

Spark is a more recent, cousin project of Hadoop that supports tools for big data related 

tasks (The Apache Software Foundation, 2014c). The functions of Spark and Hadoop are 

neither exactly the same nor mutually exclusive, and they often work together. Hadoop has 

its own distributed storage system, which is fundamental for any big data computing 

framework, allowing vast datasets to be stored across the hard drives of a scalable computer 

cluster rather than on a huge costly hold-it-all device. It persists back to the disk after a map 

or reduce action. In contrast, Spark does not have its own distributed file system, and it 

processes data in-memory (Zaharia et al., 2010). The biggest difference is disk-based 

computing versus memory-based computing. This is why Spark could work 100 times 

faster than hadoop for some applications when the data fit in the memory. Some applications 

such as machine learning or stream processing where data are repeatedly queried makes 

Spark an ideal framework. For big data that does not fit in memory, Spark's operators spill 

data to disk, allowing it to run well on any sized data. For this purpose, it can be installed on 

top of Hadoop to take advantage of Hadoop's HDFS. An R frontend to Spark is provided in 

R package SparkR (Venkataraman, 2013), which has become part of Apache Spark 

recently. By using Spark's distributed computation engine, the package allows users to run 

large scale data analysis such as selection, filtering, aggregation from R. Karau et al. (2015) 

provides a summary of the state-of-the-art on using Spark.

As multicores have become the standard setup for computers today, it is desirable to 

automatically make use of the cores in implicit parallelism without any explicit requests 

from the user. The experimental packages pnmath and pnmath0 by Luke Tierney replace a 

number of internal vector operations in R with alternatives that can take advantage of 

multicores (Tierney, 2009). For a serial algorithm such as MCMC, it is desirable to 
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parallelize the computation bottleneck if possible, but this generally involves learning new 

computing tools and the debugging can be challenging. For instance, Yan et al. (2007) used 

the parallel linear algebra package (PLAPACK) (van de Geijn, 1997) for the matrix 

operations (especially the Cholesky decomposition) in a MCMC algorithm for Bayesian 

spatiotemporal geostatistical models, but the scalability was only moderate.

When random numbers are involved as in the case of simulation, extra care is needed to 

make sure the parallelized jobs run independent (and preferably reproducible) random-

number streams. Package rsprng (Li, 2010) provides an interface to the Scalable Parallel 

Random Number Generators (SPRNG) (Mascagni and Srinivasan, 2000). Package rlecuyer 
(Sevcikova and Rossini, 2012a) provides an interface to the random number generator with 

multiple independent streams developed by L'Ecuyer et al. (2002), the ideas of which are 

also implemented in the base package parallel: make independent streams by separating a 

single stream with a sufficiently large number of steps apart. Package doRNG (Gaujoux, 

2014) provides functions to perform reproducible parallel foreach loops, independent of 

the parallel environment and associated foreach backend.

From a hardware perspective, many computers have mini clusters of graphics processing 

units (GPUs) that can help with bottlenecks. GPUs are dedicated numerical processors that 

were originally designed for rendering three dimensional computer graphics. A GPU has 

hundreds of processor cores on a single chip and can be programmed to apply the same 

numerical operations on large data array. Suchard et al. (2010) investigated the use of GPUs 

in massively parallel massive mixture modeling, and showed better performance of GPUs 

than multicore CPUs, especially for larger samples. To reap the advantage, however, one 

needs to learn the related tools such as Compute Unified Device Architecture (CUDA), 

Open Computing Language (OpenCL), and so on, which may be prohibitive. An R package 

gputools (Buckner, Seligman and Wilson, 2013) provides an interface to NVidia CUDA 

toolkit and others.

If one is willing to step out of the comfort zone of R and take full control/responsibility of 

parallel computing, one may program with open source MPI or Open Multi-Processing 

(OpenMP). MPI is a language-independent communication system designed for 

programming on parallel computers, targeting high performance, scalability and portability 

(Pacheco, 1997). Most MPI implementations are available as libraries from C/C++, 

FORTRAN, and any language that can interface with such libraries, including C#, Java or 

Python. The interface from R can be accessed with package Rmpi (Yu, 2002) as mentioned 

earlier. Freely available implementations include OpenMPI (not OpenMP) and MPICH, 

while others come with license such as Intel MPI. OpenMP is an API that supports multi-

platform shared memory multiprocessing programming in C/C++ and FORTRAN on most 

processor architectures and operating systems (Chapman, Jost and Van Der Pas, 2008). It is 

an add on to compilers (e.g., gcc, intel compiler) to take advantage of of shared memory 

systems such as multicore computers where processors share the main memory. MPI targets 

both distributed as well as shared memory systems while OpenMP targets only shared 

memory systems. MPI provides both process and thread based approaches while OpenMP 

provides only thread based parallelism. OpenMP uses a portable, scalable model that gives 
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programmers a simple and flexible interface for writing multi-threaded programs in C/C++ 

and FORTRAN (Dagum and Enon, 1998). Debugging parallel programs can be very 

challenging.

5. Commercial Statistical Software

RRE is the core product of Revolution Analytics (formerly Revolution Computing), a 

company that provides R tools, support, and training. RRE focuses on big data, large scale 

multiprocessor (or high performance) computing, and multicore functionality. Massive 

datasets are handled via EMA and parallel EMA (PEMA) when multiprocessors or 

multicores are available. The commercial package RevoScaleR (Revolution Analytics, 

2013) breaks the memory boundary by a special XDF data format that allows efficient 

storage and retrieval of data. Functions in the package (e.g., rxGlm for GLM fitting) know to 

work on a massive dataset one chunk at a time. The computing power boundary is also 

addressed — functions in the package can exploit multicores or computer clusters. Packages 

from the aforementioned open source project RHadoop developed by the company provide 

support for Hadoop. Other components in RRE allow high speed connection for various 

types of data sources and threading and inter-process communication for parallel and 

distributed computing. The same code works on small and big data, and on workstations, 

servers, clusters, Hadoop, or in the cloud. The single workstation version of RRE is free for 

academic use currently, and was used in the case study in Section 6.

SAS, one of the most widely used commercial software for statistical analysis, provides big 

data support through SAS High Performance Analytics. Massive datasets are approached by 

grid computing, in-database processing, in-memory analytics and connection to Hadoop. 

The SAS High Performance Analytics Products include statistics, econometrics, 

optimization, forecasting, data mining, and text mining, which, respectively, correspond to 

SAS products STAS, ETS, OR, high-performance forecasting, enterprise miner, and text 

miner (Cohen and Rodriguez, 2013).

IBM SPSS, the Statistical Product and Services Solution, provides big data analytics through 

SPSS Modeler, SPSS Analytic Server, SPSS Collaboration and Deployment Services, and 

SPSS Analytic Catalyst (IBM, 2014). SPSS Analytic Server is the foundation and it focuses 

on high performance analytics for data stored in Hadoop-based distributed systems. SPSS 

modeler is the high-performance data mining workbench, utilizing SPSS Analytic Server to 

leverage big data in Hadoop environments. Analysts can define analysis in a familiar and 

accessible workbench to conduct analysis modeling and scoring over high volumes of varied 

data. SPSS Collaboration and Deployment Services helps manage analytical assets, 

automate processes and efficiently share results widely and securely. SPSS Analytic Catalyst 

is the automation of analysis that makes analytics and data more accessible to users.

MATLAB provides a number of tools to tackle the challenges of big data analytics (The 

MathWorks, Inc., 2014). Memory mapped variables map a file or a proportion of a file to a 

variable in RAM; disk variables direct access to variables from files on disk; datastore 

allows access to data that do not fit into RAM. Their combination addresses the memory 
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boundary. The computation power boundary is broken by intrinsic multicore math, GPU 

computing, parallel computing, cloud computing, and Hadoop support.

6. A Case Study

The airline on-time performance data from the 2009 ASA Data Expo (http://stat-

computing.org/dataexpo/2009/the-data.html) is used as a case study to demonstrate a logistic 

model fitting with a massive dataset that exceeds the RAM of a single computer. The data is 

publicly available and has been used for demonstration with big data by Kane, Emerson and 

Weston (2013) and others. It consists of flight arrival and departure details for all 

commercial flights within the USA, from October 1987 to April 2008. About 12 million 

flights were recorded with 29 variables. A compressed version of the pre-processed data set 

from the bigmemory project (http://www.jstatsoft.org/index.php/jss/article/

downloadSuppFile/v055i14/Airline.tar.bz2) is approximately 1.7 GB, and it takes 12 GB 

when uncompressed.

The response of the logistic regression is late arrival which was set to 1 if a flight was late by 

more than 15 minutes and 0 otherwise. Two binary covariates were created from the 

departure time: night (1 if departure occurred between 8pm and 5am and 0 otherwise) and 

weekend (1 if departure occurred on weekends and 0 otherwise). Two continuous covariates 

were included: departure hour (DepHour, range 0 to 24) and distance from origin to 

destination (in 1000 miles). In the raw data, the departure time was an integer of the HHmm 

format. It was converted to minutes first to prepare for DepHour. Three methods are 

considered in the case study: 1) combination of bigglm with package bigmemory; 2) 

combination of bigglm with package ff; and 3) the academic, single workstation version of 

RRE. The default settings of ff were used. Before fitting the logistic regression, the 12 GB 

raw data need to be read in from the csv format, and new variables needs to be generated. 

This leads to a total of 120,748,239 observations with no missing data. The R scripts for the 

three methods are in the supplementary materials (http://intlpress.com/site/pub/pages/

journals/items/sii/content/vols/0009/0004/s001) for interested readers.

The R scripts were executed in batch mode on an 8-core machine running CenOS (a free 

Linux distribution functionally compatible with Red Hat Enterprise Linux which is officially 

supported by RRE), with Intel Core i7 2.93 GHz CPU, and 16 GB memory. Table 2 

summarizes the timing results of reading in the whole 12 GB data, transforming to create 

new variables, and fitting the logistic regression with the three methods. The chunk sizes 

were set to be 500,000 observations for all three methods. For RRE, this was set when 

reading in the data to the XDF format; for the other two methods, this was set at the fitting 

stage using function bigglm. Under the current settings, RRE has a clear advantage in fitting 

with only 8% of the time used by the other two approaches. This is a result of the joint force 

of its using all 8 cores implicitly and efficient storage and retrieval of the data; the XDF 

version of the data is about 1/10 of the size of the external files saved by bigmemory or ff. 
Using bigmemory and using ff in bigglm had very similar performance in fitting the logistic 

regression, but the former took less time in reading, and significantly less time (only about 

1/5) in transforming variables of the latter. The bigmemory method was quite close to the 
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RRE method in the reading and the transforming tasks. The ff method took longer in reading 

and transforming than the bigmemory method, possibly because it used much less memory.

The results of the logistic regression are identical from all methods, and are summarized in 

Table 3. Flights with later departure hour or longer distance are more likely to be delayed. 

Night flights or weekend flights are less likely to be delayed. Given the huge sample size, all 

coefficients were highly significant. It is possible, however, that p-values can still be useful. 

A binary covariate with very low rate of event may still have an estimated coefficient with a 

not-so-low p-value (Schifano et al., 2015), an effect only estimable with big data.

As an illustration of foreach for embarrassingly parallel computing, the example in Kane, 

Emerson and Weston (2013) is expanded to include both bigmemory and ff. The task is to 

find three quantiles (0.5, 0.9, and 0.99) of departure delays for each day of the week; that is, 

7 independent jobs can run on 7 cores separately. To make the task bigger, each job was set 

to run twice. The resulting 14 jobs were parallelized with foreach on the same Linux 

machine using 1 to 8 cores for the sake of illustration. The R script is included in the 

supplementary materials. The timing results are summarized in Table 4. There is little 

difference between the two implementations. When there is no communication overhead, 

with 14 jobs one would expect the run time to reduce to 1/2, 5/14, 4/14, 3/14, 3/14, 2/14, and 

2/14, respectively, with 2, 3, 4, 5, 6, 7 and 8 cores. The impact of communication cost is 

obvious in Table 4. The time reduction is only closer to the expectation in the ideal case 

when the number of cores is smaller.

7. Discussion

This article presents a recent snapshot on statistical analysis with big data that exceed the 

memory and computing capacity of a single computer. Albeit under-appreciated by the 

general public or even mainstream academic community, computational statisticians have 

made respectable progress in extending standard statistical analysis to big data, with the 

most notable achievements in the open source R community. Packages bigmemory and ff 
make it possible in principle to implement any statistical analysis with their data structure. 

Nonetheless, for anything that has not been already implemented (e.g., survival analysis, 

generalized estimating equations, mixed effects model, etc.), one would need to implement 

an EMA version of the computation task, which may not be straightforward and may involve 

some steep learning curves. Hadoop allows easy extension of algorithms that do not require 

multiple passes of the data, but such analyses are mostly descriptive. An example is 

visualization, an important tool in exploratory analysis. With big data, the bottleneck is the 

number of pixels in the screen. The bin-summarize-smooth framework for visualization of 

large data of Wickham (2014a) with package bigvis (Wickham, 2013) may be adapted to 

work with Hadoop.

Big data present challenges much further beyond the territory of classic statistics, requiring 

joint workforce with domain knowledge, computing skills, and statistical thinking (Yu, 

2014). Statisticians have much to contribute to both the intellectual vitality and the practical 

utility of big data, but will have to expand their comfort zone to engage high-impact, real 

world problems which are often less structured or with ambiguity (Jordan and Lin, 2014). 
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Examples are to provide structure for poorly defined problems, or to develop methods/

models for new types of data such as image or network. As suggested by Yu (2014), to play 

a critical role in the arena of big data or own data science, statisticians need to work on real 

problems and relevant methodology and theory will follow naturally.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 2
Timing results (in seconds) for reading in the whole 12 GB data, transforming to create 
new variables, and fitting the logistic regression with three methods: bigmemory, ff, and 
RRE

Reading Transforming Fitting

bigmemory 968.6 105.5 1501.7

ff 1111.3 528.4 1988.0

RRE 851.7 107.5 189.4
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Table 3
Logistic regression results for late arrival

Estimate Std. Error (×104)

(Intercept) −2.985 9.470

DepHour 0.104 0.601

Distance 0.235 4.032

Night −0.448 8.173

Weekend −0.177 5.412
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