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Abstract

Dopaminergic genes play an important role in cognitive function. DRD2 and DARPP-32 
dopamine receptor gene polymorphisms affect striatal dopamine binding potential, while the 

Val158Met single nucleotide polymorphism of the COMT gene moderates dopamine availability 

in the prefrontal cortex. Our study assesses the role of these gene polymorphisms on performance 

in two rule-based category learning tasks. Participants completed unidimensional and conjunctive 

rule-based tasks. In the unidimensional task, a rule along a single stimulus dimension can be used 

to distinguish category members. In contrast, a conjunctive rule utilizes a combination of two 

dimensions to distinguish category members. DRD2 C957T TT homozygotes outperformed C 

allele carriers on both tasks, and DARPP-32 AA homozygotes outperformed G allele carriers on 

both tasks. However, we found an interaction between COMT and task-type where Met allele 

carriers outperformed Val homozygotes in the conjunctive rule task, but both groups performed 

equally well in the unidimensional task. Thus, striatal dopamine binding may play a critical role in 

both types of rule-based tasks, while prefrontal dopamine binding is important for learning more 

complex conjunctive rule tasks. Modeling results suggest that striatal dopaminergic genes 

influence selective attention processes while cortical genes mediate the ability to update complex 

rule-representations.
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Friend or foe? Rain or sun? Categorization plays a central role in allowing us to use 

information from our past experiences to predict future events. Previous research has shown 

that category learning performance is affected by disorders of the dopaminergic system (e.g., 

Ashby et al., 1998; Ashby et al., 2003; Heindel et al., 1989; Knopman & Nissen, 1991) and 

covaries with individual differences in cognitive capacities, like working memory (WM; 

Lewandowsky, 2011), that are known to be impacted by dopamine (e.g., Colzato et al., 2011; 

Dumontheil et al., 2011; Goldman-Rakic, 1998; Meyer-Lindenberg et al., 2007). However, 

currently, little is known about how category learning is impacted by common dopaminergic 

gene polymorphisms in normal adults.
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Although the role of dopaminergic gene polymorphisms in category learning has not been 

elucidated, extensive research shows that the neurotransmitter dopamine plays an important 

role in other types of cognitive tasks, especially reinforcement learning (e.g., Frank, 

Seeberger, & O'Reilly, 2004; Frank et al., 2007; Glimcher, 2011; Montague, Dayan, & 

Sejnowski, 1996) and working memory tasks (e.g., Bäckman & Nyberg, 2013; Jacobsen et 

al., 2006; Malhorta et al., 2002; Goldman-Rakic, 1998). Both D1 and D2 dopaminergic 

receptors have been shown to affect reinforcement learning (Frank et al., 2007; Goldman-

Rakic et al., 2001; Rinaldi et al., 2007) and modulate individual differences in working 

memory ability (e.g., Colzato et al., 2011; Malhorta et al., 2006; Meyer-Lindenberg et al., 

2007). Based on the role of dopaminergic genes in reinforcement learning and working 

memory, we expect dopaminergic polymorphisms to impact rule-based category learning. 

This type of learning requires learning a rule in response to trial-by-trial feedback and is 

thought to be mediated by an explicit, verbalizeable system that requires executive function 

and working memory (e.g., Filoteo et al., 2005; Maddox et al., 2013; Nomura & Reber, 

2008).

In the present study, we examine two types of rule-based category learning tasks, 

unidimensional and conjunctive, which involve learning categorization rules with variable 

demands that may differentially recruit cognitive processes impacted by dopaminergic 

polymorphisms. Unidimensional tasks require individuals to attend to a single stimulus 

dimension to learn the correct rule and use it to categorize each stimulus. In contrast, in a 

conjunctive rule task, two dimensions are required to correctly categorize a stimulus, and the 

individual must learn the criterion that differentiates each dimension as part of the category 

and update that criterion on every trial (Maddox, Bohil, & Ing, 2004). Thus, unidimensional 

tasks entail categorization based on a criterion of a single dimension, and conjunctive tasks 

involve maintaining information about two criteria in working memory (Filoteo, Maddox, 

Ing, & Song, 2007). As a result, conjunctive tasks place greater demands on criterion 

learning than unidimensional tasks by requiring participants to learn criteria along two 

dimensions rather than one.

In both types of rule-based category learning tasks, selective attention and perceptual 

discriminability are required to focus on the task-relevant features of each stimulus (Ashby 

et al., 1998; Smith, Patalano, & Jonides, 1998; Smith & Sloman, 1994). In unidimensional 

tasks, individuals must selectively attend to a single relevant dimension, whereas in 

conjunctive tasks, rule application occurs in serial; individuals must differentially weight the 

dimension that is most relevant to distinguishing the categorization criteria on a given trial 

(Smith et al., 1998). To do this, individuals need to consider the dimensions independently 

by attending to the distance between a stimulus and the boundary between categories on 

each dimension. For example, in a task in which the categorization rule depends on both the 

length and orientation of a stimulus, one might first attend to the length dimension and 

consider how far an item is from the decision boundary. Because the category rule is defined 

by both dimensions, one will then also need to attend to the second dimension (orientation) 

in order to make a decision.

Both unidimensional and conjunctive rule tasks also rely on working memory in order to 

maintain rules and incorporate feedback (Ashby & O'Brien, 2005; Filoteo et al., 2007; 
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Waldron & Ashby, 2001). However, unidimensional tasks emphasize dimensional selective 

attention by encouraging learners to determine the dimension that designates the rule and 

focus on that dimension while ignoring the other on every trial. Conjunctive rule tasks, on 

the other hand, often require more extensive hypothesis testing (Nosofsky, Palmeri, & 

McKinley, 1994) and updating of a rule with greater Boolean complexity1 (e.g., Feldman, 

2000) in working memory (Ashby et al., 1998; Filoteo et al., 2007; Zeithamova & Maddox, 

2006). Thus, in addition to correct rule specification, conjunctive tasks also entail integrating 

feedback to adjust the two perceptual boundaries in working memory and updating the rule 

criterion based on this feedback. The difference in cognitive demands between 

unidimensional and conjunctive tasks suggests that performance in these two tasks may 

interact with dopaminergic gene polymorphisms differently.

Category learning has been shown to depend on visual, motor, and executive corticostriatal 

loops (Seger, 2008; Seger & Miller, 2010); therefore we examine both striatal and cortical 

dopaminergic genes. We expect that three important modulators of dopamine availability, the 

DRD2, DARPP-32, and catechol O-methyltransferase (COMT) genes, may differentially 

impact performance in unidimensional and conjunctive rule learning tasks. The C957T 

polymorphism of the DRD2 gene has previously been associated with D2 receptor binding 

potential in the striatum in which TT homozygotes have increased binding potential relative 

to C allele carriers (Duan et al., 2003; Hirvonen et al., 2004). The DRD2 957T 

polymorphism has been associated with superior working memory capacity and cognitive 

control (Colzato et al, 2011; Jacobsen, 2006; Rodriguez-Jimenez et al., 2007). The 

DARPP-32 gene is also expressed in the striatum, but modulates D1 receptor functioning 

(Hämmerer et al., 2013; Nishi, Snyder, & Greengard, 1997). Prior research has shown that 

DARPP-32 AA homozygotes have higher D1 dopamine receptor efficacy and increased WM 

capacity and cognitive flexibility (Frank et al., 2007; Houlihan et al., 2009; Meyer-

Lindenberg et al., 2007). In contrast to the striatal dopaminergic genes, the COMT gene is 

important in the metabolic degradation of dopamine in the prefrontal cortex (PFC), and the 

Val158Met polymorphism plays a role in dopamine availability in this neural region (Frank 

et al, 2007; Frank et al., 2009; Malholtra et al., 2002; Matsumoto et al., 2003; Meyer-

Lindenberg et al., 2005). COMT Met allele carriers have lower COMT enzyme activity and 

thus, higher dopamine levels in the PFC (Meyer-Lindenberg et al., 2005; Tunbridge et al, 

2004). This increased dopamine can be beneficial in working memory dependent tasks by 

enhancing the updating and maintenance of encoded WM representations (Durstewitz & 

Seamans, 2008). In contrast, Val homozygotes have greater COMT activity which leads to 

faster degradation of dopamine in the PFC. As a result, Val homozygotes may have less 

efficient processing for WM and executive functioning, and require greater activation for a 

given level of performance (Egan et al, 2001; Goldberg et al., 2003; Tunbridge, Harrison, & 

Weinberger, 2006).

Critical to the present investigation, the effect of DRD2, DARPP-32, and COMT 
polymorphisms has been examined in the context of reinforcement learning. Although 

polymorphisms in other dopaminergic genes, such as DRD1 and DAT1, which encode for 

1Boolean complexity is the length of the shortest logically equivalent propositional formula (Feldman, 2000). In the current context 
this simply means the length of the most parsimonious statement describing the rule that governs categorization.
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D1 receptors and the dopamine transporter, respectively, are associated with altered striatal 

dopamine availability, there is little evidence to demonstrate their involvement in 

reinforcement learning. We therefore selected dopaminergic genes based on previous work 

showing their association with specific aspects of reinforcement learning (Collins & Frank, 

2012; Doll et al., 2011; Frank et al., 2007). Specifically, COMT has been shown to 

significantly influence the WM component of reinforcement learning in which the Met allele 

is associated with greater WM capacity than the Val allele (Collins & Frank, 2012). 

However, in this previous study, no effect of DARPP-32 or DRD2 on reinforcement learning 

or WM was observed. The authors concluded that genes involved in PFC, namely COMT, 

and basal ganglia have distinct influences on the WM and reinforcement learning aspects of 

learning behavior (Collins & Frank, 2012). One key distinction between the procedure 

utilized in this previous study and the category learning tasks in the present study is that our 

procedure relies on unfamiliar stimuli that involve feature discriminability in order to 

achieve maximum accuracy, while the task in the Collins and Frank study entailed 

categorizing images into familiar categories, such as fruits or sports (2012). Categorizing 

novel stimuli may rely on functionally different learning skills compared to categorizing 

familiar stimuli. Additionally, in contrast to their results, previous work has shown that 

DRD2 and DARPP-32 are involved in reinforcement learning (Doll et al., 2011; Frank et al., 

2007). Similar to the stimuli used in the present study, the probabilistic selection tasks used 

in the studies that found an effect of DRD2 and DARPP-32 entailed learning novel, 

unfamiliar categories and identifying subtle differences in stimulus features that specify 

category membership. Based on these findings, it seems that the familiar categorization 

studies (Collins & Frank, 2012) require updating value relationships without needing to 

differentiate new categories. Categorizing novel stimuli, however, entails both category rule 

updating and specifying new categories, which may rely on different dopaminergic 

processes. Given these distinctions between familiar and novel categorization, it is 

reasonable to predict that DRD2 and DARPP-32 may influence different aspects of 

reinforcement learning than COMT. One theory that draws together these different 

observations and effects of dopaminergic genes on learning and WM is the Prefrontal, Basal 

Ganglia, Working Memory Model (PBWM model) (Frank, Loughry, & O'Reilly, 2001; 

Hazy, Frank, & O'Reilly, 2007; O'Reilly & Frank, 2006; O'Reilly, 2006). This model 

proposes that WM maintenance and updating is regulated by a dopaminergic gating 

mechanism in which only task representations that are reinforced with positive 

reinforcement gain access to WM through dopaminergic signaling to the PFC. When shown 

negative feedback, however, task representations are destabilized in WM so the 

representation can be updated. Thus, the PBWM model suggests that the PFC maintains 

information in WM, while the basal ganglia selectively triggers the updating of these 

memory representations by learning which category features are task relevant (Braver & 

Cohen, 2000; Frank, Loughry, & O'Reilly, 2001; Hazy, Frank, O'Reilly, 2007; O'Reilly & 

Frank, 2006; O'Reilly, 2006; Price, Filoteo, & Maddox, 2009). Therefore, if the PBWM is 

applied to category learning, it is reasonable to predict that striatal genes might affect 

learning that depends on selective attention to the stimulus dimensions that define the 

category rule (rule specification), while genes involved in PFC functions may influence 

WM-dependent rule updating.
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While the unidimensional task in the current investigation may depend on correctly 

specifying the dimension that defines the rule and attending to that stimulus feature, 

performance on the conjunctive rule task may rely not only upon rule specification but also 

place greater demands upon WM-dependent rule updating in order to specify and update the 

optimal decision criteria for the conjunctive rule. Consequently, it is reasonable to predict 

that striatal dopaminergic genes may be involved in rule specification, while the PFC gene 

COMT may be critical for optimally updating complex rules. Therefore, relating the 

previous behavioral differences between dopaminergic gene polymorphisms and the PBWM 

model to the different reinforcement learning demands of unidimensional and conjunctive 

rule learning tasks, we expect both task types to be impacted by striatal dopaminergic gene 

polymorphisms (DRD2 and DARPP-32), and the PFC dopaminergic gene COMT to have a 

stronger impact on conjunctive rule tasks. Specifically, we predict that DRD2 TT and 

DARPP-32 AA homozygotes will perform better than individuals possessing other 

genotypes for those genes in both tasks since both rely on rule specification and selective 

attention. Furthermore, COMT Met allele carriers should perform better than Val/Val 

homozygotes in the conjunctive rule task that depends on updating the appropriate rule, but 

not in the unidimensional task. We also investigated the possibility of interactions between 

DARPP-32, DRD2, and COMT on category learning performance. For example, it is 

possible that COMT Met allele carriers who are also DRD2 TT homozygotes or DARPP-32 
AA homozygotes may excel on the conjunctive rule task. Because the conjunctive task relies 

on both rule specification and rule updating, performance effects alone cannot distinguish 

the precise mechanism that may account for genotype differences in the conjunctive task. 

We therefore apply computational models to the data for the conjunctive task to determine 

the precise genetic effects on rule specification and updating. This modeling approach will 

allow us to pinpoint whether poorer categorization performance on the conjunctive task is 

due to deficits in updating complex rules or specifying the optimal rule.

Method

Participants

One hundred and four participants (75 females, 29 males; Mage=21.4) were recruited from 

the Texas A&M University and College Station, Texas community and were compensated 

$24 for participating in the experiment. Two participants did not complete either category 

learning experiments and four participants did not complete the conjunctive rule task due to 

computer issues and were excluded from those analyses. In our within-subject design, 

participants provided saliva samples and then completed both conditions of a rule-based 

category learning task that consisted of a unidimensional rule task and a conjunctive rule 

task. The order that participants completed the tasks was counterbalanced, and participants 

performed each task in separate sessions at least one week apart.

The majority of the participants in our sample (n=60) were Caucasian, twenty were Asian, 

eighteen were Hispanic, and six were African-American. To control for population 

stratification in the genetic effects and assess for admixture in our sample, we included 

ethnicity as a factor in our statistical analyses. The ratio for DRD2 C957T genotypes was 

36:39:29 (C/C:C/T:T/T). The ratio distribution of COMT genotypes was 30:53:21 (Val/
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Val:Val/Met:Met/Met), and the ratios for DARPP-32 genotypes were 5:48:51 

(G/G:G/A:A/A). The frequency of gene combinations for COMT, DRD2, and DARPP-32 
respectively was: Met/C/G: 24.3%, Met/C/AA: 30.1%, Met/TT/G: 7.8%, Met/TT/AA: 8.7%, 

ValVal/C/AA: 5.8%, ValVal/TT/G: 6.8%, and ValVal/TT/AA:4.9%.

Genotyping Method

DNA was collected using 2ml Oragene self-collection kits. Samples for the rs6277 (C957T), 

rs4680 (Val158Met), and (rs3764352) DARPP-32 single nucleotide polymorphisms (SNPs) 

were genotyped using Taqman primer and probe pairs. Samples were amplified in 

accordance with Taqman Universal Thermal Cycling Protocol using Applied Biosystems 

7900HT Real Time PCR System. Allelic discrimination was then performed.

Stimuli

Participants were presented with Gabor patches that varied in the frequency of the bars and 

their orientation relative to the computer screen. Figure 1 shows the frequency (bar width) 

and orientation of all the Gabor patterns in each block of trials as well as the boundaries that 

maximize accuracy for each block. Optimal performance in the unidimensional rule-based 

task required using the frequency dimension alone while ignoring orientation. In contrast, 

optimal performance in the conjunctive rule-based task entailed utilizing a conjunctive rule 

based on both the frequency and orientation dimensions. The unidimensional rule stimuli 

had a category discriminability (d′) of 4.5, whereas the conjunctive stimuli had a d′ equal to 

10.4. In line with previous work on unidimensional and conjunctive rule category learning, 

these separate stimulus space d′ values were selected to match the stimuli in each task in 

terms of psychological d′, which approximately equates the tasks in accuracy rate 

(Zeithamova & Maddox, 2006). While the rule was more complex for the conjunctive rule 

task because it involved a conjunction along two dimensions, the two categories in the 

unidimensional task had lower perceptual discriminability, thus making the conditions 

similar in level of difficulty.

Procedure

Participants completed five blocks of 80 trials. They were instructed to categorize each 

stimulus as a member of either Category 1 by pressing the ‘Z’ key on the keyboard or 

Category 2 by pressing the ‘C’ key on the keyboard. No time constraint was imposed on 

response time. Participants were given feedback 500ms after their response selection about 

whether they were correct (“Correct”) or incorrect (“No, the answer is 1 (or 2)”). They were 

informed that at first they would need to guess a category, but as the task continued, they 

would learn the categorization strategy. Participants learned to categorize the Gabor patches 

through the feedback provided. For each block of trials, a meter located to the right of the 

stimulus was shown, and as participants correctly categorized the stimuli, the meter filled. 

Each correct response earned 2 points, and a total of 160 points was needed to fill the meter. 

This allowed participants to track their progress on each block of trials. The meter was reset 

at the beginning of each block of trials. Participants were informed that there were an equal 

number of stimuli that belonged to Category 1 and Category 2 over the course of the task.
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Results

Category Learning Accuracy

We employed linear mixed effects models to test the effects of genetic influences on task 

performance while controlling for individual differences in overall accuracy and the effect of 

task manipulation. We measured overall accuracy, or average accuracy across all five blocks, 

to fully capture the selective attention aspect of the task and assess long-term learning2. In 

contrast to repeated measures ANOVA, a linear mixed effects regression is a more flexible 

model that can handle missing data, which allowed for a better representation of the data for 

the subjects who completed the unidimensional task, but not the conjunctive rule task. 

Additionally, the regression approach controls for the effects of other genes. Therefore, the 

mixed effects model is better suited for testing gene-gene interactions because it increases 

experimental power. Participants were included in the model as the random factor. For the 

fixed factors, each of the gene single nucleotide polymorphisms was coded as either 0 or 1. 

We tested the SNPs to determine whether they were in Hardy-Weinberg equilibrium (HWE). 

COMT and DARPP-32 did not deviate from HWE, but DRD2 did, (Χ2 = 6.32, p < .05). The 

dichotomization of the genes should correct for the DRD2 deviation from HWE in the 

results, however. The DRD2 C957T SNP was dichotomized as TT homozygotes (coded as 

0) and C allele carriers (coded as 1), and the DARPP-32 (rs3764352) SNP was dichotomized 

as G allele carriers (coded as 0) and AA homozygotes (coded as 1). For COMT Val158Met, 

Met carriers (coded as 0) were compared to Val homozygotes (coded as 1). The first model 

we considered contained all possible interactions between genes and task type. In this first 

model, we observed a significant COMT by task type interaction whereby overall accuracy 

was significantly lower in the conjunctive task relative to the unidimensional task for Val 

homozygotes, β = -0.14, SE = 0.06, t(89) = -2.27, p < .05. There were no other significant 

gene X gene or gene X task type interactions. However, there was a significant main effect 

of DARPP-32 in which AA homozygotes outperformed G allele carriers, t(95) = 3.04, p < .

01. For the DRD2 gene, although TT homozygotes performed numerically better overall on 

the category learning tasks compared to C allele carriers, this difference did not reach 

significance, t(95) = 1.59, p = .11. No main effect was observed for the COMT gene, t(95) 

= .87, p = .38. Ethnicity did not interact with DRD2 (t(87) = -1.32, p = .19), DARPP-32 
(t(87) = .08, p = .94), COMT (t(87) = -.62, p =.53), or task type (t(81) = -.08, p = .94).

Because the full regression model tested several interaction effects, power to detect main 

effects was somewhat diminished. To have increased power for examining the main effects 

of genes, we ran a reduced model that only included the COMT X task interaction and the 

main effects of DARPP-32 and DRD2. According to the AIC values, this reduced model fit 

the data better than the full model with all interactions (AICfull = -134.58; AICreduced = 

-182.79). In this reduced model, there was a significant main effect of task type in which the 

conjunctive task was performed more accurately than the unidimensional task, β = 0.09, SE 
= 0.02, t(95) = 4.33, p < 0.01. Additionally, there was a main effect of DRD2 in which TT 

homozygotes performed better than C allele carriers (β = 0.07, SE = 0.03, t(99) = 2.74, p < .

2We also conducted all analyses described in the Results section with final block accuracy as the outcome measure. All observed 
effects for average accuracy were also significant (p<.05) or marginally significant (p<.10) for final block accuracy.
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01), and a main effect of DARPP-32 whereby AA homozygotes performed better than G 

carriers, β = 0.06, SE = 0.02, t(99) = 2.70, p < .01. There was no main effect of COMT 
overall, t(99) = 0.06, p = 0.95. However, the interaction identified in the full model remained 

robust, though slightly weaker, in the reduced model, suggesting that Val homozygotes 

perform poorly compared to Met carriers only in the conjunctive task, β = -0.07, SE = 0.04, 

t(95) = -1.88, p = 0.06. Indeed, post hoc comparisons showed no difference between Met 

carriers and Val homozygotes in the unidimensional task (t(95) = -.05, p = .96), but a 

significant difference in the conjunctive rule task, β = -0.07, SE = .03, t(95) = -2.14, p = .03. 

As with the full model, ethnicity did not interact with any of the genes in the reduced model 

(p>.10). Learning curves for each genotype in the unidimensional and conjunctive rule tasks 

are shown in Figure 2. Mixed model ANOVAs conducted separately for each genotype in 

both task types indicated that learning was not significantly different by genotype in either 

task, p > .10. Thus, the observed differences in learning performance can be attributed to 

consistent accuracy differences in each trial block on both the unidimensional and 

conjunctive rule tasks. Task order, completing either the unidimensional or conjunctive rule 

task first, did not affect performance in either the unidimensional (t(101) = -.73, p = .47) or 

conjunctive (t(96) = -.33, p = .74) rule task.

Gene-Dose Effects

We also tested for linear gene-dose effects for each of the single nucleotide polymorphisms. 

Figure 3 shows the linear effects of each genotype in both the unidimensional and 

conjunctive rule tasks. The DRD2 C957T polymorphism showed a significant linear gene-

dose effect in which each copy of the T allele increased category learning performance 

(averaged across both the unidimensional and conjunctive tasks), F(2, 94)= 5.87, p < .01. 

Similarly, DARPP-32 also indicated a significant linear gene-dose effect whereby each copy 

of the A allele was associated with increased task performance, F(2, 94) = 4.85, p = .01. 

However, it is important to note that because there were only five DARPP-32 GG carriers in 

our sample for this gene, the linear gene-dose effect analysis may not be the most valid 

method to represent the data for this particular gene. There were no linear effects of the 

minor allele frequency for COMT on combined (average for unidimensional and 

conjunctive) category learning performance, F(2, 102) = 1.35, p = .27. Given the distinctive 

effects of COMT on the unidimensional and conjunctive rule tasks, we also performed 

separate analyses for each task condition. While there was no gene-dose effect of COMT 
observed in the unidimensional task, F(2, 102) = .17, p = .84, there was a marginally 

significant gene-dose effect of COMT in the conjunctive rule task, F(2,97) = 2.46, p = .09, in 

which each copy of the Met allele corresponded to increased accuracy on the conjunctive 

rule task.

Decision-Bound Modeling Analysis

To examine whether DRD2 and DARPP-32 affected different aspects of learning within the 

conjunctive rule task, we fit a series of decision-bound models individually to each 

participant's data. These analyses were performed in the conjunctive rule task to assess 

whether the genes we examined had specific roles in a.) attending to both stimulus 

dimensions instead of a single dimension (selective attention), and b.) specifying the optimal 

decision-bound for the conjunctive rule (rule-updating). We predicted that the striatal genes 
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would be relevant for selective attention to the relevant dimensions, while COMT would be 

implicated in updating the conjunctive rule-representation so that it is closest to the optimal 

rule-bound. Decision-bound models have been used extensively in prior category-learning 

work, and the basic process involves fitting models that assume specific strategies or rules to 

the data to infer what types of strategies participants used to solve the task (Maddox & 

Ashby, 1993; Maddox, 1999; Worthy, Markman, & Maddox, 2013). We fit a total of four 

models to the data: two unidimensional rule models that assumed a linear decision-bound 

aligned with either the spatial frequency or spatial orientation dimension, a conjunctive rule 

model that assumed a conjunctive rule bound in the form of the optimal strategy, and a 

random responder model. The unidimensional rule models each had two free parameters, 

one representing the location of the bound along the relevant dimension and the other 

representing perceptual and criterial noise. The conjunctive rule model had three free 

parameters, two representing the location of the frequency and orientation bounds, and the 

third representing perceptual and criterial noise. This model is an independent-decisions 

classifier model that assumes that both the frequency and orientation dimensions are 

considered independently. The random responder model had only one free parameter that 

represented the probability of selecting Category 1 on any given trial.

We fit each participant's data individually over all trials and in the final block with each of 

the four models. Overall, the conjunctive rule model provided a much better fit (Mean AIC = 

382.14) to the data in the conjunctive rule task for the majority of participants compared to 

the frequency (Mean AIC = 560.36), orientation (Mean AIC = 693.31), or random responder 

models (Mean AIC = 549.79). To examine the extent to which participants learned to 

selectively attend to both dimensions instead of a single dimension we computed the 

improvement in the conjunctive rule model's fit over the best-fitting unidimensional rule 

model (AICBest Unidimensional – AICConjunctive). Figure 4a shows a typical individual data set 

that illustrates the improvement in the conjunctive rule model's fit in terms of decision 

bounds compared to the unidimensional model. Because the conjunctive rule is the optimal 

categorization strategy in the conjunctive task, a better model fit suggests enhanced 

categorization performance. We then simultaneously entered each gene polymorphism into a 

regression to predict the improvement in fit for the model that assumed a conjunctive rule 

bound over a unidimensional rule bound. There were significant effects for DRD2, β = −.32, 

p < .01, and DARPP-32, β = −.22, p < .05, but there was no effect for COMT, β = −.08, p 
= .45. A regression analysis for each gene predicting improvement in model fit in the final 

trial block showed similar results in which the DRD2 gene was a significant predictor, β = 

−.26, p < .05. Although the main effect of DARPP-32 did not reach significance for the final 

block, the trend was in the same direction as the analysis for all trials, β = −.15, p = .14. 

Figure 5 shows the improvement in conjunctive rule model's fit for DRD2 and DARPP-32 
by trial block. The improvement in model fit for the conjunctive rule model over the best-

fitting unidimensional model was greater for DRD2 TT homozygotes than for C carriers, 

and for DARPP-32 AA homozygotes than for G carriers. Consistent with the behavioral 

results showing that DRD2 TT homozygotes and DARPP-32 AA homozygotes performed 

better on both category learning tasks, these results indicate that individuals with these 

genotypes demonstrated enhanced selective attention to the stimulus features in both tasks. 
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Furthermore, the null modeling findings for COMT parallel the behavioral results and 

suggest that COMT is not involved in selective attention to specific stimulus features.

We also examined the best-fitting bounds for the conjunctive rule model in relation to the 

optimal bound location by computing the distance from the best-fitting frequency and 

orientation bounds to the optimal bounds. Figure 4b shows the best-fitting conjunctive rule 

bounds compared to the optimal model bounds for a single participant. Smaller distances 

from the optimal bound indicate greater precision in updating and maintaining the correct 

rule. Thus, as rule information from feedback is updated in working memory, accuracy in 

categorizing the stimuli should improve. We entered each gene polymorphism into a 

simultaneous regression to predict the distance between each participant's best-fitting 

conjunctive bounds to the optimal bounds. There was no effect for DRD2 (β = .15, p = .15) 

or DARPP-32 (β = −10, p = .33), however, we did observe a significant effect for COMT (β 
= .21, p < .05) where Val homozygotes' best-fitting conjunctive rule bounds were 

significantly further away from the optimal bound compared to Met allele carriers. 

Regression results for each gene predicting best- fitting bounds in the final block revealed 

similar results; COMT Val homozygotes' best-fitting bounds were closer to the optimal 

bound in the final block compared to Met carriers (β = .25, p < .05), while DRD2 (β = .12, 

p = .26) and DARPP-32 (β = .02, p = .84) were not significant predictors. figure 6 depicts 

the best-fitting conjunctive rule bounds for COMT by trial block. Based on these results, it 

appears that COMT Met allele carriers were more adept at updating and maintaining the 

appropriate rule in the conjunctive rule task as compared to Val homozygotes. This ability to 

better update and maintain the correct rule is also consistent with the behavioral results 

showing that Met allele carriers exhibited enhanced performance on the conjunctive rule 

task.

Discussion

The results of this study demonstrate that polymorphisms in striatal and PFC dopaminergic 

genes differentially impact performance in category learning, depending on the task 

demands. Striatal dopaminergic genes, DRD2 and DARPP-32, influenced performance in 

both unidimensional and conjunctive rule-based category learning tasks in which DRD2 TT 

homozygotes outperformed C allele carriers and DARPP-32 AA homozygotes outperformed 

G allele carriers on both tasks. However, COMT, primarily expressed in the PFC, impacted 

performance in the conjunctive rule task alone, indicating that COMT may be selectively 

involved in learning that depends on effectively updating complex WM representations. The 

COMT Met allele predicted superior performance on the conjunctive rule task that involves 

both selective attention to the correct stimulus dimensions (rule specification) and 

appropriate rule updating of the decision bounds, but no difference in performance from Val 

homozygotes in the unidimensional task that relies primarily on rule specification.

Furthermore, our modeling results suggest that COMT Met allele carriers were able to more 

precisely specify the decision-bound representing the optimal rule. Increased dopamine in 

the PFC may lead to enhanced higher order executive function capabilities, which may 

account for COMT Met allele carriers' enhanced performance on the more demanding 

conjunctive task but not the unidimensional task. These results are consistent with previous 
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work by Goldberg and colleagues that found a relationship between COMT and performance 

on the N-back task that suggested that COMT is sensitive to PFC processes involved in 

information updating (2003). It appears that Val/Val homozygotes have lower dopamine 

levels available in the PFC and are less capable of simultaneously updating rule criteria 

along both stimulus dimensions as the modeling results indicated. While Val/Val 

homozygotes may be able to specify that the rule entails two dimensions, the additional 

demand of effectively learning the precise boundaries of two dimensions in the conjunctive 

task may compromise category learning performance. In contrast, while the unidimensional 

task required filtering out the orientation dimension in constructing category rules, it 

entailed less rule updating demands than the conjunctive rule task, and Val/Val homozygotes 

were able to perform at a similar level to that of Met allele carriers. Thus, the contribution of 

COMT to category learning appears to be optimally updating and applying complex rules, 

rather than selective attention or rule specification.

In contrast to the null findings in Collins & Frank (2012) but in line with previous work with 

the probabilistic selection task (Doll et al., 2011; Frank et al., 2007), we show that both 

DRD2 and DARPP-32 influence learning that entails selective attention to novel stimulus 

features. Furthermore, recent research examining the effect of DRD2 on conjunctive rule-

based and procedural learning showed that DRD2 C carriers are faster to reach a learning 

criterion (10 trials in a row correct) than TT homozygotes (Xie, Maddox, McGeary, & 

Chandrasekaran, 2015). Like the task used in the Collins and Frank study, however, this task 

also entailed categorizing familiar items (houses, plants, and food on plates). Differences in 

task demands, stimulus features, stimuli familiarity, or outcome measures may account for 

the disparity in results. Our results suggest that DRD2 and DARPP-32 specifically modulate 

selective attention to novel stimulus features. Moreover, the modeling results from the 

conjunctive rule task support this assertion in that these genes were associated with 

improved model fit for the conjunctive rule model over the best-fitting unidimensional 

model, which suggests superior selective attention to the task-relevant features of the stimuli. 

Based on these findings, it appears that striatal dopaminergic genes affect tasks that rely on 

selective attention, while COMT is specifically involved in updating information in complex 

tasks that are more taxing on WM processes.

Our results are also relevant to the Competition between Verbal and Implicit Systems 

(COVIS) theory of rule-based learning and specify the distinctive function of dopamine on 

different type of verbal learning (Ashby et al., 1998). COVIS predicts that response criterion 

learning in rule-based tasks occurs in the striatum, while the PFC helps update the criteria 

and select the categorization rule that defines each stimulus. Furthermore, COVIS also 

predicts that increased dopamine should enhance rule-based learning (Ashby et al., 1998; 

Ashby & Isen, 1999). Our findings demonstrate that genes that encode for enhanced D1 and 

D2 dopamine receptor availability in the striatum, specifically, enhance unidimensional and 

conjunctive rule learning. Moreover, the COMT Met allele, associated with elevated PFC 

dopamine, enhances conjunctive rule learning, but not unidimensional rule learning. 

Consistent with COVIS, we find that striatal dopamine does indeed enhance rule-based 

learning. Our results add a novel contribution to the COVIS theory by demonstrating the 

specificity of D1 and D2 receptors to the selective attention and rule specification aspect of 

rule-based category learning, and also demonstrating the role of PFC dopamine for complex 
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rule-learning in particular. Future work could further examine how COVIS' proposed 

frontostriatal rule-based system learns different types of rule-based category structures.

Rule-based categories are learned through rule specification and updating and rely on intact 

executive function and adequate cognitive resources. Our results suggest that rule updating 

may be mediated by PFC regions, while attention to novel stimulus features may be 

mediated more by striatal regions. Consistent with this notion, computational models on the 

basal ganglia-frontal system propose that dopamine in the basal ganglia serves as a gate that 

selectively regulates updating of information to be maintained in the PFC and inhibition of 

information to the PFC (Frank et al., 2001; Middleton & Strick, 2002; Moustafa, Sherman & 

Frank, 2008; O'Reilly & Frank, 2006). Excitation of Go neurons via D1 receptors in the 

basal ganglia direct pathway disinhibit the thalamus, which allows information to pass 

through the basal ganglia “gate” to be updated in the PFC. In contrast, dopamine in the 

indirect pathway inhibits NoGo neurons via D2 receptors and prevents information from 

being updated in the PFC. This model suggests a mechanism for the function of dopamine in 

unidimensional and conjunctive rule tasks. Striatal dopamine enhances Go activity through 

D1 receptors, which enhances selective attention to the relevant stimulus dimensions, while 

dopamine inhibits NoGo activity through D2 receptors, which enables one to ignore 

irrelevant dimensions. Thus, only information about relevant features of a stimulus pass 

through the basal ganglia gate to the PFC where information about the features 

characterizing the categorization rule are updated and maintained. PFC dopamine thus 

facilitates the updating and maintenance of the appropriate rule because only rule-relevant 

information passed through the gate.

Thus, this process is both consistent with the results that show an effect of COMT only in 

the conjunctive rule task as well as prior work showing that the basal ganglia exerts 

attentional control in working memory tasks, selectively permitting only task-relevant 

information access to working memory resources (McNab & Klingberg, 2008). 

Furthermore, these results fit within the context of the PBWM model. Prior work shows that 

striatal D1 and D2 receptors are responsible for gating dopamine signaling to the PFC by 

controlling whether task representations are maintained (D1 state) or updated (D2 state), and 

the PFC is responsible for higher order executive functioning processes (Frank, Loughry, & 

O'Reilly, 2001; Hazy, Frank, & O'Reilly, 2007; O'Reilly & Frank, 2006; O'Reilly, 2006). 

Thus, WM-dependent learning tasks that rely on selective attention to novel stimulus 

features may be directly influenced by allelic variation in striatal D1 and D2 receptor genes. 

Our results suggest that DRD2 TT homozygotes and DARPP-32 AA homozygotes have 

enhanced attention to task-relevant stimulus features, which extends to both unidimensional 

and conjunctive rule-based category-learning tasks. We note that despite limited work on 

other dopaminergic genes, including DRD1 and DAT1, impacting reinforcement and 

category learning, future research on possible relationships between these genes and 

different types of learning would be beneficial. It is possible that other dopaminergic genes 

specifically influence category learning; however, that analysis was outside the scope of the 

present study. Thus, the conclusions from this study indicate that D1 and D2 striatal genes 

lead to broad cognitive advantages for DRD2 TT homozygotes and DARPP-32 AA 

homozygotes in rule-based category learning tasks, and a specific contribution of COMT in 

learning tasks that require updating complex WM representations.
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Taken together, we conclude that dopaminergic binding in both the striatum and prefrontal 

cortex influence category learning performance. These results show that individual 

differences in striatal and cortical dopaminergic genes are important not only in WM 

activity, but also in tasks that depend on rule specification (unidimensional rule) and 

complex rule updating (conjunctive rule) strategies necessary for task success. To our 

knowledge, this is the first study to associate polymorphisms in DRD2, DARPP-32, and 

COMT genes with novel category learning performance. Future work should consider 

whether these effects extend to other category learning tasks like information-integration 

tasks which are thought to be learned procedurally, but that also recruit striatal regions 

(Ashby et al., 1998). Learning and categorization are integral aspects of human functioning 

and adaptation, and the results of this study demonstrate that individual differences in 

dopaminergic genes may predict differences in learning performance and cognitive 

strategies.
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Figure 1. 
(a) Plot of stimuli from unidimensional rule category structure. (b) Plot of stimuli from the 

conjunctive rule category structure. The dotted lines represent boundaries that maximize 

accuracy in each condition.
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Figure 2. 
Learning curves for each 80-trial block for each genotype in the unidimensional (top row) 

and conjunctive (bottom row) rule category learning tasks. Error bars represent standard 

error of the mean from the linear mixed effects reduced models.
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Figure 3. 
Gene-dose effects of DRD2, DARPP-32, and COMT for the unidimensional (top row) and 

conjunctive (bottom row) rule tasks. DRD2 and DARPP-32 genotypes had a significant 

linear gene-dose effect on learning performance. Error bars represent standard error of the 

mean.
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Figure 4. 
Response patterns of participants who are best fit by a conjunctive rule model. (a) Responses 

of a participant showing the best-fitting conjunctive (solid line) and unidimensional (dashed 

line) rule bounds. Note that the actual difference measure was between the AICs, rather than 

the average decision bounds. (b) Responses of a participant showing the best-fitting 

conjunctive rule bounds (solid line) and the optimal bounds (dashed line).
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Figure 5. 
Improvement in the conjunctive rule model's fit over the best-fitting unidimensional rule 

model for the DRD2 (a) and DARPP-32 (b) genes for each 80-trial block. Error bars 

represent standard error of the mean. Larger values indicate enhanced reliance on the 

optimal conjunctive rule strategy compared to a unidimensional strategy.
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Figure 6. 
Distance between the best-fitting conjunctive rule bounds and the optimal bound for COMT 
for each 80-trial block. Error bars represent standard error of the mean. Smaller values 

indicate best-fitting bounds closer to the optimal bounds.
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