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We discuss methods and ideas of virtual screening (VS) 
for drug discovery by examining the performance of VS-
APPLE, a recently developed VS method, which exten-
sively utilizes the tendency of single binding pockets to 
bind diversely different ligands, i.e. promiscuity of bind-
ing pockets. In VS-APPLE, multiple ligands bound to a 
pocket are spatially arranged by maximizing structural 
overlap of the protein while keeping their relative posi-
tion and orientation with respect to the pocket surface, 
which are then combined into a multiple-ligand template 
for screening test compounds. To greatly reduce the com-
putational cost, comparison of test compound structures 
are made only with limited regions of the multiple-ligand 
template. Even when we use the narrow regions with 
most densely populated atoms for the comparison, VS- 
APPLE outperforms other conventional VS methods in 
terms of Area Under the Curve (AUC) measure. This 

region with densely populated atoms corresponds to the 
consensus region among multiple ligands. It is typically 
observed that expansion of the sampled region including 
more atoms improves screening efficiency. However, for 
some target proteins, considering only a small consensus 
region is enough for the effective screening of test com-
pounds. These results suggest that the performance test 
of VS methods sheds light on the mechanisms of protein-
ligand interactions, and elucidation of the protein-ligand 
interactions should further help improvement of VS 
methods.
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As the structure data of protein-ligand complexes have 
been accumulated, it has become recognized that many pro-
teins promiscuously bind different ligands at the same bind-
ing pockets [1,2]. Such promiscuity of protein pockets is 
ubiquitous rather than rare, which should provide a clue to 
developing virtual screening (VS) methods for drug discov-

Virtual Screening (VS) is an important tool in a drug discovery process. Recently, we developed a new VS method, 
VS-APPLE, which was shown to be one of the best method according to the area under the curve metric. As the 
likeliness of being active, VS-APPLE uses 3D similarity between a test compound and a multiple-ligand template, 
which is constructed from multiple known actives. This paper examines what factors of a multiple-ligand template 
in VS-APPLE are important for accurate screening and shows that consensus region of the multiple-ligand templates 
is the key for high performance.
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Moreover, VS-APPLE successfully identified a hit compound 
in a compound proposal contest, in which 10 research groups 
participated and predicted inhibitors of the tyrosine-protein 
kinase Yes in a blind manner [23].

A further merit of VS-APPLE is its fast computational 
speed: It was shown that VS-APPLE was about three times 
faster than Glide by using parameters given in Ref.[8]. Be-
cause it is necessary to examine a combinatorially large 
number of compounds for drug design, which often exceeds 
10 millions, the computational speed of VS method is indeed 
an important subject. Here, the computational speed of VS-
APPLE is fast because it does not evaluate the atomic pair-
wise distances but evaluates the structural overlap between 
test compound and the template with a method based on 
geometric hashing [24,25]. Because this evaluation is the 
speed limiting step, improvement of this calculation greatly 
accelerates the entire computational process. In VS-APPLE, 
this acceleration is achieved by imposing a restriction on the 
number of generated structural overlaps: Only the region 
where atoms are densely populated within the multiple-
ligand template is sampled to evaluate the structural overlap 
with the test compound.

In the present paper, we examine how the performance of 
VS-APPLE is affected by this restriction on the sampling. 
We show that for some target proteins, the region with high 
atomic density within the multiple-ligand template, which 
represents the consensus among multiple ligands in the tem-
plate, is sufficient for effectively finding active compounds 
with VS-APPLE. In these cases, the binding affinity of a 
compound to the protein pocket should be largely deter-
mined by the consensus region of multiple-ligand template. 
Also as a general tendency for the other target proteins, 
enlarging the sampled region within the multiple-ligand 
template improves the performance of VS-APPLE. Charac-
terization of such differences among target proteins should 
help improvement of the VS methods based on the multiple-
ligand template, and should give insights on the mechanism 
of protein-ligand interactions.

Methods
In this section, procedures in VS-APPLE are briefly 

sketched. Please see Ref. [8] for more detailed explanation 
of the method. Also explained in this section is a subset of 
DUD data set used for the performance test in the present 
paper.

A brief sketch of VS-APPLE
The first step in VS-APPLE is to construct a multiple-

ligand template for the target protein. To build the multiple-
ligand template, protein data bank (PDB) is searched for the 
structures of the target protein and the structures similar to 
the target protein. This search is performed by using a struc-
ture comparison algorithm MICAN [26,27]. From the struc-
tures obtained through this search, structures which contain 

ery: Molecules having structures similar to the structures 
of the known multiple ligands that bind to a target protein 
pocket can be selected as candidate active compounds for 
that protein. Therefore, much interest has been focused on 
the way to use multiple ligands to develop VS methods [3–
7]. For developing effective VS methods, the structural data 
of protein-ligand complexes should be further exploited in 
an efficient and comprehensive way.

Recently, the present authors developed a VS method, VS-
APPLE (Virtual Screening Algorithm using Promiscuous 
Protein-Ligand complExes) [8] which utilizes the structure 
data of multiple protein-ligand complexes. In VS-APPLE, 
structures of protein-ligand complexes are superposed so as 
to maximize the structural overlap between the target protein 
and proteins in complexes. Multiple ligands superposed in 
this way are then combined into a template by keeping their 
relative position and orientation. Therefore, thus generated 
multiple-ligand template should represent how the binding 
pocket of the target protein accommodates various different 
ligands with flexible pocket surface. Then, a test compound 
is selected as a candidate active compound when the struc-
tural overlap between the test compound and the multiple-
ligand template is large while the test compound does not 
show a strong structural collision against the target protein 
surface. See Figure 1 for an example of the multiple-ligand 
template generated in VS-APPLE and an active compound 
selected by this template.

In Ref. [8], the performance of VS-APPLE was tested by 
using a filtered, clustered version [9,10] of the Directory of 
Useful Decoys (DUD) data set [11]. In Area Under the Curve 
(AUC) analyses [12,13] of this data set, VS-APPLE showed 
a comparable performance to a VS method Glide [15–17] 
and outperformed other popular methods such as ROCS 
[18–20], BABEL [21], DOCK [10,22], and GOLD [22]. 

Figure 1 An example of multiple-ligand template for ace (yellow 
thin lines) and an active compound detected by the multiple-ligand 
template (CPK colored thick lines). The multiple-ligand template com-
prises ten different ligands. The active compound was superposed 
so that the structural overlap between the active compound and the 
multiple-ligand template was maximized.
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ing method [24]. Three atoms are picked up either from the 
multiple-ligand template or from a conformer of the test 
compound. For these triplet of atoms, a 3D coordinate sys-
tem represented as (r0, e1, e2, e3) is defined as follows: The 
origin r0 is defined by the position of one atom in the triplet. 
A unit vector e1 is defined by the vector from that atom to 
another atom. Another unit vector e2 is defined so that it is 
vertical to e1 and the the other atom is also on the plane 
spanned by (e1, e2). e3 is defined so that the coordinate sys-
tem (e1, e2, e3) satisfies the right-handed rule. Using the coor-
dinate (r0, e1, e2, e3)Γ defined by a triplet of atom in Γk(l) and 
the coordinate (r0, e1, e2, e3)T defined by a triplet of atom in 
Qmulti, R is defined as the superposition of the former to the 
latter. Here, we denote the number of coordinates defined by 
a compound and that defined by a multiple-ligand template 
as NΓ and NT, respectively. As explained in Results and Dis-
cussion section, the computational time needed to screen 
compounds for a given target does not much depend on NΓ 
but is almost proportional to NT. Therefore, to reduce the 
computation time, it is important to reduce NT by imposing 
some physically reasonable restrictions on sampling triplets 
from the template. In Ref. [8], NT was reduced by two restric
tions. One is the restriction which requires that the atoms in 
a triplet in the template should belong to the same chemical 
group. To meet this requirement, the triplet is selected only 
when the atoms were within 2.5 Å and belongs to the same 
ligand within the multiple-ligand template. With this restric-
tion, NT was reduced to NT ≈ 4500–8500 (NT ≈ 6600 on aver-
age) for the 13 targets used in the present paper.

NT was further reduced by an assumption that the local 
structure important for binding is densely populated by 
atoms, corresponding to the consensus among different 
ligands, within the multiple-ligand template. Accordingly, 
from the multiple-ligand template, the atom triplet was 
selected only from the region where atoms are densely pop-
ulated. The crowdedness of atoms around the coordinate 
p = (rp

0, ep
1, ep

2, ep
3)T was evaluated by
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NT

∑
NT

q=1
exp(–dpq/2σ) ,	 (4)
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NT coordinates obtained from the multiple-ligand tem-
plate were sorted in order of Dcrowd(p) and top x% coordi-
nates which have most crowded atomic environment in the 
template was used for generating R. In Ref. [8], x = 10% was 
used, which dramatically reduced the computation time. 
Because it is important to find an optimized x satisfying the 
speed and accuracy of screening, we examine in the present 
paper how the performance of VS-APPLE is affected by 
varying x. Here, we refer to this x as the percentage of used 
coordinate systems.

no ligand are eliminated and those which bind a ligand at the 
same binding pocket are selected. Thus obtained ith structure-
data file Ci of protein-ligand complex comprises a protein Pi 
and a ligand Li. The ensemble of ligands {Li} are clustered 
according to the Tanimoto coefficient representing the 2D 
similarity among ligands. Through this clustering, the repre-
sentative 10 ligands, Li

* with i = 1...10 are selected. Then, the 
corresponding 10 complexes Ci

*s are superposed to maxi-
mize the TM-score [28], which is one of the most popular 
measure of protein backbone similarity, between Pi

* and the 
target protein Pt using the structure alignment program 
MICAN [26]. In this way, we obtain 10 spatially arranged 
ligands. The ensemble of this spatially arranged ligands, 
Qmulti = L*

1 + L*
2 + ... + L*

10, is used as a multiple-ligand template.
Using thus defined multiple-ligand template, score of the 

kth test compound for the target protein Pt is calculated as in 
the following. Consider that the kth test compound is com-
posed of Nk

atom atoms, which are classified into six types; C, 
N, O, S, P, and others. For each test compound, various 3D 
conformers are generated with OMEGA [29] by using the 
energy threshold value 25 kcal mol–1 [30]. The lth conformer 
of the kth compound thus generated is denoted by Γk(l) with 
l = 1, ..., Nk

conf, where Nk
conf ≲100 is the number of generated 

conformers. The conformer Γk(l) is superposed onto Qmulti by 
rotating and translating Γk(l) with the operator R as RΓk(l). 
Then, the number of atoms in Qmulti which are in proximity to 
and having the same type as the ith atom in the conformer 
RΓk(l) is counted and stored in N lig(i, RΓk(l), Qmulti). Using this, 
the measure of match between RΓk(l) and Qmulti is given by

Smatch(RΓk(l), Qmulti) = ∑
Nk

atom

i=1
N lig(i, RΓk(l), Qmulti) .	 (1)

Then, the degree of how RΓk(l) fits to the pocket is estimated by

Sconfig(RΓk(l), Pt, Qmulti) = 
Smatch(RΓk(l), Qmulti) – ωScoll(RΓk(l), Pt) ,	 (2)

where Scoll(RΓk(l), Pt) represents the degree of collision be-
tween the conformer RΓk(l) and the surface of the target pro-
tein Pt, and ω is the weight parameter to define the balance 
between the 1st and 2nd terms. We use ω = 2 in the present 
paper. See Ref. [8] for the discussion of the value of ω and 
the definition of Scoll(RΓk(l), Pt). Finally, the score of kth test 
compound for the target protein Pt is calculated as

S(k, Pt) = 1
Nk

conf ∑
Nk

conf

l=1
maxR[Sconfig(RΓk(l), Pt, Qmulti)] ,	 (3)

which is obtained by maximizing S config(RΓk(l), Pt, Qmulti) with 
respect to the position and orientation R of each conformer. 
We used this score S(k, Pt) to rank the compounds in the 
library.

Calculations in Eqs. 1–3 require advance preparation of R, 
the operator for superposition of a conformer of the test 
compound to the multiple-ligand template. In VS-APPLE, R 
is generated with the procedure based on the geometry hash-
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Figure 2.
In Figure 3, the x dependence of the AUC value, AUC(x), 

is shown both for the average over 13 targets and for individ-
ual targets. The averaged AUC(x) is an increasing function 
of x, showing that using wider region in multiple-ligand tem-
plate leads to better performance, but it saturates at x ≈ 30%. 
Therefore, the choice of x = 10% adopted in Ref. [8] gives a 
nearly optimal in terms of balance between speed and accu-
racy for general target proteins. For individual targets, how-
ever, the behavior of AUC(x) differs from target to target. 
Understanding the mechanism leading to these diverse be-
haviors is not straightforward, but this can be interpreted by 
the difference in shape and flexibility of individual binding 
pockets for some cases. In Figure 4, we show x-dependent 
changes of the regions with top x% value of Dcrowd in Eq. 4 in 
the multiple-ligand templates for some target proteins.

Consistent with the averaged AUC(x), 5 among 13 targets, 
ace, ache, cox2, hivrt, and pde5, show increasing AUC(x) as 
functions of x. A typical example of x-dependent spread of 

DUD data set
The performance of VS-APPLE is evaluated by using a 

test data set which comprises 13 target proteins and the cor-
responding active and decoy compounds. Here, actives are 
compounds that can bind to the target protein and decoys 
have similar structure and chemical features to actives but 
are presumed to have low binding affinity to the target. The 
DUD data set has been used for testing VS methods by 
checking whether the VS methods can discriminate a small 
number of actives from a large number of decoys [11]. The 
original DUD data set, however, contained actives which are 
similar to each other, which hinders the precise evaluation of 
the performance of VS methods. Using the mutually dissim-
ilar actives selected by filtering and clustering the original 
DUD data set [9], a subset of the DUD data set was con-
structed [10]. We use this subset in the present paper, which 
is summarized in Table 1.

Results and Discussion
In the present paper, the performance of VS-APPLE is 

evaluated by the AUC analyses [12,13]. For a given target 
protein, the AUC value is calculated as

AUC = 1
Nactive ∑

Nactive

n=1
(1 – fn) ,

where fn is the fraction of decoys that have larger value of 
score S(k, Pt) than the nth ranked actives and Nactive is the 
number of actives. We have 0 ≤ AUC ≤ 1 by definition, and 
the larger AUC indicates the better performance of the method 
examined.

When applying VS-APPLE, we impose a restriction on 
the number of structural overlaps by focusing on limited part 
of multiple-ligand template: Only the regions where atoms 
are densely populated which have top x% value of Dcrowd in 
Eq. 4 are used to define the superposition operator R. We 
find that the computation time needed for examining data set 
of Table 1 is almost linearly dependent on x as shown in 

Table 1 Dataset used for the performance test

Target protein (abbrev.) PDB code # of actives # of decoys

Angiotensin converting enzyme (ace) 1o86 46 1797
Acetylcholinesterase (ache) 1eve 100 3892
Cyclin-dependent kinase 2 (cdk2) 1ckp 47 2074
Cyclooxygenase 2 (cox2) 1cx2 212 13289
Epidermal growth factor receptor (egfr) 1m17 365 15996
Factor Xa (fxa) 1f0r 64 5745
HIV reverse transcriptase (hivrt) 1rt1 34 1519
Enoyl ACP reductase InhA (inha) 1p44 57 3266
p38 mitogen activated protein (p38) 1kv2 137 9141
Phosphodiesterase (pde5) 1xp0 26 1978
Platelet derived growth factor receptor kinase (pdgfrb) 1t46 124 5980
Tyrosine kinase Src (src) 2src 98 6319
Vascular endothelial growth factor receptor (vegfr2) 1fgi 48 2906

Figure 2 Dependence of computational time on percentage of 
used coordinate systems for each compound. CPU time was measured 
on a PC with AMD Opteron 2.4 GHz processor. Calculated values are 
fitted by a linear function.
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ration (xsatur ≈ 30% for pde5) represent an important region of 
ligands for binding. Therefore, the present result with a 
fairly large xsatur suggests that the important region of ligands 
for binding is somewhat broadly distributed rather than 
highly localized within the pocket of pde5. Another example 
of this class is ace, which shows an interesting behavior. For 

densely populated regions is shown for pde5 in Figure 4(A). 
In Figure 4(A), we can see that the region of atoms with top 
x% value of crowdedness is localized for small x and that 
the region gradually expands with the increase of x to cover 
the larger part of the template. It is plausible to assume that 
the atoms in top xsatur percent at which AUC(x) reaches satu-

Figure 3 Dependence of AUC on the percentage x of most crowded coordinates used in the performance test. The number in a parenthesis shown 
on the right hand side of each target name represents the total number of the coordinate systems of the multiple-ligand template for each target.
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the flexibility of the binding pocket of the target protein.
In contrast to the above-mentioned examples, the AUC(x)s 

for other 6 targets, egfr, fxa, inha, p38, pdgfrb, and vegfr2 
are nearly constant for all x: the differences between AUC(1%) 
and AUC(100%) are less than 0.05. A typical example of this 
class is fxa and its x-dependent spread of densely populated 

ace, the steep increase of AUC(x) at x ≈ 10% corresponds to 
the value of x where the sampled region splits to include the 
second densely populated region which is distinctively sep-
arated from the first densely populated region as shown in 
Figure 4(B). Comparison of these results shows that the shape 
and distribution of densely populated regions should reflect 

Figure 4 Dependence of spread of densely populated regions of multiple-ligand templates on the percentage x of used coordinate systems for 
pde5 (A), ace (B), fxa (C), src (D) and p38 (E). The red colored atoms are ones that are assigned as the origin of reference frame system ranked in 
top x-percent of the crowdedness defined in Eq. 4.
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help further understanding of protein-ligand binding mecha-
nisms.

Conclusion
A recently developed VS method, VS-APPLE, in which 

the structure data of multiple protein-ligand complexes are 
extensively used, shows high performance when it is tested 
by using a subset of DUD data set with the AUC analyses. Its 
performance depends on the way of sampling structure of 
the multiple-ligand template, and the analyses in the present 
paper showed that the region with densely populated atoms 
within the multiple-ligand template plays significant roles to 
screen test compounds. It has been observed as a general 
tendency that sampling wider region within the multiple-
ligand template improves the performance of VS-APPLE, 
but the performance saturates at x ≈ 30%. The analyses of 
the performance of the VS method, therefore, provide clues 
to understanding protein-ligand interactions and improving 
VS methods.
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