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Abstract

It is well known that surfactant-suspended carbon nanotube (CNT) samples can be purified by 

centrifugation to decrease agglomerates and increase individually-dispersed CNTs. However, 

centrifugation is not always part of protocols to prepare CNT samples used in biomedical 

applications. Herein, using carboxylated multi-walled CNTs (cMWCNTs) suspended in water 

without a surfactant, we developed a Boehm titrimetric method for the analysis of centrifuged 

cMWCNT suspensions and used it to show that the surface acidity of oxidized carbon materials in 

aqueous cMWCNT suspensions was enriched by ~40% by a single low-speed centrifugation step. 

This significant difference in surface acidity between un-centrifuged and centrifuged cMWCNT 

suspensions has not been previously appreciated and is important because the degree of surface 

acidity is known to affect the interactions of cMWCNTs with biological systems.
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1. Introduction

Carbon nanotubes (CNTs) have unique physiochemical properties that make them useful for 

the potential diagnosis and treatment of a number of diseases, especially cancer.[1–6] An 

important consideration for these and other biomedical applications of CNTs is how CNT 

samples are prepared.[7] In brief, almost all commercial CNT products are supplied as 

powdered soot that contains some degree of metallic and carbonaceous impurities in 

addition to CNTs. To prepare samples of pristine, non-functionalized CNTs for biomedical 

applications, the first step typically involves sonicating a known mass of CNT soot in an 

aqueous solution of a surfactant (e.g., a biocompatible polymer, protein, or serum) to yield a 

CNT suspension,[8] and a second optional step involves centrifugation of the CNT 

suspension to remove heavier metal-containing CNTs, bundles, and other agglomerated 

materials.[9] To prepare oxidized or carboxylated CNT (cCNT) samples for biomedical 

applications, two methods are commonplace that do not involve the use of surfactants. One 

method reported by several groups is to sonicate cCNT soot in deionized water before 

adding the resulting aqueous cCNT suspension to cell culture medium,[10–14] while others 

have reported an additional centrifugation step to purify the aqueous cCNT suspension 

(herewith called a centrifuged cCNT suspension) before adding this material to cell culture 

medium or blood.[15–18] Another important consideration for biomedical applications of 

CNTs is therefore a thorough physiochemical characterization of the exact CNT sample that 

is presented to living cells or intact organisms.[19–28] At a minimum, this involves some 

measure of CNT structures, amounts, dimensions, porosities, impurities, and in the case of 

cCNTs, a measure of surface acidity, defined as the acidic groups covalently attached to 

cCNT surfaces and potential acidic carbonaceous substances adsorbed to cCNT surfaces 

(i.e., oxidative debris).[13,29–36]

The acidic surface properties of cCNTs primarily stem from the presence of carboxyl, 

lactonic, hydroxyl, and phenolic groups, which are generated through reaction of CNTs with 

acidic liquid oxidants or high-temperature oxygen.[37–39] Acidic groups on cCNT surfaces 

have been assessed qualitatively using thermogravimetric analysis (TGA),[40–43] semi-

quantitatively using Fourier transform-infrared (FT-IR) spectroscopy,[24,44–46] and 

quantitatively using either fluorescence spectroscopy and dye-derivatized cCNTs,[47–49] x-

ray photoelectron spectroscopy (XPS),[24,43–45,50,51] or acid-base titrimetry.[52–55] 

While these and other approaches have their advantages and limitations, a survey of the 

literature reveals that they have been used overwhelmingly to assess the surface acidity of 

un-centrifuged cCNT suspensions, and rarely to assess the surface acidity of cCNT 

suspensions purified by centrifugation. This is notable because centrifuging an aqueous 

cCNT suspension without a surfactant should facilitate the removal of hydrophobic, non-

oxidized soot components from the supernatant, as opposed to when a surfactant is used 

where both oxidized and non-oxidized components would be coated by surfactant and 
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suspended in the supernatant. In other words, the process of centrifuging an aqueous 

suspension of cCNT soot could selectively enrich the centrifuged sample with oxidized 

carbon material.

Herein, a Boehm titrimetric method for the analysis of surfactant-free suspensions of cCNTs 

was developed and was used to show that the surface acidities of aqueous suspensions of 

multi-walled cCNTs (cMWCNTs) and centrifuged cMWCNT suspensions are not 

equivalent. Specifically, the surface acidities of aqueous cMWCNT suspensions and 

centrifuged cMWCNT suspensions were 7.46 ± 0.41 and 19.09 ± 0.52 mmols/g, respectively 

– a result of an increase in suspended oxidized carbon material and a decrease in 

agglomerated materials in the centrifuged cMWCNT suspensions. This significant 

difference in surface acidity between un-centrifuged and centrifuged cMWCNT suspensions 

has not been previously appreciated and is important because the degree of surface acidity is 

known to affect the biodegradation rates of cCNT samples,[56,57] as well as, the in vitro 
and in vivo toxicity profiles of cCNT samples.[58–61]

2. Experimental

2.1. Materials and solutions

Carboxylated MWCNT (cMWCNT) soot (product SC-M10; lot 1256YJF-070510) was 

purchased from Nanostructured & Amorphous Materials, Inc. (Houston, TX, USA) and its 

properties are described in Table 1. Caution, a fine-particulates respirator and other personal 

protective equipment (PPE) should be worn when handling cCNT soot.[62] Sodium 

hydroxide and standard buffer solutions of pH 4.00 ± 0.01, 7.00 ± 0.01, and 10.00 ± 0.02 

were purchased from Fisher Scientific (Houston, TX, USA). HCl concentrate (0.01 mol), 

potassium hydrogen phthalate (KHP), and phenolphthalein were purchased from Sigma-

Aldrich (St. Louis, MO, USA).

2.2. Preparation and standardization of sodium hydroxide

Approximately 200 mg of NaOH was weighed and transferred to a 500.0-mL volumetric 

flask, dissolved, brought to volume, and stored in a 500-mL polyethylene bottle. All ~0.01 

M NaOH solutions were standardized against KHP using phenolphthalein as the indicator. In 

brief, ~50 mg of KHP was weighed, transferred to a 125-mL Erlenmeyer flask, and 

dissolved in 25.0 mL of 18.2 MΩ-cm deionized water with five drops of phenolphthalein. 

Using a 50.00-mL buret, NaOH solutions were titrated to endpoint with KHP. This process 

was repeated four times to determine the mean concentration and standard deviation (SD) of 

the standardized NaOH. NaOH solutions were used within seven days of being standardized.

2.3. Preparation of cMWCNT suspensions and centrifuged cMWCNT suspensions

The preparation of cMWCNT suspensions and centrifuged cMWCNT suspensions started 

with the addition of 10.0 mL of 18.2 MΩ-cm deionized water to 10.0 mg of as-received 

cMWCNT soot that was weighed into a pre-cleaned, 20-mL scintillation vial (Figure 1). The 

mixture was sonicated for 60 min using a Branson model 2510 bath sonifier (100 W, 42 

kHz) with the bath water being changed every 30 min to maintain the temperature <15 °C; 

bath sonication was chosen so as to avoid nanotube perturbations induced by intense probe 
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sonication. The purification of aqueous cMWCNT suspensions involved a single low-speed 

centrifugation step. To accommodate the use of a benchtop centrifuge (Eppendorf, model 

5424), 10.0-mL suspensions were divided by transferring 1-mL aliquots into ten 1.5-mL 

centrifuge tubes, which were each centrifuged for 5 min at 20,000 RCF. The top ~900 μL 

from each supernatant was collected carefully using a micropipette so as to not disturb the 

pellet and combined in a pre-cleaned scintillation vial to afford a ~9-mL sample of a 

centrifuged cMWCNT suspension.

2.4. Raman spectroscopy

Raman spectra were acquired using a Jobin Yvon Horiba HR800 high-resolution LabRam 

Raman microscope system equipped with a 250-μm entrance slit and an 1100-μm pinhole. 

The 633-nm laser excitation was provided by a Spectra-Physics model 127 helium-neon 

laser operating at 20 mW. A 50×/0.5 NA LM-Plan objective was used with a neutral density 

filter of 1.0. Spectral acquisition was performed with a 1.0-s integration time, a minimum 

overlap of 50, and a 3-subpixel average; each spectrum was presented as an average of 2 

scans. Wavenumber calibration was performed using the 520.5 cm−1 line of a crystalline Si 

wafer. A 15-μL aliquot of either a cMWCNT suspension or centrifuged cMWCNT 

suspension was deposited on to a crystalline Si wafer and dried at room temperature; spectra 

were acquired from at least five different regions of dried material across the wafer.

2.5. UV-VIS-NIR spectrophotometry

All UV-VIS-NIR spectrophotometric analyses were performed using a Shimadzu UV-161PC 

spectrophotometer. All spectra were obtained as a single scan that was background corrected 

against a deionized water reference using a medium scan speed with 0.5-nm intervals and 

1.0-cm quartz cuvettes. Spectra of cMWCNT suspensions and centrifuged cMWCNT 

suspensions were acquired after dilution with deionized water.

2.6. Dynamic light scattering (DLS)

The particle size distribution of cMWCNT suspensions and centrifuged cMWCNT 

suspensions diluted 1:10 with deionized water were analyzed by DLS using a 633-nm laser 

and a backscatter measurement angle of 173° (Zetasizer Nano-ZS 3600, Malvern 

Instruments, Worcestershire, UK). Ten consecutive 30-s runs were taken per measurement at 

25 °C and the instrument was calibrated with polybead standards (Polysciences, Warrington, 

PA, USA). The particle size, in terms of hydrodynamic diameter, was calculated using a 

viscosity and refractive index of 0.8872 cP and 1.330, respectively for deionized water, and 

an absorption and refractive index of 0.010 and 1.891, respectively, for cMWCNTs.

2.7. Acidimetric Boehm titration of cMWCNT suspensions

Boehm titrations work on the principle that carbon surface oxygen groups have different 

acidities that can be neutralized by bases of different strengths; for example, weak bases 

such as sodium bicarbonate can be used to neutralize carboxylic acids and strong bases such 

as sodium hydroxide can be used to neutralize all Brønsted acids.[37–39] While the Boehm 

method has been applied to the analysis of oxidized carbon materials for over fifty years,

[37–39,63–69] a standard protocol has rarely been followed for the analyses of cCNTs.
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[24,29,32,35,36,43,49,50,52,54,55,70–75] For example, there are different routines to 

determine endpoints, differences in base treatment times and agitation methods, differences 

in methods to address dissolved carbon dioxide, and differences in determining the mass of 

carbon material titrated. Herein, the first major parameter considered was the agitation 

method used to expose carbon materials to the chosen base – a process that can damage a 

carbon lattice and create new oxygen surface groups. The method of Oickle and co-workers 

was employed since they showed that shaking was a less destructive method of agitation 

relative to rigorous stirring and sonication.[72] Specifically, 4 mL of a 1.0-mg/mL 

cMWCNT suspension and 25.00 mL of standardized NaOH were combined in a 50-mL 

plastic vial and then shaken for 24 h to afford a NaOH-treated cMWCNT suspension. The 

second major factor to consider in a Boehm titration is how to minimize CO2 effects, which 

can distort neutralization points associated with the acidic groups present on a carbon 

material.[69,71,74] The method of Kim and co-workers was employed whereby re-

acidification of the deprotonated sample was followed by a back-titration with NaOH.[69] 

Specifically, 10.00 mL of the NaOH-treated cMWCNT suspension and 20.00 mL of ~0.01 

M HCl standard were combined in a 150-mL beaker that was covered using parafilm. 

Finally, to determine the surface acidity (i.e., the mols of acidic groups per mass of carbon 

material analyzed), a magnetic stir bar and a calibrated Accumet model 13–620–299A pH 

electrode were placed in the reaction mixture, which was titrated at room temperature (22 

± 2°C) by recording the pH after the delivery of each 0.10-mL aliquot of standardized NaOH 

from a 50.00-mL buret.

2.8. Acidimetric Boehm titration of centrifuged cMWCNT suspensions

The same titration protocol described above for cMWCNT suspensions was performed on 

centrifuged cMWCNT suspensions except for the method to determine the amount of carbon 

material titrated. This is because the mass of soot determined using an analytical balance 

during the preparation of a cMWCNT suspension can no longer be applied to a centrifuged 

cMWCNT suspension since a large portion of the original mass (i.e., the centrifugation 

pellet) is discarded. Instead, the amount of carbon material titrated in centrifuged cMWCNT 

suspensions was determined using UV-VIS-NIR spectroscopy and a calibration curve 

prepared from the π-plasmon absorbance of aqueous standards of non-centrifuged 

suspensions of cMWCNT soot containing known amounts of carbon material.[76,77] The 

accuracy of this method was assessed by a gravimetric analysis of dried centrifuged 

cMWCNT suspensions; cMWCNT concentrations determined using the spectrophotometric 

method were within 2% of the values determined using the gravimetric method.

3. Results and discussion

3.1. Elemental analysis of the as-received cMWCNT soot

Almost all CNT manufacturing processes use a carbon feedstock, metal catalysts, and heat 

to yield a heterogeneous CNT soot that contains metallic and carbonaceous impurities in 

addition to CNTs. The cMWCNT soot chosen for this work represents one of the most 

common commercial methods of CNT synthesis, a metal-catalyzed chemical vapor 

deposition (CVD) process, and a common combination of liquid oxidants, sulfuric acid and 

potassium permanganate, for carboxylation of pristine CNT surfaces. As shown in Table 1, 
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this soot is reported to have a carbon content of >95% by weight, a metal content of <3.7%, 

and a chloride content of <1.0%. To assess the composition of the as-received material, sub-

samples of the cMWCNT soot were subjected to our carbon nanomaterial elemental analysis 

protocol.[78] As shown in Table 2, the major findings were that the 94.37% carbon content 

was within 1% of the value reported by the manufacturer, the oxygen content was 4.12%, the 

hydrogen content was <1%, sulfur and nitrogen were not detected, and the sum of the C, H, 

and O weight percentages was 98.91%, indicating that the Fe/Co/Ni-catalyzed CVD 

cMWCNT soot was essentially halide- and metal-free.

3.2. Spectroscopic analysis of cMWCNT suspensions and centrifuged cMWCNT 
suspensions

Aqueous cMWCNT suspensions and centrifuged cMWCNT suspensions (Figure 1) were 

characterized by Raman and UV-VIS-NIR spectroscopies. Representative 633-nm Raman 

spectra of a cMWCNT suspension and a centrifuged cMWCNT suspension are shown in 

Figure 2. Prominent Raman peaks characteristic of MWCNTs such as the disorder-induced 

mode (D-band) at ~1300 cm−1, the tangential stretching mode (G-band) at ~1590 cm−1, and 

the second-order G′-band at ~2600 cm−1 were observed in both spectra. There were no 

significant differences between the D/G-ratios (~1.4), the full width at half maximum 

(FWHM) peak widths of the D-bands (~60 cm−1), and the FWHM peak widths of the G-

bands (~74 cm−1), indicating that the spectral properties of nanotubes in cMWCNT 

suspensions and centrifuged cMWCNT suspensions were similar.

Representative UV-VIS-NIR spectra of a 20-μg/mL cMWCNT suspension and a 20-μg/mL 

centrifuged cMWCNT suspension are shown in Figure 3. Two main absorption features are 

observed in each spectrum. The first is the prominent π-plasmon absorption peak at ~240 

nm resulting from the collective excitation of the π-electron systems from all sp2-hydridized 

carbonaceous material in the soot.[79] The absorbance of this UV peak can be used to 

qualitatively evaluate the degree of CNT exfoliation in aqueous CNT samples,[80,81] where 

an increase in the amount of individually-dispersed MWCNTs results in an increase in the 

peak area.[81] The second main spectral feature is a non-resonant background comprising 

contributions from both cMWCNTs and other materials.[82,83] Comparison of the spectra 

in Figure 3 reveals (i) that the area of the π-plasmon absorption peak for the cMWCNT 

suspension was ~54% less than that of the centrifuged cMWCNT suspension, indicative of 

increased agglomeration of cMWCNTs and carbonaceous material in a non-centrifuged 

suspension, and (ii) that the background absorbance of the cMWCNT suspension at 800 nm 

was ~40% greater than that of the centrifuged cMWCNT suspension, similar to the 

increased background absorbances observed for non-centrifuged CNT suspensions relative 

to centrifuged CNT suspensions.[84,85] These spectral observations were also corroborated 

by DLS measurements which revealed a decrease in particle size following centrifugation. 

As shown in Figure 4, cMWCNT suspensions displayed two distinct populations of 

particles, one with a hydrodynamic diameter of ~277 nm and the other with a hydrodynamic 

diameter of ~109 nm, while centrifuged cMWCNT suspensions displayed only one 

population of particles with a hydrodynamic diameter of ~115 nm, indicating that larger 

agglomerates were removed by low-speed centrifugation.[33]
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The oxidation of CNTs can generate oxidative debris in the form of particulate matter such 

as oxidized carbon fragments (OCFs),[25] and/or molecular debris such as polyaromatic 

hydrocarbons (PAHs).[55] If present, both types of debris remain stably bound to cCNT 

surfaces at acidic and neutral pH but can be desorbed by strong base. To determine if 

oxidative debris was present in cMWCNT suspensions purified by centrifugation, 

centrifuged cMWCNT suspensions that were treated with NaOH were passed through a 0.1-

μm polyvinylidene fluoride (PVDF) membrane filter followed by analysis of the filtrate 

using Raman and UV-VIS-NIR spectroscopies. Raman D-, G-, and G′-bands were not 

detected (data not shown), indicating that short cMWCNTs and OCF debris were not present 

in the filtrate. With the UV-VIS-NIR spectra of filtrates, no absorbance at 240 nm was 

observed and the background absorbance between 375 – 1100 nm was negligible (<0.01 

a.u., data not shown), indicating that short cMWCNTs and OCF debris were not present in 

the filtrate. However, a single small peak at 289 nm with an absorbance of 0.13 a.u. was 

observed in suspensions of centrifuged cMWCNTs indicating a trace amount of a PAH.[55]

3.3. Titration of cMWCNT suspensions

As described in the Experimental section, cMWCNT suspensions were first exposed to a 

known amount of NaOH to deprotonate potential acidic groups, then a known amount of 

HCl was added to re-acidify the suspensions, followed by back titration with NaOH to 

quantify acidic surface groups. A representative titration curve and first derivative plot for a 

cMWCNT suspension are shown in Figure 5a. As NaOH is added, the excess HCl is 

neutralized to an equivalence point of pH 7. Since the amount of excess HCl is directly 

proportional to the amount of excess NaOH that was present in the NaOH-treated cMWCNT 

suspension, the determined amount of excess NaOH can be subtracted from the amount of 

initial NaOH added to quantitate the amount of acidic groups that were present on the 

cMWCNTs. Specifically, the mols of acidic groups for cMWCNT suspensions were 

calculated using the following equation,

(1)

where nAG denotes the mols of acidic groups for the cMWCNT suspension, [B] and VB are 

the concentration and volume of NaOH used to treat the cMWCNT suspension, [HCl] and 

VHCl are the concentration and volume of HCl added to re-acidify the reaction mixture, 

[NaOH] and VNaOH are the concentration and volume of titrant needed to reach the 

equivalence point, and Va is the volume of NaOH-treated cMWCNT suspension titrated.[71] 

As shown in Table 3, the mean mols of acidic groups calculated for cMWCNT suspensions 

was 2.96 × 10−5.

The mass of material titrated in cMWCNT suspensions was determined using the following 

equation,

Braun et al. Page 7

Anal Chem Res. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(2)

where m is the weighted mass of material analyzed in grams, Vt is the volume of cMWCNT 

suspension treated with NaOH, and D is the initial concentration of carbon material in the 

suspension. As shown in Table 3, the mass of material titrated in cMWCNT suspensions was 

3.96 × 10−3 g. Subsequently, the mmols of acidic groups per gram of carbon material in 

cMWCNT suspensions was calculated using the following equation,

(3)

where nAG is the mmols of acidic groups calculated using Equation 1, and m is the mass of 

carbon material analyzed calculated using Equation 2. As shown in Table 3, the mean 

surface acidity of cMWCNT suspensions, defined as the mmols of acidic groups per gram of 

material analyzed, was 7.46 ± 0.41 mmol/g.

3.4. Titration of centrifuged cMWCNT suspensions

To our knowledge, Boehm titrimetric methods have been performed exclusively on aqueous 

suspensions of as-synthesized and purified cCNT soot, and not on centrifuged cCNT 

suspensions. One reason for this could be the additional experimentation required to 

determine the mass of material titrated. In brief, when a soot product is analyzed as-

received, or when a soot purification step is performed before the preparation of a cCNT 

suspension (e.g., a Soxhlet extraction or low-temperature heat treatment[29,31]), the mass of 

soot can be determined easily using an analytical balance. However, when a purification step 

follows the preparation of a soot suspension (as is the case with centrifuged cMWCNT 

suspensions), the mass of carbon material is no longer known since large portions of 

material can be pelleted and discarded following consecutive centrifugation steps.[86] 

Therefore, the same titration protocol described above for cMWCNT suspensions was 

performed on centrifuged cMWCNT suspensions with the exception that the amount of 

carbon material titrated in centrifuged cMWCNT suspensions was determined from a 

calibration curve prepared from the π-plasmon absorbance of aqueous standards of non-

centrifuged suspensions of cMWCNT soot (Figure 6).

A representative titration curve and first derivative plot for a centrifuged cMWCNT 

suspension are shown in Figure 5b, and as shown in Table 3, the mean mols of acidic groups 

determined for centrifuged cMWCNT suspensions using Equation 1 was 2.79 × 10−5. Next, 

the mass of material analyzed was determined using the following equation,

(4)
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where y is the π-plasmon absorbance of centrifuged cMWCNT suspensions from the 

standard curve, and x is the concentration of carbon material in a centrifuged cMWCNT 

suspension in μg/mL. Next, the resulting concentration was used in Equation 2 to calculate 

the mass of carbon material analyzed in centrifuged cMWCNT suspensions (e.g., 1.46 × 

10−3 g). Finally, the mean surface acidity of centrifuged cMWCNT suspensions was 

calculated using Equation 3 to be 19.09 ± 0.52 mmol/g. We know of only one other work to 

quantify the acidic surface groups of carbon material in centrifuged cCNT suspensions;[49] 

in brief, using fluorescence spectroscopy and 1-aminopyrene dye-treated samples, it was 

determined that MWCNTs oxidized for 24 h with nitric and sulfuric acids were 15 – 22% 

oxidized, which is in accordance with the 23% level of oxidation calculated for our 

centrifuged cMWCNT suspensions.

3.5. Enriched surface acidity of centrifuged cMWCNT suspensions

The ~40% enrichment of surface acidity for centrifuged cMWCNT suspensions relative to 

non-centrifuged cMWCNT suspensions can be explained as follows. Starting with a single 

lot of high-purity cMWCNT soot which was bath sonicated in deionized water without 

surfactant, a dark suspension was afforded that was observed to be free of precipitants, and 

that displayed carbon material concentrations on the order of 990 μg/mL. Samples of the 

cMWCNT suspensions were centrifuged at 20,000 RCF for 5 min to afford a small dark 

pellet of agglomerated material and a homogeneous dark-gray supernatant (i.e., a 

centrifuged cMWCNT suspension) that displayed carbon material concentrations on the 

order of 365 μg/mL. Raman spectroscopic analysis indicated that both suspensions and 

centrifuged suspensions possessed cMWCNTs of similar quality. UV-VIS-NIR 

spectroscopic analysis indicated an increase in suspended oxidized carbon material and a 

decrease in agglomerated material in centrifuged cMWCNT suspensions, evidence that 

centrifuged cMWCNT suspensions were enriched with oxidized carbon material. Additional 

evidence that cMWCNT suspensions were purified by centrifugation was provided by DLS 

measurements which showed that a population of larger particles were removed by 

centrifugation. Aqueous cMWCNT suspensions and centrifuged cMWCNT suspensions 

were analyzed by a Boehm titrimetric method, and interestingly, both samples displayed 

similar equivalence point volumes (Figure 5) and mols of surface acidic groups (Table 3). 

The resulting ~40% difference in the measured surface acidity (7.46 ± 0.41 vs. 19.09 ± 0.52 

mmols/g) is therefore consistent with the ~37% difference in the masses of materials titrated 

and the hypothesis that centrifuging an aqueous cMWCNT suspension without a surfactant 

would remove hydrophobic, non-oxidized soot components.

4. Conclusion

The literature contains many different protocols for preparing samples of cCNTs for 

biomedical applications. One reason for a lack of standardized sample-preparation protocols 

is due to the variety of cCNT investigations. For example, if the research is concerned with a 

toxicity assessment of as-received cCNT soot, then the cCNT suspensions are not purified 

by design. Conversely, if the research requires a suspension of individually-dispersed 

cCNTs, an additional purification step such as centrifugation and/or filtration can be 

undertaken. A second reason for differing protocols is the variety in the quality of 
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commercial cCNT soot products with additional purification steps being required for soot 

products containing high levels of metallic and/or carbonaceous impurities. Herein, using 

Boehm titrimetry and cMWCNTs suspended in water without a surfactant, the surface 

acidity of oxidized carbon material in aqueous cMWCNT suspensions was shown to be 

enriched by ~40% by a single low-speed centrifugation step. In conclusion, an important 

consideration for biomedical applications of cCNTs is a thorough physiochemical 

characterization of the exact cCNT sample that is presented to living cells or organisms. 

Therefore, determining if a cCNT sample-preparation protocol enriches surface acidity is 

critical with respect to making accurate assessments concerning the interactions of cCNTs 

with biological systems.
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HIGHLIGHTS

• Boehm titrimetric method for oxidized CNT suspensions purified by 

centrifugation

• Surface acidity affects CNT biodegradation rates and CNT toxicity 

profiles

• Centrifugation of surfactant-free samples of oxidized CNTs enriches 

surface acidity
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Fig. 1. 
Overview of the procedure to prepare cMWCNT suspensions and centrifuged cMWCNT 

suspensions.
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Fig. 2. 
Representative 633-nm Raman spectra of a cMWCNT suspension (a) and a centrifuged 

cMWCNT suspension (b). Characteristic carbon nanomaterial Raman bands (e.g., D-bands 

at ~1300 cm−1, G-bands at ~ 1600 cm−1, and G′-bands at ~2600 cm−1) were observed in 

both spectra. Peaks denoted by an asterick originate from the Si-wafer substrate.
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Fig. 3. 
Representative background-corrected UV-VIS-NIR absorption spectra of a 20-μg/mL 

cMWCNT suspension (a) and a 20-μg/mL centrifuged cMWCNT suspension (b).
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Fig. 4. 
Representative DLS particle size distribution of a diluted cMWCNT suspension (a) and a 

diluted centrifuged cMWCNT suspension (b).
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Fig. 5. 
Representative titration (black) and first derivative (red) curves of a NaOH-treated 

cMWCNT aqueous suspension (a), and a NaOH-treated, centrifuged cMWCNT suspension 

(b). The equivalence point volumes (Veq) for each sample (7.39 ± 0.05 and 7.33 ± 0.02, 

respectively) were calculated using a second derivative (not shown).
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Fig. 6. 
Calibration curve of carbon material in standard cMWCNT suspensions used to determine 

the concentration of carbon material in centrifuged cMWCNT suspensions.
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Table 1

Properties of SC-M10 cMWCNT soot reported by the manufacturer.

Synthetic Method CVD

Catalytic Metals Fe, Co, Ni

% Carbon Purity >95

% Metals <3.7

% Chloride <1.0

Inner Diameter (nm) 5 – 10

Outer Diameter (nm) 10 – 20

Length (μm) 0.5 – 2

Oxidizing Agents H2SO4 & KMnO4

% COOH 1.9 – 2.1
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Table 2

Elemental percentages of as-received SC-M10 cMWCNT soot.

cMWCNT soot (%)a

C 94.37 ± 0.32

H 0.43 ± 0.24

N 0.00 ± 0.00

S 0.00 ± 0.00

O 4.12 ± 0.93

a
CHNS/O analyses were performed as described previously,[78] with the exception that the cMWCNT soot was vacuum dried at 100 °C for 4 h 

prior to analysis. Each elemental percentage is from n = 2 independent analyses (± SD).

Anal Chem Res. Author manuscript; available in PMC 2017 June 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Braun et al. Page 24

Table 3

Acidimetric titration results for cMWCNT suspensions and centrifuged cMWCNT suspensions.

cMWCNT Suspensions Centrifuged cMWCNT Suspensions

Acidic groups (mol) a 2.96 × 10−5 2.79 × 10−5

Mass of carbon material analyzed (g) b 3.96 × 10−3 1.46 × 10−3

Acidic groups (mmol/g) c 7.46 ± 0.41 19.09 ± 0.52

a
Determined by acidimetric titrations (Figure 5) and Equation 1.

b
For cMWCNT suspensions, masses were determined using an analytical balance and Equation 2; for centrifuged cMWCNT suspensions, masses 

were determined using a UV-VIS calibration curve (Figure 6) and Equation 4.

c
Determined from three independent measurements (± SD) using Equation 3.

Anal Chem Res. Author manuscript; available in PMC 2017 June 01.


	Abstract
	Graphical Abstract
	1. Introduction
	2. Experimental
	2.1. Materials and solutions
	2.2. Preparation and standardization of sodium hydroxide
	2.3. Preparation of cMWCNT suspensions and centrifuged cMWCNT suspensions
	2.4. Raman spectroscopy
	2.5. UV-VIS-NIR spectrophotometry
	2.6. Dynamic light scattering (DLS)
	2.7. Acidimetric Boehm titration of cMWCNT suspensions
	2.8. Acidimetric Boehm titration of centrifuged cMWCNT suspensions

	3. Results and discussion
	3.1. Elemental analysis of the as-received cMWCNT soot
	3.2. Spectroscopic analysis of cMWCNT suspensions and centrifuged cMWCNT suspensions
	3.3. Titration of cMWCNT suspensions
	3.4. Titration of centrifuged cMWCNT suspensions
	3.5. Enriched surface acidity of centrifuged cMWCNT suspensions

	4. Conclusion
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6
	Table 1
	Table 2
	Table 3

