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Abstract

Latent class analysis is used to group categorical data into classes via a probability model. Model 

selection criteria then judge how well the model fits the data. When addressing incomplete data, 

the current methodology restricts the imputation to a single, pre-specified number of classes. We 

seek to develop an entropy-based model selection criterion that does not restrict the imputation to 

one number of clusters. Simulations show the new criterion performing well against the current 

standards of AIC and BIC, while a family studies application demonstrates how the criterion 

provides more detailed and useful results than AIC and BIC.
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1. Introduction

Latent class analysis (LCA) [1] is a model-based clustering methodology for categorical 

data. Variables in a data set are sometimes called “manifest” variables, while the unknown 

vector of class membership is the “latent” variable. LCA breaks the data into classes (e.g., 

clusters) via two parameters: latent class probabilities and conditional probabilities. The 

former dictates how likely it is that a record belongs to each class, while the latter describes 

the probability of a particular variable having a particular value given that it is in a certain 

class. LCA assumes that the relationships between manifest variables are accounted for by 

their class membership. Thus, conditioning on class membership makes manifest variables 

independent.

Our goal is to develop a new model selection criterion in order to utilize methods for 

clustering incomplete categorical data using MI without having to limit ourselves to a single 
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number of clusters. To do so, we first prove that the entropy of an LCA model decreases to 

zero as the number of classes increases to the number of unique records. We then use this 

knowledge to construct our criterion.

There are methods for clustering categorical data using entropy [2, 3], but they do not 

address incomplete data. There is also an entropy-based criterion for mixture model data, but 

it was applied to complete, normal mixture model data [4]. There are also ways to cluster 

incomplete categorical data using multiple imputation and latent class analysis (LCA) [5] 

using the fraction of missing information (FMI) as an LCA model selection criterion [6]. 

However, the methodology sets a fixed number of classes prior to imputation. We propose a 

new, entropy-based model selection criterion method for the case where the manifest 

variables are incomplete and class membership is unknown, which allows the use of LCA 

with multiple imputation without having to set a number of clusters beforehand.

Entropy [4, 7, 8] is a way to measure the variability, or chaos, in a stochastic system. 

Entropy depends on the probability density or mass function of the variables or model. One 

can calculate entropy of a mixture model, and thus entropy has been used as a model 

selection criterion in clustering scenarios. Typically, it is combined with the log-likelihood 

[9, 10], although it has been used on its own [3, 2]. Between two competing model based 

cluster solutions, the one with lower entropy means there is less variability within each 

cluster, and thus the clusters are more homogeneous. We are interested in looking at entropy 

itself as a model selection criterion.

Model selection in clustering also chooses the number of clusters. Existing model selection 

criteria have penalties to avoid choosing too many clusters, and overfitting the data. To 

determine what sort of penalty to introduce to our new model selection criterion, we need to 

understand how entropy of an LCA model behaves as the number of classes increases. Thus, 

we prove that the entropy of an LCA model with G classes goes to zero as G goes to the 

number of unique records in the data. Fruhwirth-Schnatter [11] describes entropy of a 

mixture model as equaling zero if each record belongs to its cluster with probability one. 

Realistically, this is not likely to happen unless every record has its own cluster. We are 

unaware of a proof that shows entropy equaling zero when the number of classes approaches 

the number of unique records. Therefore, we begin by providing such a proof.

Using a number of classes equal to the number of unique records is akin to over-fitting the 

model; it tells you almost nothing about the grouping patterns in your data. Since we seek to 

build an entropy-based model selection criterion, we introduce a penalty function, aimed at 

choosing the best number of classes before encountering the tailing-off effect in entropy, 

which occurs as more and more unnecessary classes are used.

Moreover, we are interested in the performance of an entropy-based criterion as a model 

selection tool after multiple imputation has been implemented. BIC or AIC are often used to 

choose a model, though they do not take into account the need for a well-separated cluster 

solution [11]. In addition, the performance of BIC and AIC breaks down after multiply 

imputing data sets in a regression context [12]. This leaves the field open for a new model 

selection criterion. Therefore, we set out to build an entropy-based model selection criterion 
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which outperforms BIC and AIC after multiple imputation, while considering more than one 

number of classes at a time.

The paper is organized as follows. Sections 2, 3, and 4 discuss latent class analysis and 

model selection, entropy, and missing data respectively. Section 5 details LCA entropy, and 

showcases our proof that the entropy of an LCA model goes to zero as the number of classes 

approaches the number of possible unique records. Section 6 describes the methodology of 

Harel et al [5], and how we propose to extend the methodology. Section 7 presents our 

simulation study, in which we compare our entropy-based criterion to AIC and BIC. Section 

7.2 demonstrates an application of our entropy-based criterion, and compared the results to 

those obtained by AIC and BIC. Section 8 wraps up the paper with our conclusions and 

directions for future work.

2. Latent Class Analysis

Clustering is the categorization of records into bunches (e.g., clusters) in order to describe 

grouping patterns in the data set. Latent Class Analysis (LCA) is a model-based clustering 

method which treats cluster (e.g., class) membership as a missing (e.g., latent) variable, used 

when the observed (e.g., manifest) variables are categorical [13, 1, 11, 14]. LCA assumes 

that, conditioned on the class membership, the manifest variables are independent. This 

assumption is typically referred to as the conditional independence assumption [13].

We utilize the notation from Harel et al [5]. The probability that a particular record belongs 

to a particular, fixed class is

(1)

where the index i = 1, …, N refers to records, k = 1, …, K refers to manifest variables, o = 1, 

… Ok refers to the possible values for each variable k, and g = 1, …, G refers to classes. The 

value πk,o|g is the probability that a record i has value o while belonging to class g, and yi,k,o 

is an indicator that the ith record has the oth value in variable k. When we consider Equation 

1 over all possible classes, we get the probability of a single record,

(2)

where the value γg is the probability of any randomly selected record belonging to class g.

When all observations are fully observed, and the number of desired classes is fixed, 

estimates for parameters and γ are π obtained via likelihood maximization. Once the 

parameter estimates are obtained, records are assigned to class g, where g is the class to 

which the record belongs with the largest probability [13].
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2.1. Model Selection Criteria

As LCA is a model-based approach to clustering, model selection criteria are used to 

determine whether a particular LCA model describes the data in an accurate and useful way.

One popular criterion is the Bayesian Information Criterion (BIC) [15],

(3)

where the data Y is fit to a model Mg, which contains νg parameters estimated by the θ̂g 

maximum likelihood estimates. The lowest BIC value indicates the best model. A closely-

related criterion, Akaike Information Criterion (AIC) [16] uses the same formula as above, 

only changing νg × ln(n) to 2 × νg.

The entropy of a model is also used as a model selection criterion, either by itself or together 

with other statistics. The details are in the following section.

3. Entropy

Entropy as a general concept [7, 8] quantifies the uncertainty in a random variable or a 

model via the probability density or probability mass function of that random variable. The 

measure of uncertainty used in this paper is Shannon entropy [7], which defines the 

uncertainty of a discrete random variable X with distribution p(X) as

(4)

A common extension of Shannon entropy to continuous variables is differential entropy [8], 

where the summation is replaced by the integral over X. Other entropy measurements which 

extend Shannon entropy to the continuous case include [17].

Shannon entropy (referred to as “entropy” from this point onward) has many facets that 

make intuitive sense for using it to quantifying uncertainty. Entropy is non-negative, so the 

measure of variability is minimized at zero. Entropy is additive, so the entropy in two or 

more events will be at least the entropy in a single item. Entropy is maximized when all 

probabilities p(X) are equal, since an outcome is most difficult to predict when all outcomes 

are equally likely. Entropy of a constant is zero, since no randomness is introduced. Finally, 

entropy is symmetric, meaning that a reordering of independent outcomes will not impact 

the entropy of the outcome itself [7].

Describing the entropy of a data set requires describing the entropy of the model which 

describes the records in the data set. This is due to the random nature of statistical models, 

which have variation and thus have entropy, compared to the static nature of observed 

values, which have no variation and thus no entropy. Therefore, we do not focus on the 

observed values of any particular record, but on the distribution of the variables which make 

up the record. For example, consider a data set made up of height and weight measurements. 
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If we allow height and weight of the records to be described by independent draws from the 

same bivariate normal model, then the entropy of every record in the data set is the entropy 

of the bivariate normal model, regardless of the realized value of the record.

Since we can quantify the entropy of a distribution, we can quantify the entropy of a mixture 

of distributions. This allows for entropy calculation of mixture models, such as LCA, 

quantified by Dias and Vermunt [18]

(5)

where , the distribution of the records into latent classes. 

Equation 5 is obtained by using αig in place of p(X) in Equation 4. In other words, including 

the distribution of records as the probabilities when calculating the entropy of the variable.

Entropy has been used as a model selection criteria, in addition to the model selection 

criteria outlined previously. Examples includes when entropy is used on its own [3, 2] or in 

conjunction with the log-likelihood [10].

4. Missing Data

The world is full of incomplete data sets. For example, a study of 57 studies of HIV found 

that the average amount of missing data was 26% (median 23%), and that 74% of those 

studies used the outdated complete case analysis (CCA) method to address the missing 

values [19]. CCA occurs when incomplete records are excluded from an analysis. If there is 

any pattern to the missing values (common in real-world data [20]), that pattern is lost 

during CCA. If there happens to be no pattern, the data set is still reduced, and thus wastes 

the resources spent in collecting the data, and potentially inflating the standard errors of any 

subsequent estimates.

4.1. Three Missingness Mechanisms

Rubin [21, 22] described three mechanisms which quantify the three possible patterns of 

missingness in a data set. To present these mechanisms, we introduce notation common to 

the missing data field.

The data is written Y = (Yobs,Ymis) to signify that the data can be bifurcated into observed 

values and missing values. The model for the data is written P(Y|θ), where θ is a vector of 

parameters. Another matrix R is made as a reflection of the missingness in Y, where every 

element of R is either zero or one, dependent on the missing or observed status of the 

corresponding element in Y. The parameter which governs R is ϕ. All together, the model 

for R is P(R|Yobs,Ymis, ϕ).

Using the above notation, we can describe the missingness mechanisms. The first, Missing 

Completely at Random (MCAR), describes R using P(R|Yobs,Ymis, ϕ) = P(R|ϕ), where 
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nothing but the parameter describes the missingness. The second, Missing At Random 

(MAR), changes the model to P(R|Yobs,Ymis, ϕ) = P(R|Yobs, ϕ), where the observed data 

and the parameter describe the missingness. The third and final mechanism, Missing Not At 

Random, extends the model to P(R|Yobs,Ymis, ϕ), where unobserved values also help 

describe the missingness.

4.2. Multiple Imputation

While a myriad of methods exist to address incomplete data, many have significant 

drawbacks. For example, complete case analysis requires deleting all incomplete records, 

thus sacrificing the partially observed information along with the missing values. More 

nuanced methods may use the estimates of variable means, or regress one variable on 

another, to obtain estimates of missing values. These approaches risk deflating the variability 

in the data, and may overemphasize relationships between particular variables. Methods 

which generate a single number to fill in a missing value treat the simulated value as a real, 

fixed data point, thus ignoring the variability in the imputation model. Multiple imputation, 

by contrast, retains all incomplete records while maintaining the integrity of relationships 

among variables and considering all sources of variability encountered in the data 

imputation [23, 24, 25].

Multiple imputation (MI) [26, 22, 27] is a three-stage, simulation-based procedure which 

fills in every missing value multiple times. The multiple substitutions create multiple data 

sets, which are analyzed individually and have their results combined to form a single 

coherent point estimate, with a standard error which accounts for both inter- and intra-

imputation variability. What follows is a general overview of MI; details regarding how MI 

combines with LCA are given in the following section.

The Imputation stage begins MI by drawing M > 1 simulated values for each missing value 

from Ymis ~ P(Ymis|Yobs,R). Different data sets are created by substituting each of the 

different values in turn. The result is M data sets, all of which contain different data values 

where the missing values were. Most software approaches missingness under the MAR 

assumption [23]. We continue this practice, noting that sensitivity analysis can be applied in 

future to examine the effect of values which are missing missing based on their own value.

The Analysis stage takes each of the M data sets and analyzes it as if no missing values had 

been found. Point estimates for parameters of interest, along with their standard errors, are 

obtained for all M data sets. Let these point estimates be written Q̂m, all of which estimate a 

parameter Q, and where m = 1, …, M. Let the corresponding standard errors be written Um. 

Following the recommendation by [28], we include all variables in both the imputation and 

analysis stages, which allows our methodologies for imputation and analysis to be congenial 

by the definition in [29].

The Combination stage takes the point estimates and standard errors from the Analysis stage 

and combines them into a single point estimate and standard error. The combination of these 

quantities follow Rubin’s Rules [22]. Namely, the final point estimate is , 
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with variance . The quantity Ū is the intra-imputation variation, 

, and B is the inter-imputation variation, . To 

perform hypothesis tests or confidence intervals for Ǭ, the statistic  is obtained, 

where .

4.3. Imputation via LCA

It is possible to obtain imputed values via an LCA model via an iterative Bayesian method, 

which imputes the latent class membership vector and the missing data values iteratively [5]. 

Briefly, the EM algorithm [30] obtains starting values, after which data augmentation allows 

draws of the necessary parameter values. Specifically, the LCA parameters (which are at 

first estimated using the EM algorithm) quantify how likely it is that each record belongs to 

each class. By assigning records to the class they have the highest probability of being a 

member, a class membership vector is created. Using the newly-imputed class membership 

information, one may create values of manifest variables within each class by choosing 

which categorical value is most likely. In this way, multiply imputed data sets with class 

membership can be created. For an application of this method to two-stage MI, see [5].

5. Limiting Behavior of LCA Entropy

To calculate the entropy of an LCA model [11, 18], we must consider the number of unique 

records possible instead of the number of records total. We limit our focus to unique records 

because the LCA formula describes the likelihood of each unique records. The probability of 

each unique record can, in turn, be considered a weighted sum of the individual records’ 

probabilities.

To begin, let YN×K represent a matrix of data, and XN×K be the subset of Y which contains 

only unique records. The entropy of an LCA model will use the probability mass function of 

unique records, p(X = x), where x is an individual unique record, thus:

The number of potentially unique records changes based on the number of variables K and 

the number of values each variable can take. Let the number of potential values for variable 

K be Ok. Then, the number of possible unique records is .

The entropy of an LCA model as the number of classes goes to the number of unique 

records has not, to our knowledge, been examined. To that end, we present a proof to 

describe that behavior. Using the work of Fruhwirth-Schnatter [11] and Dias and Vermunt 

[18], altered to consider only unique records, we begin with p(X = xi):
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The above p(X = xi) is the distribution of the unique records in the data into latent classes, 

where i ∈ (1, …, Nu) denotes the possible unique records; g ∈ (1, …, G) denotes the classes; 

G denotes the maximum number of classes; k ∈ (1, …, K) denotes the variables; K denotes 

the maximum number of variables; o ∈ (1, …, Ok) denotes the categories specific to variable 

k; γg denotes the probability of being in class g; πk,o|g denotes the probability that a record 

has value o in variable k, given it is in class g; and  equals 1 if the variable k for unique 

record i has the oth value.

From the above set-up, we obtain the following theorem:

Theorem 5.1

Assume that the ith unique record is in the ith class, where i = 1, …, Nu. The limit of the 
entropy of an LCA model as the number of classes approaches the number of unique records 
is

where .

The proof is given in the Appendix.

Our take-awake from this theorem is that letting the number of classes in an LCA model 

approach the number of unique records will minimize the entropy of that model. This has 

direct implications for the remainder of our project. Minimum entropy is typically desired, 

but assigning each unique record its own class is tantamount to overfitting the data. 

Therefore, we must construct a penalty function into our entropy-based model selection 

criterion.

6. Incomplete LCA Methodology and Extensions

In this section, we detail the existing combination of MI and LCA, followed by our proposed 

extensions of the method.

6.1. Incomplete LCA Methodology

In the existing methodology (e.g. [5, 6]), the number of classes is chosen at the outset, 

before any values are imputed. Then, the EM algorithm is used to find the “best” starting 

values for parameters γ and π. From there, multiple imputations of both missing manifest 

values and class membership are obtained, following the steps outlined in Section 4.3. Once 
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multiple imputations are obtained, the parameter estimates are combined following Rubin’s 

Rules (Section 4.2). Their averages describe a single LCA model, from which it is possible 

to obtain class membership for every record. The model, and its class membership 

assignments, may be analyzed as any LCA model for complete data would be.

Since the number of classes for the LCA model is fixed before the imputations begin, the 

resulting LCA model has that number of classes. In other words, there is no model selection 

taking place.

6.2. Extensions

In the above methodology, the selection of the number of classes occurs before imputation 

of data values, and thus it is implied that it occurs on a complete-case data set. We wish to 

free the methodology from the restrictions of (a) having to specify a single number of 

classes, and (b) doing so with only a complete-case data set to guide the decision. To this 

end, one may run the methodology multiple times on the incomplete data set, varying the 

number of classes in each run. The result is a series of LCA models, and the question 

becomes: Which model to use?

The classic model section criterion for LCA is BIC, which would choosen the model with 

the minimum of BIC values. The application of BIC to imputed results has been shown in a 

regression context, but demonstrated that the usefulness of BIC deteriorated when used with 

multiply imputed data [12]. Therefore, there is opportunity to construct a new model 

selection criterion, which seeks to ourperform BIC in the context of multiply imputed data.

Our new approach to selecting a multiply imputed LCA model begins by considering a 

range of possible classes. For each number of potential classes, impute missing manifest 

values and class membership as explained previously. However, instead of combining 

parameter estimates, calculate the entropy for each multiply imputed model. Thus, if there 

are M imputations for a set number of classes g, there will be M entropy estimates; one for 

each model. The average of these entropy values is the entropy statistic for that number of 

classes, g.

We have shown that the entropy of an LCA model goes to zero as the number of classes 

approaches the number of unique records. Therefore, we expect entropy values for models 

with higher values of g to be smaller than models with smaller values of g. To avoid 

overfitting the data, a penalty term must be introduced. We begin by calculating the relative 

change in entropy over all G classes, . The trimmed standard deviation of 

the ΔHg values, σ*, is calculated. The trimmed standard deviation does not include the 

entropy in the two smallest numbers of classes. Thus, it quantifies the “tailing off” entropy 

values, instead of all entropy values.

If we had calculated the entropy values of all classes, the first few smallest classes, are likely 

to have more different entropy values than those classes which followed. In this case, the 

trimmed standard deviation avoids being infulenced by these unusual values. If the first few 
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classes do not have unusual values of entropy, the trimmed standard deviation still captures 

the overall variation in the values, and thus still serves its purpose.

We choose the “best” number of classes by observing when ΔHg first falls below the 

threshold , where t is a constant. An examination of which constant t to use occurs 

in the next section.

7. Simulation and Application

The simulations presented in this section quantify the ability of our new model selection 

criterion to identify the correct number of classes, and compares its performance to that of 

AIC and BIC. The comparison between our method, AIC, and BIC continues in the data 

application, where the classes themselves are examined to determine how useful the results 

are from each of the three methods.

7.1. Simulation

The simulation study seeks to determine whether our proposed entropy-based criterion 

outperforms AIC and BIC. The performance of each of the criteria are measured by their 

ability to choose the correct number of classes. The averages of the criteria are calculated in 

order to describe the overall performance of each criterion. The arithmetic and geometric 

means of AIC and BIC are also calculated, following the process in [12].

The foundation of our simulated data is the Zoo data set from the UCI Machine Learning 

Repository [31]. The Zoo data has 101 records and 18 variables. Of the 18 variables, we 

subset seven: Hair, Feathers, Eggs, Milk, Airborne, Predator, and Backbone. All variables 

take values zero or one, corresponding to a no or yes answer to whether record i has trait k. 

There is a class membership variable, Type, which correctly specifies which records belong 

to which class. Type breaks the data set into seven classes; thus, we know the true number of 

classes to be seven.

As there are only 101 records in the data, small sample size issues may occur when we 

consider splitting the data into seven classes. To avoid these issues, we generate N = 1000 

simulated observations from an LCA model fit to the original data. Doing so will preserve 

the patterns inherent in the original data, while allowing us to work with a larger sample 

size. Referencing the Type variable, and its seven values, we fit an LCA model with seven 

classes. In order to run an LCA model, we run the [5] methodology on the data set with only 

one imputation. The LCA model parameters thus obtained
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For every repetition of our simulation study, a new data set of a thousand records, seven 

variables, and seven classes was generated. The number of unique records in each data set is 

27 = 128.

Once the data is obtained, missingness was added using an MAR mechanism. If a record 

denoted that the animal did not produce milk, then the record’s value for Predator was 

MCAR with probability ϕA. If instead the record denoted that the animal did produce milk, 

the corresponding value for Predator was MCAR with probability ϕB. The values of the two 

ϕ parameters were such that the total percent of missing values approximated 50%, 25%, 

and 10%.

Finally, different values of the threshold  were studies. Values of t considered were t = 2, 

4, 6, 8, 12, 14, and 20.

7.1.1. Simulation Results—Figure 1 displays the number of classes determined as the 

best by each criteria. AIC chose four classes, and BIC chose three; both criteria 

underestimate the number of classes in the data, illustrating how AIC and BIC performance 

deteriorates when applied to a multiply imputed data set. Our entropy-based criterion chose 

a number of classes that was much closer to the true number of classes. The accuracy of the 

average number of classes chosen by the entropy criterion was much higher when only 10% 

of the values were missing, as may be expected intuitively. However, when 25% and 50% of 

the values are missing, the average number of classes chosen by the entropy-criterion was 

only one away (six instead of seven), and the correct number of classes was always in the 

middle fifty percent of classes chosen.

We examine only entropy-based criteria in Table 1, as Figures 1a through 1c showed that 

AIC and BIC do not select the best number of classes and have nearly no variability. The 

table shows the the percent of choosing the correct number of classes (Pct.7), the percent of 
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choosing classes within one of the correct number (Pct.6 − 8), and the percent of simulation 

runs which never met the threshold (Pct.N A), for each percent of missing values and each 

entropy-based model selection criterion examined. Percent correct and percent near-correct 

in Table 1 are calculated relative to the number of non-NA repetitions per setting.

From Table 1, we can see the rate of correctly chosing the exact number of classes varied 

considerably, but is maximized for  for all three levels of Percent Missingness (%M is.). 

The rate of the choice being within one of the correct number was maximized at  for 10% 

and 25% missing, with  coming in a close second; and  for 50% missing, with  and 

close behind. The percent of repetitions who had no entropy value below the threshold was 

maximized at , as expected. In other words, as the threshold becomes more and more 

strict, fewer and fewer cases meet the threshold.

We take these results as evidence that our method is outperforming AIC and BIC. We also 

consider the thresholds  or  to be the best for our entropy-based criterion.

7.2. Application

Rink et al [32] analyzed a subset of data collected by Kordas et al [33] which examined 

children’s home environment, their parents’ background, and the children’s health status. 

The original data, described in Kordas et al [33], has 193 variables and 109 records. 

Questions include which parent the child lives with, whether the child has various health 

problems (hepatitis, anemia, etc.), the division of labor between the parents, and other topics 

related to the health and lifestyle of the child and parents.

Out of the 193 variables available, we look at the following: father’s education (in years), 

parents’ marital status (married, divorced, living together unmarried), mother’s intelligence 

quotient (IQ), amount of hemoglobin in the child’s blood (g/dL), socio-economic status 

(SES) of the child’s home, HOME score, amount of manganese (Mn) in the child’s hair 

(ug/g), and age of the child (in months). Socio-economic status is a summary of responses 

from twelve questions which inquired as to the furnishings of the child’s home, including 

whether there was a refridgerator, television, etc. The HOME score was obtained via a 

survey of the home environment [32, pg. 48].

Figure 2 displays histograms of all observed values across the variables are are analyzing. 

All are continuous, except marital status, which has three values. Father’s Education is 

skewed right; Managese Level is severely skewed right; Hemoglobin level, HOME score, 

and Mother’s IQ are all mildly skewed left. SES and Child’s Age are all approximately 

symmetric.

Table 2 gives us an idea of where the missing values are most commonly found in this data 

set. The frequency (Freq.) and percent (Pct.) of missing values for each variable are shown. 

The only complete variable is Child’s Age, whereas the variable with the most missing 

values is Mother’s IQ (23 values missing, 21.1%). Most other variables have about 8% – 

10% missing values, except Marital Status (1 missing, 0.9%) and SES (2 missing, 1.8%). If 

we were to remove all incomplete records from the data, our sample size would reduce from 

109 to 74, resulting in almost a third of records lost.
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As observed, none of the variables are binary. In order to apply LCA analysis to this data set, 

we must bifurcate the variables’ values into values of zero and one. This separation of values 

occured as follows. Father’s Education became no college (years ≤ 12) or at least some 

college (years > 12). Marital Statis became two different indictor variables; one for divorced 

and another for living together unmarries, with married as the reference category. Mother’s 

IQ was split into above and below 90. Hemoglobin was coded as above and below 11, since 

11 is the average of two standard deviations below normal levels for children 0.5 – 2 years 

and 2 – 6 years [34]; below 11 thus indicated anemic children. SES and HOME values were 

coded as above and below their means of 6 and 9.1, respectively. Manganese levels were 

coded as above or below 1.2 ug/g, the third quartile for the variable; above 1.2 ug/g indicates 

concerningly high levels of manganese. Age was coded as above or below toddling at of 24 

months.

7.2.1. Application Results—The first task is to construct a range of classes to explore. 

One class would tell us nothing, so our minimum number of classes was set at two. To 

include a variety of classes, the maximum was set at eight. For each of the seven different 

numbers of classes, the methodology of Harel et al [5] was performed. Entropy, AIC, and 

BIC values were obtained for each of the seven LCA class amounts. For the entropy 

criterion, three thresholds were examined, t = 1, 2, 4. AIC and BIC both chose two classes as 

the best.

Let us first choose a number of classes via the new entropy criterion. The entropy values, 

together with the relative change of entropy, is shown in Figure 3. The green lines overlayed 

on the graph are the three thresholds considered for the entropy criterion. Naturally, the 

thresholds are more restrictive as the value for t increases. The most generous threshold, σ*, 

either includes or nearly includes all classes starting at g = 4. The two other thresholds only 

capture the final class. When we examine the models that have more than four classes, we 

discover that at least one class in each model is empty. Thus, we settle on four classes as that 

selected by the entropy criterion.

The fact that σ* is our most successful criterion, as it chose for us the number of classes, 

does not agree with the results from our simulation study. The simulation suggested that 

or  would be the best thresholds to use. This disagreement illustrates the inherent 

difference between simulation and data application. Recall that the simulation data was 

generated by an LCA model, and thus was easily analyzed by LCA methods. The data in the 

application section, by contrast, is messy. Thus, it makes sense that a more lenient threshold 

is the one that gives the best results.

Now we must compare the classes found by AIC and BIC to those found by our entropy 

criterion. Descriptions of each class, for both the AIC / BIC result and the entropy result, are 

in Table 3. The values inside the table are the percent of records that have the trait listed in 

the column header. For example, the values under “College” are the percent of records in 

that class which have Father’s Education flagged as “At least some college.” The percents 

are calculated with respect to the number of observed values within that variable.
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We are interested to see whether using four classes instead of two adds anything to the 

interpretation of the results.

Let us begin in the AIC / BIC section of the table. Class 1 is entirely made up of divorced 

parents and father’s with no college education, while Class 2 has 6.2% of fathers with some 

college education, and a close to 60–40 split across Living together unmarries and Married 

parents. High mothers’ IQ levels in both classes are fairly low (10% and 24.2%), anemia 

rates are similar (20% and 17.3%), SES scores are close (34.6% and 45.7%), and manganese 

levels differ only by about 20% (40% to 22.7%). The only illustrative difference between the 

classes is in HOME score, where only 4% of Class 1 had a higher than average score, 

compared to 54.8% of Class 2. Overall, there is not a coherent story to be found in the AIC / 

BIC results. While some differences are apparent, there is nothing to help researchers 

identify children at risk of anemia or elevated levels of manganese.

Now we shift our focus to the second half of the table, with the four classes uncovered by 

the entropy criterion. Instead of comparing variables across classes, let us describe each 

class in turn.

Class 1 consists entirely of children who are healthy, in terms of iron levels and manganese 

levels. All of the children’s mothers in this class have IQ over 90, while no father has any 

college education. The majority of children have above average SES (83.3%) and HOME 

(66.7%) values.

Class 2 also has no child with elevated levels of manganese, and the second smallest percent 

of anemic children (18.6%). It has the highest percent of children with above average 

HOME scores (70%), and the second highest percent of children with above average SES 

(51.5%).

Class 3 has the highest percentage of anemic children (22.7%) with elevated manganese 

levels (85%). These children all have parents that are living together but umarried, they have 

the smallest percent of above average SES (17.4%), and the second smallest percent of 

above average HOME scores (22.7%).

Class 4 has the second highest percentage of anemic (20%) and high manganese (41.7%) 

children. All children in this class have below average HOME scores, and nearly a third have 

below average SES (32%). All parents of children in this class are divorced.

There are several different stories that we can glean from the four-class solution. First, 

healthy children tend to have mothers with higher IQs and good home and socio-economic 

environments. When socioeconomic score and mother’s IQ dips, children may be at risk for 

anemia, but manganese levels may remain within healthy limits. Low SES and HOME 

scores seem to be correlated with elevated anemia and high manganese rates. These stories 

could help identify at-risk children in future, and may be used to make sure parents are 

aware of the risks of anemia and elevated manganese. These stories, spelled out in the four-

class model, were not uncovered using AIC or BIC.
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8. Conclusion

We have presented a new entropy-based model selection criterion that chooses the correct 

number of classes more frequently than AIC and BIC in simulated data sets, and identifies 

useful class structures in a family studies data set.

We began by proving that the entropy of an LCA model approaches zero as the number of 

classes approaches the number of unique records; in effect, as the model begins to over-fit 

the data. Using this result, we developed an entropy-based criterion with a penalty function 

that recognized when the differences in entropy were beginning to tail off, thus signalling 

the beginning of over-fitting the data. Simulation studies showed the entropy-based criterion 

outperforming AIC and BIC by frequently selecting the correct, or close to correct, number 

of classes. Application to a family studies data set demonstrated that our criterion uncovered 

more nuanced, useful, and actionable classes than the AIC and BIC.

These results allow us to expand the current methodology of performing LCA on incomplete 

data from the restraint of selecting one fixed number of classes, chosen via complete-case 

analysis, to considering a range of classes which take into account imputed data.

Future directions for this work are many. We wish to leverage the multinomial LCA proof 

into an entropy-based criterion for multinomial data. In addition, there are many other model 

selection criteria apart from AIC and BIC, some of which involve information calculations 

just as entropy does [11]. We focus on AIC and BIC in this document as the first step toward 

comparing our criterion to these more nuanced model selection criteria. Finally, it is 

important to mention that we have not yet considered the question of G = 1 versus G > 1; 

that is, the presence or absence of any clustering behavior. Future interests include tackling 

this additional question.
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Appendix

Proof of Theorem 5.1

Proof

Consider γg, the probability of a unique record xi being in class g, where i ∈ 1, …, Nu, and 

Nu is the number of unique records. For all i ≠ g, γg = 0, because record i must be in class i 

(by our assumption). Since , it remains that γg = 1 when i = g.

Therefore, we eliminate the summation over G and the term γg. Our formula becomes:

where

Now that class g corresponds to record i (from our assumption), there is only one record 

being considered in αi. Let us consider each possible value for . If , then the ith 

record has the oth value in the kth variable. For every record i and variable k, 

 can only equal 1 for one of the values, and must equal 0 for the other 

values. This is because there is only a single number in , and therefore can only take one 

value of o.
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We are left with x0 = 1∀x, even x = 0. Therefore, all values of  which have an 

exponent of zero will equal one. There will be one single value of πk,o where its exponent 

 equals one instead of zero. In this case, the corresponding value of πk,o must also 

equal one. This is due to the fact that . This is also due to the fact that the 

probability of a single number being equal to its value is one. Therefore,  for 

fixed k.

The results given above occur for each value of K. Thus,

Finally, we have

the smallest value entropy can take.
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Figure 1. 
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Figure 2. 
Histograms of the eight variables analyzed in our application study.
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Figure 3. 
Entropy values (left) and change in entropy values (right), with thresholds.
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