Skip to main content
. 2016 Sep 29;11(9):e0162721. doi: 10.1371/journal.pone.0162721

Table 4. The quantitative results for accuracy using different regularization parameters.

For each dataset, 80% was used to train a prediction model and the remaining 20% for testing.

Classifier Dataset Regularization Parameter Accuracy
SVM Abstracts L2 (Default) 94.63%
SVM Abstracts L1 91.07%
SVM Abstracts None 89.72%
Logistic Regression Abstracts L2 (Default) 92.19%
Logistic Regression Abstracts L1 90.61%
Logistic Regression Abstracts None 88.54%
SVM Full-text Articles I L2 (Default) 94.47%
SVM Full-text Articles I L1 90.33%
SVM Full-text Articles I None 88.51%
Logistic Regression Full-text Articles I L2 (Default) 91.05%
Logistic Regression Full-text Articles I L1 88.19%
Logistic Regression Full-text Articles I None 87.04%
SVM Full-text Articles II L2 (Default) 93.81%
SVM Full-text Articles II L1 90.16%
SVM Full-text Articles II None 87.94%
Logistic Regression Full-text Articles II L2 (Default) 90.57%
Logistic Regression Full-text Articles II L1 87.63%
Logistic Regression Full-text Articles II None 86.71%