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Abstract
Synonymous mutations in the KRAS gene are clustered at G12, G13, and G60 in human

cancers. We constructed 9 stable NIH3T3 cell lines expressing KRAS, each with one of

these synonymous mutations. Compared to the negative control cell line expressing the

wild type human KRAS gene, all the synonymous mutant lines expressed more KRAS pro-

tein, grew more rapidly and to higher densities, and were more invasive in multiple assays.

Three of the cell lines showed dramatic loss of contact inhibition, were more refractile under

phase contrast, and their refractility was greatly reduced by treatment with trametinib.

Codon usage at these glycines is highly conserved in KRAS compared to HRAS, indicating

selective pressure. These transformed phenotypes suggest that synonymous mutations

found in driver genes such as KRAS may play a role in human cancers.

Introduction

Synonymous mutations are often disregarded because they do not affect the final amino acid
sequences of proteins. However, we are learning that codon biases and resulting changes to
mRNA secondary structure can alter mRNA stability and ribosomal translation rates [1–5].
Additionally, ribosomal pauses in co-translationally folded proteins can lead to alternative
final conformations of a protein with distinct biological outcomes. For example, the FRQ gene
in the bread moldNeurospora crassa contains non-optimal codons that are critical for proper
circadian rhythm. Codon optimization of FRQ leads to increased FRQ protein levels, altered
conformation and phosphorylation changes, and impaired circadian clock function [6,7]. An
example in humans is the three-base deletion in the CFTR gene that is the most common cause
of cystic fibrosis [3]. While historically the loss of the F508 has been the focus of research,
recent findings suggest that the synonymous codon change at the adjacent isoleucine 507, and
not the deletion of F508, plays the larger role in decreased translation and consequent lack of
functional CFTR protein [8]. Additionally, recognition that pairs of synonymous codons are
not uniformly distributed in genes has facilitated major advances in vaccine research. Coleman
et al. [9] used rare codon pairs to generate engineered poliovirus particles with a modified
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capsid protein that maintained the wild-type amino acid sequence, and thus immunogenicity,
while the infectivity of the particles was decreased by several orders of magnitude. The infectiv-
ity of several other viruses has been decreased by similar methods [10, 11]. Moreover, some
individuals have a synonymous SNP in their P-glycoprotein (MDR1) gene. P-glycoprotein is a
broad specificity transmembrane efflux pump responsible for removing many foreign com-
pounds from cells, including chemotherapy drugs. One of these mutations, C3435T, results in
a rare isoleucine codon that leads to aberrant folding of the final protein and changes the sub-
strate specificity of the transporter [12].

Synonymous mutations have also been associated with multiple types of cancer. For exam-
ple, an F17F synonymous mutation is enriched in the pro-survivalBCL2L12 gene in human
melanoma samples. This mutation leads to loss of an miRNA binding site and increased
mRNA stability, resulting in overexpression of the encoded protein and hyperactivity of anti-
apoptotic signaling [13]. p16 is also significantly enriched in synonymous codon changes in
melanoma patients compared to the healthy population [14]. Additionally, some genomes con-
tain synonymous mutations at nucleotides adjacent to splice junctions in TP53, resulting in
aberrantly spliced, inactive p53 transcripts [4]. Synonymous mutations have been reported to
act as drivers of human cancers [4] and recently, thousands of “silent drivers” of human can-
cers were identified based on computational analysis of data in COSMIC [15].

The RAS genes,KRAS,HRAS, and NRAS, are the most frequently mutated proto-oncogenes
in human cancers in the United States and are responsible for 43% of all cancer deaths. Among
the RAS genes mutations in KRAS are the most abundant and are associated with poorer clini-
cal outcomes [16]. While missense mutations at G12, G13, and Q61 in KRAS are canonical
drivers of lung, pancreas, and colorectal cancers [16], overexpression of wild-typeKRAS has
been observed in head and neck [17], endometrial [18], ovarian [19], testicular [20], lung [21],
gastric [22], colon [23], and bladder cancers [24]. Endometrial cancer patients whose tumors
overexpress wild-type (WT) KRAS have a lower probability of survival [18]. Individuals having
colon cancers that overexpress WT KRAS are resistant to EGFRmonoclonal antibody thera-
pies [23]. The codons found in the KRAS gene, in contrast to those inHRAS, have been selected
for low protein expression, and it has been hypothesized that KRAS cancers may be more com-
mon because low expression of mutant KRAS protein promotes hyperplasia but not senescence
[25–27], allowing additional mutations to be accumulated on the path to cancer.

Here we describe experiments showing that all synonymous codon replacements at KRAS
G12, G13, and G60 substantially increase KRAS protein expression in stably transfected
NIH3T3 cells. Further, the phenotypes of many of these cell lines are significantly altered
toward more transformed states. Because these synonymous mutations in KRAS have been
found in human cancers, we suggest that testing for the mutational status of KRAS in cancer
patients should not systematically exclude synonymous codon replacements.

Results

Single synonymous mutations in KRAS cause increases in KRAS

protein expression

The classic sites of missense mutations in KRAS genes found in human cancers are at G12,
G13, and Q61. Intriguingly, the most frequent synonymous mutations in KRAS found in
human tumors are at almost the same locations, G12, G13, and G60 (http://cancer.sanger.ac.
uk/cosmic; [28] (Fig 1A). These mutations have not been identified as SNPs in the healthy pop-
ulation [29].

To investigate whether these synonymous glycine mutations contributed to changes in
KRAS protein expression, we constructed plasmids encoding the wild type KRAS amino acid
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and nucleotide sequence, the missense G12V oncogenicmutant, and nine different single-
nucleotide changes encoding synonymous glycine codons at G12, G13, or G60 (using primers
in S1 Table), and we used these plasmids to establish stable NIH3T3 cells lines. Based on
inspection of the adherent cultures during drug selection, each of the eleven stable cell lines
comprised between approximately 10 and 30 independent clones (data not shown). At the end
of the selection period, each cell line was cultured as a pooled population.

Lysates were prepared from each cell line after 2 and 10 passages and analyzed by immuno-
blots for KRAS protein expression (Fig 1B). Strikingly, all the KRAS synonymous mutation cell
lines expressed much more KRAS protein, between 2 and 14 fold (Table 1), at early and late
passage, compared to cells stably expressing theWT KRAS nucleotide sequence. Increases in
KRAS protein expression trended with human and mouse glycine codon usage at G12 and
G60, but not at G13 (Table 1), possibly because of a highly conservedCpGmotif spanning the
G13V14 codon pair. There were no knownmiRNA binding sites [30] that encompassed any of
the synonymous changes, and these codons were not near splice sites. Secondary structures of

Fig 1. Synonymous KRAS mutations found in human tumors increased KRAS protein expression. (A) Positions and frequencies of missense (top

panel) and synonymous (bottom panel) mutations found in KRAS genes in human cancers, as of 27 January 2016. Source: Catalogue of Somatic

Mutations in Cancer. (B) NIH3T3 cell lines stably transfected with KRAS containing single synonymous glycine mutations at G12, G13, or G60

overexpress KRAS protein compared to wild type KRAS. p2 = passage 2, p10 = passage 10.

doi:10.1371/journal.pone.0163272.g001

Table 1. Glycine codon usage and KRAS protein expression in pooled stable cell lines.

Glycine Codon

Usage

G12

Codon

Relative KRAS protein

expression*
G13

Codon

Relative KRAS protein

expression*
G60

Codon

Relative KRAS protein

expression*

Least oftenMost

often

GGT (wt) 1.0 GGT 6.1 GGT (wt) 1.0

GGG 3.2 GGG 5.8 GGG 2.4

GGA 5.4 GGA 3.4 GGA 4.0

GGC 14.3 GGC (wt) 1.0 GGC 13.4

*Average of passage 2 and passage 10 KRAS values as determined by ImageJ densitometry.

doi:10.1371/journal.pone.0163272.t001
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mRNAs and predicted free energies [31] varied slightly, but all synonymous mutant KRAS
mRNA levels were within two-fold of theWT sequence based on droplet digital PCR results of
transiently transfected cells (S1 Fig). We investigated the activation states of MAPK and PI3K
signaling pathways in the synonymous mutant cell lines, and while we observed reproducible
differences between the cell lines, no pattern emerged associating either MAPK signaling or
PI3K signaling with levels of KRAS protein expression (S2 Fig). This is consistent with previous
reports which failed to correlate signaling patterns with differentmissensemutations [32–34].

Single synonymous mutations cause increases in proliferation and

saturation density

KRAS effector signaling drives proliferation [16], and increased proliferative status is associ-
ated with cellular transformation [35]. We determined doubling times for all the cell lines each
day for 7 days to determine if the synonymous mutation-mediated increases in KRAS protein
expression correlated with proliferation rates and final cell densities (Table 2). All the cells
reached confluence by day 7, many of them by day 5, and doubling rates were calculated each
day during the experiment. Cells expressing WT KRAS grew the slowest (minimum observed
doubling time of 47 hours). Proliferation rates paralleled KRAS protein expression for nine of
the eleven lines (more KRAS protein, faster growth). Increased saturation density is a charac-
teristic of transformed cells [35], and all the cell lines expressing the synonymous mutants
reached final maximum cell densities more than 2-fold greater than those expressing theWT
gene during the 7-day assay.

Some synonymous mutant cell lines lose contact inhibition and exhibit a

MAPK-dependent refractile appearance

The RAS genes were originally identified as oncogenes based on their ability to cause NIH3T3
cells to lose contact inhibition and form colonies / foci [36]. To investigate whether the synony-
mous mutant cell lines exhibited a similar transformed phenotype, we performed colony form-
ing assays (Fig 2 and S3 Fig). While WT cells were contact-inhibited during the 21-day assay,
all the synonymous mutant cell lines displayed altered behaviors, ranging from slight increases
in crystal violet staining (36 T->C, 180 T->A, 180 T->C) to densely stained colonies (36 T-
>G, 39 C->T, and 180 T->G). Surprisingly, all three of the cell lines in this latter group only

Table 2. Single synonymous mutations changed KRAS expression, doubling times, and cell densities.

Minimum Doubling Time (hr) KRAS Protein Expression* Maximum Cells (x 105)

WT 44.0 1.0 7.3

G12V 20.5 16.6 51.9

36 T->A 28.7 5.4 15.9

36 T->C 22.5 14.3 18.7

36 T->G 34.2 3.2 18.8

39 C->A 30.0 3.4 16.3

39 C->G 28.5 5.8 16.1

39 C->T 27.1 6.1 16.8

180 T->A 25.1 4.0 18.1

180 T->C 24.6 13.0 19.2

180 T->G 28.4 2.4 21.4

*Normalized to WT = 1.0

doi:10.1371/journal.pone.0163272.t002
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moderately overexpressed KRAS protein (2–6 fold over WT; Fig 1B). In addition, in two exper-
iments all replicates of one line, 180T->C, detached as a cell monolayer from the polylysine-
coated plastic as the cells reached confluence (S1 Movie shows the release in one well over two
minutes). The cells remained floating as a sheet with no visible debris for the duration of the
experiment (data not shown).

A refractile and more roundedmorphology is characteristic of cellular transformation [35]
and has been associated with RAS-driven transformation [37]. The three cell lines that showed
reduced contact inhibition in the colony forming assay (36 T->G, 39 C->T, and 180 T->G)
were also more refractile and more rounded thanWT cells under phase contrast microscopy.
Treatment with the MEK inhibitor trametinib (1 μM) for 24 hours reverted the refractile and
roundedmorphology in all three lines nearly to the appearance of theWTDMSO-treated cells
(Fig 3), and the response was dose-dependent. In contrast, after treatment with the PI3K inhib-
itor LY294002 (5 μM), the refractile character of the three cell lines remained (S4 Fig). Thus
the refractile appearance of these synonymous mutant cells lines was dependent uponMAPK,
but not PI3K, signaling.

Synonymous mutant cell lines and spheroids are more invasive than the

WT cell line

Invasion is a requirement for metastasis in cancer cells [35]. We evaluated invasion of theWT,
G12V, and synonymous mutant cell lines using three standard assays. First the lines were
grown in a Boyden chamber in which a layer of extracellularmatrix (ECM) was coated on top

Fig 2. Some silent mutant cell lines exhibited loss of contact inhibition. Cells were fixed and stained after 21 days of growth in triplicate wells.

Enlarged areas are representative images. The 180 T->C cells formed a monolayer and detached within the first week of culture and were lost during

fixation and staining (S1 Movie and S3 Fig).

doi:10.1371/journal.pone.0163272.g002
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of a membrane with 8 μm pores in the upper chamber. Every synonymous mutant cell line
showed increased invasion through the ECM toward the chemoattractant compared to theWT
cell line (Fig 4A). Next we cultured each cell line in wells precoated with extracellularmatrix
(ECM; "top assay"), in which the cells had to degrade the matrix in order to proliferate and

Fig 3. Refractile morphology of silent mutant cell lines was MAPK, but not PI3K, dependent. Cells were plated at

low density and photographed with phase contrast microscopy before or after 24 hours of treatment. Left column:

vehicle only. Center column: Mek 1/2 inhibitor (1 μM trametinib). Right column: PI3K inhibitor (5 μM LY294002). Insets

are 4X views.

doi:10.1371/journal.pone.0163272.g003
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survive (Fig 4B). TheWT cells formed small, compact masses, while the G12V cells grew into
much larger cell aggregates with abundant invadopodia into the matrix. All the synonymous

Fig 4. All silent mutant cell lines were more invasive than the WT cell line. (A) Top Panel: Diagram depicting the Boyden

chamber assay. Cells were deprived of serum and allowed to invade through the extracellular matrix toward the chemo-

attractant (FBS) for 24 hours before staining with Calcein-AM. Bottom Panel: Percent invasion of the cell lines: ratio of cells that

invaded through the ECM to the total number of cells initially plated in the top chamber. (B) Growth in ECM-coated wells. 56X

total magnification. (C) Growth of spheroids under ECM. 56X total magnification. Average surface areas (pixels) and statistical

significance for each set of spheroids (N = 3) are shown.

doi:10.1371/journal.pone.0163272.g004
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mutant cell lines grew into larger colonies with more protrusions thanWT cells. Finally, we
formed spheroids with each cell line and then overlaid themwith ECM, so that growth required
invasion into the matrix (Fig 4C). The growth of the synonymous mutation spheroids was less
than that of the G12V line but always significantly greater than theWT spheroids. These assays
showed that stable NIH3T3 cell lines expressing KRAS-4B with single synonymous substitutions
at G12, G13, and G60 were always more invasive than cells expressing theWT protein.

We aggregated the above data by ranking each cell line for its similarity to the negative con-
trol wild-type cell line and the positive control G12V cell line in each of 7 assays (Table 3), and
used the 4 phenotypic assays to construct a "transformation index". By this measure, all the
synonymous mutation cell lines were more transformed than theWT cell line and less trans-
formed than the G12V cell line.

Discussion

Historically, synonymous mutations in cancer genes have been discounted as unimportant (for
example [38]). It is indeed probable that they represent a minority of the genome changes that
contribute to cancer. However, accumulating data from sequencing the exomes and genomes
of human cancers have revealed interesting hotspots for synonymous changes, especially con-
sidering that many such mutations do not find their way into publications. In fact, the G12,
G13, and G60 synonymous mutations catalogued in COSMIC show up>6 times more often
from whole exome sequencing than from literature curation, and some research in which syn-
onymous mutations were found at these locations is not catalogued in COSMIC [39].

Here we have explored the consequences of synonymous mutations that cluster in KRAS.
Importantly, there are clusters of synonymous mutations in other classic cancer genes in the
COSMIC database (http://cancer.sanger.ac.uk/cosmic; [28], including KIT,NOTCH1, BRCA1,
and CTNNB1 (ß-catenin)). Especially notable in the case of KRAS is the near coincidence of
the clusters of synonymous mutations at G12, G13, and G60, with the classic missense muta-
tions at G12, G13, and Q61 that drive human cancers (Fig 1A). This clustering of synonymous
mutations near sites of missensemutations has been observed for synonymous mutations that
drive human cancers [4]. We considered the possibility that the clusters arose from ascertain-
ment bias. Examination of the publications behind the data showed that the sequences were

Table 3. Relative scores of cell lines for KRAS expression, signaling by phospho-Erk1/2 and phospho-Akt, and transformation phenotypes.

KRAS Expression and Signaling Transformation Assays

KRAS Expression pErk 1/2 pAkt Prolifera-tion Maximum Cells Loss of Contact Inhibition Invasion Transformation Index*

WT + ++ ++ + + + + 4

G12V ++++ +++ ++++ ++++ ++++ ++++ ++++ 16

36 T->A ++ ++ + ++ ++ ++ ++ 8

36 T->C +++ ++ + ++++ +++ + +++ 11

36 T->G ++ ++ ++ ++ ++ +++ +++ 10

39 C->A ++ ++ + ++ ++ ++ ++ 8

39 C->G ++ + + +++ ++ + ++ 8

39 C->T ++ + + ++ +++ +++ ++ 10

180 T->A ++ ++ + +++ ++ + ++ 8

180 T->C +++ +++ ++ +++ ++ + ++ 8

180 T->G ++ ++++ ++ +++ +++ +++ ++ 11

* total of transformation scores (+ = 1, ++ = 2, +++ = 3, ++++ = 4)

doi:10.1371/journal.pone.0163272.t003

Synonymous Mutations in KRAS

PLOS ONE | DOI:10.1371/journal.pone.0163272 September 29, 2016 8 / 16

http://cancer.sanger.ac.uk/cosmic


derived from both Sanger and NextGen methods, and that the Sanger data usually encom-
passed entire exons (S2 Table). These considerations led us to ask whether the clusters of syn-
onymous mutations might have biological significance.

Our biochemical and phenotypic experiments revealed substantial changes associated with
the synonymous mutations. All the stable NIH3T3 cell lines expressing any of the transfected
synonymous, single-nucleotide altered KRAS genes expressed substantially (2–14 fold) more
KRAS protein than did the cells expressing the control wild-type gene (Fig 1B). Since each of
the cell lines (wild type, G12V, and synonymous) comprised 10–30 independent clones, we
judged explanations based on dominance of rare clones to be unlikely. Levels of KRAS expres-
sion paralleled glycine codon usage at G12 and G60 but not G13 (Table 1). Interestingly, the
wild-typeG13 codon is part of the rarest GV codon pair in humans, GGCGTA, and that
codon pair is in fact the 21st rarest of all 3721 human codon pairs [9]. Thus it is reasonable to
hypothesize that the increases in KRAS expression we saw were due to relief from rare codon
(G12 and G60) or rare codon pair (G13) usage.

We conducted an extensive examination of MAPK and PI3K signaling pathways in the cell
lines without finding any correlations that prevailed across all the synonymous mutants (S2 Fig).
We are not aware of a similar analysis across a large number of KRASmissensemutants in 3T3
cells, but it is well known that perturbations in RAS pathway signaling engage feedbackmecha-
nisms that limit the duration of changes in, for example, phospho-Erk [32–34]. In agreement
with others [35, 40], we think it is likely that transformed phenotypes are the consequence of the
integrated output of multiple signaling pathways. For example, it is plausible that small (2 fold),
medium (5 fold) and large (>10 fold) increases in the amounts of wild-typeKRAS protein would
trigger different downstream signaling and compensatory feedback responses.

We also suggest that the high conservation of codon usage at G12, G13, and G60 of KRAS
genes (S3 Table) compared to HRASmay be connected to the biochemical and cell biology
phenotypes we report here. First, KRAS is the most potent of the gain-of-function oncogenes,
since it drives more human cancers than any other [16]. Evolution may have selected for ineffi-
cient translation of KRASmRNA, as it does in other eukaryotes [6,7], since both synonymous
(reported here, and see [27]) and oncogenicmissense (our unpublished data) mutations dra-
matically increase the amounts of KRAS protein in transfected cells. In the context of a tissue
in a live animal, single synonymous mutations could cause large increases in MAPK signaling
that could push cells into apoptosis or senescence, and only rarely initiate a process leading to
cancer [26]. Second, we favor codon usage and increased expression of wild-type protein to
explain the results we see for synonymous mutations at G12 and G13. However, mutations at
G60 could potentially change the folding of the protein itself. Slow translation at G60 might be
necessary to allow the switch 1 region of KRAS protein, having left the exit tunnel of the ribo-
some, to fold properly before the rest of the protein is synthesized. Reducing the pause caused
by slow translation at G60 might result is a population of KRASmolecules with differential
GAP, GEF, and effector binding and thus altered signaling properties.

We found that the MEK inhibitor trametinib reverted the refractilemorphology of the col-
ony-forming synonymous mutant cell lines toward a wild-type appearance (Fig 3). In addition,
we found an association between synonymous-mutant driven levels of KRAS protein overex-
pression and transformed phenotypes. All synonymous mutant cell lines dividedmore rapidly,
and grew to higher densities in culture (Table 2). Finally, in three independent assays all the
synonymous mutant lines invaded extracellularmatrix more aggressively than the wild-type
cells (Fig 4). Our observations on the effects of synonymous mutations in KRAS-4B are sum-
marized in Table 3 and Fig 5.

It has been previously observed that expression of mutant KRAS protein is restrained by
codon usage compared to HRAS [25–27]. In those reports, increasing extents of KRAS codons
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were substituted withHRAS codons, with the result that progressively more KRAS protein was
expressed, and cells expressing higher amounts of KRAS formed smaller tumors in mice. In
contrast, our observations are based on single nucleotide changes in the wild-type coding
sequence, and resulted in KRAS protein levels higher thanWT but lower than G12V KRAS.
The single nucleotide changes we investigated have been found in human tumors in the
absence of the classic KRASmissensemutations (http://cancer.sanger.ac.uk/cosmic; [28]).

It is remarkable that these small changes had such large effects on levels of KRAS protein.
We note that the codons used for these 3 glycines in humans are highly conserved in KRAS
homologs in 57 vertebrate species (92% conserved) compared to HRAS (48% conserved) (S3
Table). Thus our observations, combined with the clustered occurrence of the same mutations
in human cancers and the high degree of conservation of these codons in vertebrates, indicate
that maintenance of these particular glycine codons is important for maintaining low levels of
KRAS protein in normal cells.

Chromosomal amplifications and translocations are frequent drivers of overexpression that
lead to cancer [20]. Our observations, combined with previously published reports [4, 15], data
such as those in COSMIC, and intriguing individual reports [39, 41], suggest that synonymous
mutations in KRAS, and possibly other cancer genes should also be regarded as potential drivers
of overexpression and participants in tumorigenesis / transformation. Becausemutant KRAS
genes are major drivers of common cancers, standardized tests for mutations in KRAS [42] are
being developed and used in trials of tailored cancer therapies ("precisionmedicine").Unfortu-
nately, all such tests at present are designed to be blind to synonymous mutations in KRAS.We
suggest that "silent" changes in KRAS, and perhaps other important cancer genes, should be
incorporated into decisions about the most appropriate therapies for human patients.

Materials and Methods

Plasmids

Synonymous mutations at G12, G13, and G60 (nucleotide positions 36, 39, and 180, respec-
tively) were introduced into an entry clone containing the humanWT KRAS-4B coding nucle-
otide sequence using the Q51 Site-DirectedMutagenesis Kit (New England Biolabs, Inc.,

Fig 5. Working model. The WT KRAS nucleotide sequence has been evolutionarily conserved to minimize protein expression, especially at G12, G13,

and G60. Any synonymous mutation at those positions leads to overexpression of KRAS protein and subsequent increases in proliferation, maximum cell

density, and invasion in NIH3T3 cells.

doi:10.1371/journal.pone.0163272.g005
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Ipswich, MA) according to the manufacturer’s instructionswith the primers listed in S1 Table.
Entry clones were validated by Sanger sequencing in the forward and reverse directions.WT,
G12V, and synonymous mutant expression clones were generated using Gateway cloning [43]
into a destination vector, pDest 720 (S5 Fig) with a CMV promoter to drive expression and an
SV40 promoter to drive zeocin resistance gene for selecting stables.

Cell Culture

Mouse embryonic fibroblast NIH3T3 cells were purchased from the American Type Culture
Collection (ATCC, Manassas, VA). NIH3T3 cells were maintained and propagated at 37°C, 5%
CO2, in Dulbecco’s Modified EagleMedium (DMEM) (ATCC, Manassas, VA) supplemented
with 10% fetal bovine serum (FBS) (Hyclone, Logan, UT). All experiments were begunwhen
cells were between passage 2 and passage 5, and cell viabilities were maintained at �90%.
Serum-starvationconditions were generated by culturing cells for 18–24 hours in 20-fold
reduced serum concentrations (DMEM + 0.5% FBS). NIH3T3 cell lines were validated with the
mouse cell line authentication STR profile as previously described [44]. Cell lines tested nega-
tive for mycoplasma throughout the course of the experiments.

To make stable cell lines, cells were transfectedwith FuGENEHD (Promega Life Sciences,
Madison,WI) in Optimem (Life Technologies Corp, Carlsbad, CA) with a reagent to DNA ratio
of 2.5:1 (v/v) at 6.25 pg plasmid DNA/cell. After 48 hours, 2 x 105 viable cells were plated in tissue
culture treated six-well plates and propagated in DMEM+ 10% FBS + 700 μg/ml zeocin (Life
Technologies Corp., Carlsbad, CA), for three weeks. Fresh zeocin-containingDMEM + 10% FBS
was exchanged for the spent culture medium every three to four days. Stably-selected cells were
grown as pools and maintained in DMEM+ 10% FBS with 350 μg/ml zeocin.

Immunoblotting

Immunoblots were performedby loading 20 μg of total protein (as determinedby BCA assay
(Pierce Biotechnologies,Waltham, MA) using BSA as the standard) from a cell lysate per gel lane.
Lysis buffer composition was 150 mMNaCl, 20 mMTris pH 7.5, 1% Triton X-100, 1 mMEDTA,
including cOmplete™, EDTA-Free, Protease Inhibitor Cocktail Tablets (1 tablet per 10 ml lysis
buffer) (SigmaAldrich, St. Louis,MO) and PhosSTOP™ phosphatase inhibitors (1 tablet per 10 ml
lysis buffer) (SigmaAldrich, St. Louis,MO). Gels were transferred to nitrocellulosemembranes
using the semi-dry iBlot transfer system (Life Technologies Corp, Carlsbad, CA) for 7 minutes.
All primary (1:1000) and secondary (1:2000) antibody incubations were in 3% drymilk (BioRad,
Hercules, CA).Membranes were developed after a 2-minute incubationwith SuperSignal™West
Femto Maximum Sensitivity Substrate (Life Technologies Corp, Carlsbad, CA). Anti-KRAS (cat #
WH0003845M1) was purchased from SigmaAldrich (St. Louis,MO). Anti-Mek1/2 (cat # 9122),
anti-phospho-Mek1/2 Ser 217/221 (cat # 9121), anti-Erk1/2 (cat # 9102), anti phospho-Erk1/2
Thr202/Tyr204 (cat # 9101, and E10 cat# 9106), anti-Akt (cat # 9272), anti-phospho-Akt Ser473
(cat # 9271), goat anti-rabbit IgG HRP-linked secondary antibody (cat #7074), and horse anti-
mouse IgG HRP-linked secondary antibody (cat # 7076) were purchased fromCell Signaling
Technologies (Danvers, MA). Anti-GAPDH (cat #2275-PC-100) was purchased from Trevigen,
Inc. (Gaithersburg,MD). Band intensities were quantified using ImageJ software (National Insti-
tutes of Health, Bethesda,MD). Active (GTP-bound) KRAS (Pierce Biotechnologies,Waltham,
MA) pulldowns were performed according to the manufacturer’s instructions.

Transformation Assays

Growth Curves. 1.25 x 105 viable cells for each cell line were plated into 7 separate 25 cm2

tissue culture-treated flasks (CorningCat #430639). To determine the total cell number and
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viability, one flask for each construct was harvested each day and cells were counted in dupli-
cate in a TC-20 cell counter (BioRad) in 0.2% Trypan Blue. The doubling time was recorded as
the fastest doubling time between days 2 and 5 for each construct in the assay. These assays
were performed in duplicate, and the peak doubling times and saturation densities were aver-
aged for the two experiments.

Loss of Contact Inhibition. 5 x 104 viable cells for each cell line were seeded in triplicate
into 6-well tissue culture treated plates (Costar Cat #3506). Cells were grown for 21 days at
37°C, 5% CO2, in a humid environment. On day 21, culture mediumwas removed, and cells
were fixed (3:1 ratio of methanol to glacial acetic acid) and stained with 0.1% crystal violet.

Boyden Chamber Invasion Assays. After a 20-hour serum-starvation, cells were har-
vested, counted, and 7 x 103 cells were added to the top of a Boyden chamber containing 8 μm
pores (Trevigen 3455-096-01) overlaid with extracellularmatrix (Trevigen 3455-096-K). The
cells were allowed to invade through the extracellularmatrix and pores toward a chemo-attrac-
tant (DMEM + 10% FBS) or culture medium (DMEM) for 24 hours. Cells were washed, rinsed
from the bottom of the chamber, and incubated with Calcein-AM (Trevigen, Inc., Gaithers-
burg, MD). Fluorescence was measured in a Molecular Devices SpectraMaxM5 plate reader
with 485 nm excitation, 538 nm emission, and a 530 nm cutoff filter. Percent invasion was cal-
culated by subtracting the average number of cells which invaded in the absence of a chemo-
attractant (DMEM) from the average number of cells which invaded toward a chemo-attrac-
tant (average of sextuplicates) and dividing by the number of viable cells plated per well.

3D Cell Culture Invasion “Top Assay”. Equal numbers of cells for each cell line (3 x 104

cells) were plated in duplicate wells of a 3D Culture Matrix™ BME Coated 96 Well Plate (Trevi-
gen, Inc. Gaithersburg,MD). Cellular self-organization on the extracellularmatrix was moni-
tored and imagedmicroscopically over a period of 12 days.

3D Spheroid Invasion “Embedded” Assay

Cell lines were harvested and resuspended in DMEM + 10% FBS + 1X Spheroid Formation
ECM (Trevigen, Inc., Cat No. 3500-096-01, Gaithersburg, MD). Equal numbers of cells for
each cell line (3 x 103 viable cells per 50 μl DMEM + 10% FBS + 1X Spheroid Formation ECM)
were plated in triplicate for each construct into a 3D Culture Qualified 96 Well Spheroid For-
mation Plate (Trevigen, Inc., Cat No. 3500-096-K, Gaithersburg,MD) and centrifuged at 200 x
g in a swinging bucket rotor (Model 5810R) for 3 minutes. Cells were incubated at 37°C, 5%
CO2 for 72 hours to promote spheroid formation (one spheroid per well). After 72 hours, the
96-well plate was cooled at 4°C for 15 minutes before adding 50 μl of Invasion Matrix (Trevi-
gen, Inc., Cat. No. 3500-096-03, Gaithersburg, MD). The 96-well plate was then transferred to
a 37°C incubator for 1 hour to promote gel formation before 100 μl of DMEM + 10% FBS were
overlaid. Cells were incubated at 37°C, 5% CO2 for 7 days and wells were microscopically
imaged each day. Images were analyzed with ImageJ software (National Institutes of Health,
Bethesda,MD, http://imagej.nih.gov/ij/) for total surface area (in pixels according to the manu-
facturer's instructions) to evaluate 3D cell culture invasion.

Drug Treatments and Refractility

5 x 103 cells from the three cell lines with loss of contact inhibition and theWT and G12V lines
were plated into six well tissue-culture treated plates. After 24 hours, mediumwas removed
and replaced with medium containing 1% DMSO (Sigma Aldrich, St. Louis, MO), 1% DMSO
containing trametinib (final concentrations 10 pM to 1 μM; GlaxoSmithKline, Brentford, UK),
or 1% DMSO containing LY294002 (final concentrations 500 pM to 50 μM; Eli Lilly,
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Indianapolis, IN). After 24 hours of drug treatment, cells were imaged using an EVOS FL
microscope in phase-contrast mode.

miRNA

Predictions of miRNA binding sites in the coding region of the KRAS gene were generated with
the SVM-based software tool, MiRPara [30].

Statistical Analysis

Statistical analyses for immunoblotting, Boyden chamber spheroid assays, and spheroid inva-
sion assays were performed in Microsoft Excel using the Student's t test assuming equal vari-
ances. Data were presented as mean values ± standard deviation. Confidence intervals were
denoted with one asterisk (p values<0.05), two asterisks (p values<0.01) or three asterisks (p
values<0.001) in the appropriate figures.

Supporting Information

S1 Fig. Predicted secondarystructure and free energy of synonymousmutant KRAS
mRNAs. (A) mRNA levels from droplet-digital PCR varied by less than two-fold among cells
transiently transfected with synonymous mutant constructs. (B) Global free energy and pre-
dicted secondary structure of synonymous mutant mRNAs. (C) Local free energy and pre-
dicted secondary structure of synonymous mutant mRNAs.
(TIF)

S2 Fig. Synonymous mutant cell lines exhibit altered PI3K andMAPK signaling pathways.
Synonymous mutant cell lines all have similar amounts of Akt, Mek, and Erk proteins, but
have altered phosphorylation states, as measured by pAkt (PI3K pathway), pMek (MAPK
pathway), and pErk (MAPK pathway) compared to wild-type cells, indicating changes to acti-
vation status. PI3K and MAPK signaling activation is similar at passage 2 (p02) and passage 10
(p10) as measured by pAkt and pErk.
(TIFF)

S3 Fig. Microscopic images from the colony forming assay. All the cell lines had distinct
microscopic morphologies during growth to and past confluence. The scale bars are 1000
microns.
(TIFF)

S4 Fig. Refractile appearance of cell lines was reversedwith a MEK inhibitor in a dose-
dependentmanner. Synonymous mutant cell lines that have lost contact inhibition have a
rounded, refractilemorphology. With increasing concentrations of trametinib, the cells revert
toward a flattened, spread out morphology characteristic of the wild-type cell line.
(TIF)

S5 Fig. Plasmid Construction for Cell Lines.Gateway cloning was employed to replace the
ccdB and CAT genes in pDest720 with a KRAS gene. Eleven different KRAS plasmids (WT,
G12V, 9 silent mutants) were generated, each containing a unique KRAS gene and a zeocin
resistance gene.
(TIFF)

S1 File. mRNA methods.Methods include mRNA quantification and structure prediction.
(DOCX)
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S1 Movie. Time lapse of a sheet of 180 T->C cells detaching from the culture vessel surface.
Frames were taken every 10 seconds for 2 minutes.
(AVI)

S1 Table. Primers used to introduce synonymousmutations in KRAS.
(TIF)

S2 Table. Synonymousmutations in KRAS from COSMIC references.
(TIF)

S3 Table. Conservationof third-position bases in glycine codons G12, G13, and G60 in
KRAS andHRAS.DNA sequence logos were constructed according to [45].
(TIFF)
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