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Abstract

Based on studies that extend back to the early 1900s, regression and stabilization of 

atherosclerosis in humans has gone from a concept to one that is achievable. Successful attempts 

at regression generally applied robust measures to improve plasma lipoprotein profiles. Possible 

mechanisms responsible for lesion shrinkage include decreased retention of atherogenic 

apolipoprotein B within the arterial wall, efflux of cholesterol and other toxic lipids from plaques, 

emigration of lesional foam cells out of the arterial wall, and influx of healthy phagocytes that 

remove necrotic debris as well as other components of the plaque. Currently available clinical 

agents, though, still fail to stop most cardiovascular events. For years, HDL has been considered 

the “good cholesterol.” Clinical intervention studies to causally link plasma HDL-C levels to 

decreased progression or to the regression of atherosclerotic plaques, are relatively few because of 

the lack of therapeutic agents to selectively and potently raise HDL-C. The negative results of 

studies that were performed have casted uncertainty as to the role HDL possesses in terms of 

atherosclerosis. It is becoming clearer, though, that HDL function rather than quantity is most 

crucial and therefore, discovering agents that enhance the quality of HDL should be the goal.
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PLAQUE REGRESSION-EVIDENCE FROM ANIMAL STUDIES

Regression of atherosclerosis-is it possible?

The idea that human atheromata can regress at all has met considerable resistance over the 

decades (1–3). Resistance to the idea of lesion regression has been due to the fact that 

advanced atheromata in humans and in animal models contain components that give an 
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impression of permanence, such as necrosis, calcification and fibrosis. Furthermore, 

numerous theories have been proposed to explain atherogenesis that included processes 

thought to be difficult, if not impossible, to reverse including injury (4–5), oxidation (6), and 

cellular transformations resembling carcinogenesis (7). In this review, data will be presented 

that demonstrate that changes in the plaque environment can stabilize and regress even 

advanced lesions.

In the 1920s, Anichkov and colleagues reported that switching cholesterol-fed rabbits to 

low-fat chow over a 2–3 year period resulted in arterial lesions becoming more fibrous with 

a reduced lipid content (8), which from a modern perspective suggests plaque stabilization 

(9–10). The first prospective, interventional study demonstrating substantial shrinkage of 

atherosclerotic lesions was performed in cholesterol-fed rabbits over fifty years ago (11). 

The dietary regimen raised total plasma cholesterol to approximately 26 mmol/l (~1,000 

mg/dl) and induced widespread lesions involving ~90% of the aorta. Animals received 

intravenous bolus injections of phosphatidylcholine (PC). Interestingly, after less than a 

week and a half of treatment, the remaining plaques were scattered and far less severe than 

initially, and three-quarters of arterial cholesterol stores had been removed. Williams and 

colleagues sought to determine the underlying mechanism of action (12–13). Initially, 

cholesterol-free PC liposomes remain intact in the circulation (14) and can mobilize 

cholesterol from tissues in vivo (14–17) by acting as high-capacity sinks into which 

endogenous HDL cholesterol shuttles lipid (12, 18–19).

The concept of regression gained support with a short-term study in squirrel monkeys by 

Maruffo and Portman (20), and more-extensive work by Armstrong and colleagues. The 

latter reported that advanced arterial lesions in cholesterol-fed Rhesus monkeys underwent 

shrinkage and remodeling during long-term follow-up when their diet was switched to low-

fat or linoleate-rich diets (21–22). Further work by Wissler and Vesselinovich as well as 

Malinow confirmed and extended these findings (8, 23). Armstrong summarized the findings 

by writing, “In the primate the answer is clear: all grades of induced lesions studied to date 

improve … the primate lesion shows amazing metabolic responsiveness: some extracellular 

as well as intracellular lipid is depleted, there is resolution of necrotic lesions, crystalline 

lipid tends to diminish slowly, and fibroplasia is eventually contained” (22). Later, a series of 

studies achieved shrinkage of atheromata in rabbits with injections of HDL or HDL-like 

apolipoprotein A-I (apoA-I) and PC disks (24–25) supporting the concept that removal of 

cholesterol from the plaque can allow healing.

Unlike humans, mice have a naturally high plasma HDL:LDL ratio, providing a strong 

intrinsic resistance to atherosclerosis. Drastic manipulations of plasma lipoproteins are 

required, therefore, to induce arterial lipoprotein accumulation and sequelae. Most mouse 

models of atherosclerosis are derived from two basic models: the apolipoprotein E (apoE)-

null (apoE−/−) mouse (26–27) and the LDL receptor-null (LDLR−/−) mouse (28). In these 

models, the normally low plasma apoB levels are increased to atherogenic levels by 

eliminating either a ligand (apoE−/−) or a receptor (LDLR−/−) for lipoprotein clearance. 

The ability of HDL-like particles to rapidly remodel plaques in mice was shown by infusion 

of apoA-IMilano/PC complexes, a variant of apolipoprotein A-I identified in individuals who 
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exhibit very low HDL cholesterol levels. Infusion of this complex reduced foam cell content 

in arterial lesions in apoE−/− mice within 48 hours (29).

Transplantation murine model of atherosclerosis regression

To further explore cellular and molecular mechanisms of atherosclerosis regression in 

murine models, new approaches to rapidly induce robust improvements in the plaque 

environment and trigger lesion remodeling and regression was necessary. This culminated in 

the development of a model involving the transplantation of a plaque-containing aortic 

segment from a (WD-fed) hyperlipidemic apoE−/− mouse (i.e. an extremely pro-atherogenic 

milieu consisting of high plasma apoB levels and low HDL-cholesterol levels), into a wild-

type recipient (i.e. rapidly normalizing the lipoprotein environment, which is sustainable 

indefinitely).

We found that transplanting early lesions (30–31) or advanced, complicated plaques into 

wild-type recipients substantially reduced foam cell content and increased the number of 

smooth muscle cells, particularly in the cap, which is consistent with plaque stabilization 

and regression (32–33). The loss of foam cells from early lesions was surprisingly rapid, 

with large decreases evident as early as three days post-transplantation (Figure 1) (30–31). 

With advanced lesions, all features regressed after nine weeks, including necrosis, 

cholesterol clefts and fibrosis (32–33). We found that the wild-type milieu provoked foam 

cells to display markers characteristic of both macrophages and, surprisingly, dendritic cells, 

which enabled emigration (30–31, 34).

Using laser microdissection to remove foam cells from regressing and non-regressing 

plaques (35–36), analyses revealed the presence of mRNA for CCR7 (31), chemokine (C-C 

motif) receptor 7, which is required for dendritic cell emigration (37). Injection of wild-type 

recipient animals with antibodies against the two CCR7 ligands, CCL19 and CCL21, 

inhibited the majority of foam cells from emigrating from the aortic transplant lesions—

establishing a functional role for CCR7 in regression (31). In addition, mRNA 

concentrations of several well-known proteins implicated in atherothrombosis, such as 

vascular cell adhesion protein-1 (VCAM-1), monocyte chemotactic protein 1 (MCP-1) and 

tissue factor, were determined to be decreased in foam cells during regression (31).

HDL AND PLAQUE REGRESSION

Epidemiologic studies have demonstrated that there exists a strong negative correlation 

between plasma HDL cholesterol (HDL-C) and the risk of cardiovascular disease (38–42). 

Recent insights have added to the potential mechanisms, which include the stimulation of 

reverse cholesterol transport (RCT) from foam cells in coronary plaques to the liver, 

protection of the endothelium (by activation of the eNOS pathway), and inhibition of LDL 

oxidation (3, 43–45).

HDL and Reverse Cholesterol Transport

Lipid-free apoAI and lipid poor pre-β-HDL particles are produced in the liver and intestine. 

Cholesterol becomes associated with these HDL particles, and is then esterified by lecithin-

cholesterol acyltransferase (LCAT). Cholesteryl ester (CE) moves to the developing core of 
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the HDL particles, which converts them to spheres and also allows their surfaces to accept 

more free cholesterol. In human plasma, there is a reciprocal exchange of HDL-CE for 

triglycerides carried on apoB-containing lipoproteins, which is mediated by cholesteryl ester 

transfer protein (CETP). At the same time, the HDL that is becoming enriched in 

triglycerides is a substrate for hepatic lipase. The CE are subsequently cleared by the liver 

when the apoB-lipoproteins undergo hepatic uptake through LDL-receptor dependent and 

independent mechanisms. The activities of CETP and hepatic lipase help to remodel HDL 

particles to become a preferred binding partner for scavenger receptor type BI (SR-BI), the 

major HDL receptor on hepatocytes. Hence, RCT can be considered a cycle in which 

acceptors of cholesterol are continuously regenerated to undertake their function of 

promoting cholesterol efflux from the peripheral tissues to the liver (Figure 2) (45–48).

Traditionally, the anti-atherogenic role of HDL has been attributed to the presence of apoAI. 

For example, transgenic mice with high plasma human apolipoprotein AI and HDL plasma 

levels were protected from development of fatty streak lesions when fed an atherogenic diet 

(49). Furthermore, overexpression of human apoAI in apoE−/− mice resulted in greatly 

retarded progression of atherosclerosis (50–51). While it is clear that HDL is a key player in 

RCT, it has important cellular partners. The ATP-binding cassette transporters ABCA-1 and 

ABCG-1 are increased by liver X receptor transcription factors, key regulators of cholesterol 

homeostasis (52–54). A single deficiency of ABCA-1 in mice results in a moderate increase 

in lesion development, and deficiency of ABCG-1 has no effect; however, combined 

deficiency resulted in markedly accelerated atherosclerosis (55). Double-knockout 

macrophages showed markedly defective cholesterol efflux to HDL and apoAI as well as 

increased inflammatory responses when treated with lipopolysaccharide (56) emphasizing 

the anti-atherogenic effects of these lipoproteins.

Beyond Reverse Cholesterol Transport

Endothelial dysfunction is one of the early hallmarks in the pathogenesis of atherosclerosis 

(57). It was shown that oxidized LDL-induced displacement of endothelial nitric oxide 

synthase (eNOS) from caveolae and impairment of NO production was prevented in the 

presence of HDL (58). It has also been demonstrated that the apoAI mimetics, L-4F and 

D-4F, protect endothelial cell function in mice by inhibiting native and oxidized LDL’s 

uncoupling of eNOS activity, thereby preventing superoxide production from overtaking that 

of NO (59). Independent of the ability to counteract adverse effects of LDL and oxidized 

LDL, it also has been shown that HDL promotes eNOS activation and NO release, resulting 

in vasorelaxation (60–61). Experiments in vivo that support a positive role for HDL in 

promoting endothelial health include a study in which carotid artery re-endothelialization 

following perivascular electric injury was diminished in apoAI-null mice, but was 

normalized by the restoration of apoAI (62–63). Furthermore, Theilmeier and colleagues 

showed that overexpression of human apoAI in apoE−/− mice reduced endothelial adhesion 

molecule expression and macrophage homing to the endothelium (64).

In addition to the studies on endothelium, a growing body of research suggests that HDL 

counteracts a number of the adverse effects of LDL oxidation. Current thinking attributes 

some of this protection to anti-oxidant properties of HDL, particularly related to its content 
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of α-tocopherol and other lipophilic anti-oxidants, as well as enzymes with antioxidant-like 

activities (platelet activating factor acetylhydrolase (PAF-AH) and paraoxonase (PON)). 

ApoAI, which possesses several methionine groups, may act directly as an anti-oxidant (45, 

65–66). Anti-oxidant effects would be expected to prevent the formation of lipid 

hydroperoxides (LOOX), oxidized cholesteryl esters, and oxidized phospholipids. The 

oxidized lipid species are generated in a process that requires the presence of “seeding 

molecules,”(e.g., hydroperoxyoctadecadienoic acid [HPODE]) as catalysts, which are 

generated by 12-lipoxygenase. In fact, HDL was demonstrated to limit the levels of these 

seeding molecules and to degrade them in an enzymatic process catalyzed by PON and PAF-

AH (65–69)

Pre-clinical Studies linking HDL and Atherosclerosis Regression

A series of studies achieved shrinkage of atheromata in hypercholesterolemic rabbits via 

injections of HDL (24) as well as demonstrating the anti-atherogenic effects of apoAI in 

cholesterol-fed rabbits (25). We used a model which allowed us to begin understanding the 

mechanism of atherosclerosis regression. At least three plasma parameters are changed in 

the transplantation model when regression was observed: (i) non-HDL levels decreased; (ii) 

HDL levels were restored from ~33% of normal to wild type levels; (iii) apoE was now 

present. For the purpose of this review, we will focus on the HDL change. To selectively test 

this as a regression factor, we adopted the transplant approach by using as recipients human 

apoAI transgenic/apoE−/− mice (hAI/EKO) (70) or apoAI−/− mice (71–72). Briefly, plaque-

bearing aortic arches from apoE−/− mice (low HDL-C, high non-HDL-C) were transplanted 

into recipient mice with differing levels of HDL-C and non-HDL-C: C57BL/6 mice (normal 

HDL-C, low non-HDL-C), apoAI−/− mice (low HDL-C, low non-HDL-C), or hAI/EKO 

mice (normal HDL-C, high non-HDL-C). Remarkably, despite persistent elevated non-HDL-

C in hAI/EKO recipients, plaque CD68+ cell content decreased by >50% by one week after 

transplantation, whereas there was little change in apoAI−/− recipient mice despite 

hypolipidemia. Interestingly, the decreased content of plaque CD68+ cells was associated 

with their emigration and induction of their chemokine receptor CCR7 (71). These data are 

consistent with a meta-analysis of clinical studies in which it was shown that atherosclerosis 

regression (assessed by intravascular ultrasound, IVUS) after LDL lowering was most likely 

to be achieved when HDL was also significantly increased (73).

The induction of CCR7 is likely related to changes in the sterol content of foam cells when 

they are placed in a regression environment, given that its promoter has a putative sterol 

regulatory element (SRE). This idea is in agreement with a report that demonstrated that 

loading THP-1 human monocytes with oxidized LDL suppresses the expression of this gene 

(74). Notably, we have found that statins, potent regulators of SRE-dependent transcription 

can induce CCR7 expression in vivo and promote regression via emigration of CD68+ cells 

in a CCR7 dependent manner (75).

Another aspect of interest has been the effect of HDL on the inflammatory state of CD68+ 

cells in plaques. A number of benefits from this can be envisioned such as a reduced 

production of monocyte attracting chemokines and plaque “healing” by macrophages 

prodded to become tissue re-modelers (M2 macrophages). There are multiple reasons for 

Feig et al. Page 5

Coron Artery Dis. Author manuscript; available in PMC 2017 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



HDL to have anti-inflammatory effects on plaques, including the anti-oxidant properties of 

its enzymatic and non-enzymatic components, the ability to remove normal and toxic lipid 

species from cells, and the dampening of TLR signaling by regulating plasma membrane 

cholesterol content (45, 56, 76). It is important to note that in CD68+ cells laser-captured 

from the plaques, normalization of HDL-C led to decreased expression of inflammatory 

factors and enrichment of markers of the M2 macrophage state (71, 77–78).

Cholesterol homeostasis has also recently been investigated with microRNAs (miRNA), 

which are small endogenous non–protein-coding RNAs that are posttranscriptional 

regulators of genes involved in physiological processes. MiR-33, an intronic miRNA located 

within the gene encoding sterol-regulatory element binding protein-2, inhibits hepatic 

expression of both ABCA-1 and ABCG-1, reducing HDL-C concentrations, as well as 

ABCA-1 expression in macrophages, thus resulting in decreased cholesterol efflux (79). The 

treated mice exhibited plaque regression (fewer macrophages and smaller intimal area). The 

therapeutic potential of miR-33 antagamirs to cause similar benefits in people was suggested 

by plasma levels of HDL being raised in treated non-human primates (80). Thus, antagonism 

of miR-33 may represent a novel approach to enhancing macrophage cholesterol efflux and 

raising HDL-C levels in the future.

EVIDENCE FROM CLINICAL STUDIES

Statins, HDL Infusions, Niacin and CETP Inhibitors

The first prospective, interventional study to demonstrate plaque regression in humans was 

in the mid-1960s, in which approximately 10% of patients (n = 31) treated with niacin 

showed improved femoral angiograms (81). Larger trials of lipid lowering have since shown 

angiographic evidence of regression; however, though statistically significant, the effects 

were surprisingly small, particularly in light of large reductions in clinical events (1–3, 82). 

This ‘angiographic paradox’ was resolved with the realization that lipid-rich, vulnerable 

plaques have a central role in acute coronary syndromes. A vulnerable plaque is 

characterized by being small, causing less than 50% occlusion, and being full of intracellular 

and extracellular lipid, rich in macrophages and tissue factor, with low concentrations of 

smooth muscle cells, and with only a thin fibrous cap under an intact endothelial layer (9–

10, 83–84). Rupture of a vulnerable plaque provokes the formation of a robust local clot, and 

hence vessel occlusion and acute infarction (57). Lipid lowering, which promoted 

measurable shrinkage of angiographically prominent but presumably stable lesions, probably 

had a greater impact on risk reduction by the remodeling and stabilization of small, rupture-

prone lesions (82, 84). Regression studies in animal models strongly support this 

interpretation, given that macrophage content, a key hallmark of instability, can be rapidly 

corrected with robust improvements in the plaque lipoprotein environment.

In order to track potentially more important changes in plaque composition, to avoid the 

confounding effects of lesion remodeling on lumen size, arterial wall imaging is required. 

Recent human trials have switched from quantitative angiography, which images only the 

vascular lumen, to techniques that image plaque calcium (e.g. electron-beam CT) and plaque 

volume (e.g. intravascular ultrasonography; IVUS). A retrospective analysis found that 

aggressive LDL-cholesterol lowering with statins correlated significantly with reduction in 

Feig et al. Page 6

Coron Artery Dis. Author manuscript; available in PMC 2017 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



coronary calcium-volume score by electron-beam CT, indicating that coronary artery 

calcifications can shrink (85). In the Reversal of Atherosclerosis with Aggressive Lipid 

Lowering (REVERSAL) study (86) and A Study to Evaluate the Effect of Rosuvastatin on 

Intravascular Ultrasound-Derived Coronary Atheroma Burden (ASTEROID) (87), patients 

with acute coronary syndromes were treated for over a year with high-dose statins and 

evaluated by IVUS. The REVERSAL trial compared the high-dose statin therapy with a 

conventional, less-potent statin regimen. During 18 months of treatment, patients treated 

with the conventional regimen exhibited statistically significant progression of atheroma 

volume (+2.7%), despite achieving average LDL-cholesterol levels of 2.8 mmol/l (110 

mg/dl) and, therefore, meeting the then-current Adult Treatment Panel III goal. By contrast, 

the high-dose statin group experienced no significant progression of atheroma volume 

(average LDL-cholesterol level, 2 mmol/l [79 mg/dl]). Importantly, analysis across the 

treatment groups found that LDL reduction exceeding approximately 50% was associated 

with a decrease in atheroma volume. In ASTEROID, all patients received the same high-

dose therapy for 24 months, and IVUS findings pretreatment and posttreatment were 

compared. During treatment, LDL cholesterol dropped to 1.6 mmol/l (60.8 mg/dl), and 

atheroma volume shrank by a median of 6.8%. Thus, in both of these studies, extensive 

LDL-cholesterol lowering for extended periods caused established plaques to shrink. The 

greater efficacy seen in ASTEROID could be explained by the lower median LDL-

cholesterol level, but also by the longer treatment period and higher HDL cholesterol levels 

achieved than those in REVERSAL. We believe that these reductions in plaque volume are 

accompanied by favorable alterations in plaque biology, a theory which is further supported 

by evidence that robust plasma LDL lowering to 1.0–1.6 mmol/l or below (≤40–60 mg/dl) is 

associated with further reductions in cardiovascular events (88).

In addition to the studies reviewed above, there are a limited number of human studies in 

which HDL levels have been manipulated by infusion, and the effects on plaques assessed. 

In the first (89), patients at high risk for cardiovascular disease were infused with either an 

artificial form of HDL (apoAI milano/phospholipid complexes) or saline (placebo) once a 

week for 5 weeks. By intravascular ultrasound (IVUS), there was a significant reduction in 

atheroma volume (−4.2%) in the combined (high and low dose) treatment group, though no 

dose response was observed of a higher vs. lower dose of the artificial HDL. There was no 

significant difference in atheroma volume compared to the placebo group, but the study was 

not powered for a direct comparison. In the second infusion study (90), high-risk patients 

received four weekly infusions with reconstituted HDL (rHDL containing wild type apoAI) 

or saline. Similar to the previous study, there was a significant decrease in atheroma volume 

(−3.4%) (assessed by IVUS) after treatment with rHDL compared to baseline, but not 

compared to placebo (which the study was not powered for). However, the rHDL group had 

statistically significant improvements in plaque characterization index and in a coronary 

stenosis score on quantitative coronary angiography compared to the placebo group. In the 

third infusion trial (91), a single dose of reconstituted human HDL was infused into patients 

undergoing femoral atherectomies, with the procedure performed 5–7 days later. Compared 

to the control group (receiving saline solution), in the excised plaque samples in the HDL 

infusion group, macrophage activation state (i.e., VCAM-1 expression) as well as cell size 

(i.e., lipid content) were diminished.
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There are also a number of other drug studies in which effects on plaques were ascribed to 

the raising of HDL levels. This includes the VA-HIT study, in which coronary events were 

reduced by 11% with gemfibrozil for every 5-mg/dL increase in HDL-C (92). In another 

series of studies (“ARBITER”(93–96)), high-risk patients were placed on either statins or 

statins plus niacin. Over a 18–24 month observation periods, carotid intimal-medial 

thickness (cIMT) measurements were obtained as a surrogate for coronary artery plaque 

burden. When niacin was part of the treatment, HDL-C levels were increased (by 18.4%), 

and the authors attributed the improvement in cIMT particularly to this change. It is 

important to note that niacin does more than just raise HDL-C levels; it also decreases 

plasma triglyceride levels, makes LDL size increase, and possesses anti-inflammatory 

properties all of which have the potential to limit plaque progression (97–99). These 

pleiotropic effects obviously confound the interpretation of both the ARBITER and another 

statin-niacin clinical trial- the HATS study (100). In the latter study, the addition of niacin to 

statin treatment resulted not only in a reduction in coronary artery stenosis, but also in 

events. The encouraging results with niacin, however, were recently called into question by 

the early termination of the AIM-HIGH study, which failed to show a benefit in the 

treatment group (101). This study has been criticized due to the fact that both the treatment 

and the control groups received intense statin therapy, making additional benefits harder to 

detect, as well as for the fact that the patients received a rather low dose of niacin. The lack 

of efficacy was also observed in the Heart Protection Study 2- Treatment of HDL to Reduce 

the Incidence of Vascular Events [HPS2-Thrive] (102) which has brought into question the 

clinical value of niacin.

Recently, cholesteryl ester transfer protein (CETP) inhibitors have been investigated as 

pharmacological agents to raise HDL levels. Surprisingly, torcetrapib, the first CETP 

inhibitor tested in a clinical trial, increased the all-cause mortality and cardiovascular events, 

which led to the premature ending of the ILLUMINATE trial (103). Subsequent studies 

indicated that the observed off-target effects of torcetrapib (increased blood pressure and low 

serum potassium by stimulation of aldosterone production) were rather molecule specific, 

unrelated to CETP inhibition and thereby might have overshadowed the beneficial effects of 

the raised HDL-C levels. Interestingly, posthoc analysis of ILLUMINATE showed that 

subjects with greater increases of HDL-C or apoAI levels had a lower rate of major 

cardiovascular events within the torcetrapib group (104). Despite the general failure of 

torcetrapib, in the posthoc analysis of the ILLUSTRATE (Investigation of Lipid Level 

Management Using Coronary Ultrasound to Assess Reduction of Atherosclerosis by CETP 

Inhibition and HDL Elevation) study, regression of coronary atherosclerosis (as assessed by 

IVUS) was observed in patients who achieved the highest HDL-C levels with torcetrapib 

treatment (105). In vitro studies showed an improved functionality of HDL-C particles under 

CETP inhibition, as HDL-C isolated from patients treated with torcetrapib and anacetrapib 

exhibited an increased ability to promote cholesterol efflux from macrophages (106–107). 

Indeed, the CETP inhibitors anacetrapib, dalcetrapib and evacetrapib increase HDL-C levels 

between 30–138%, and have not shown the off-target effects of torcetrapib in clinical phase 

II trials, confirming the premise of a non-class related toxicity of torcetrapib (108–111) 

Thus, raising HDL-C by CETP inhibition or modulation remains a potential therapeutic 

approach for atherosclerotic cardiovascular disease.
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Large clinical outcome trials were initiated for dalcetrapib (dal-OUTCOMES) and 

anacetrapib (REVEAL) including a total of approximately 45,000 patients. Surprisingly, in 

May 2012, the sponsor stopped the dal-HEART program for dalcetrapib after an interim 

analysis of dal-OUTCOMES due to a lack of clinically meaningful efficacy. The failure of 

dal-OUTCOMES might have been a result of the rather moderate increases in HDL-C levels 

(30%) and minor impact on LDL-C levels induced by dalcetrapib, a fate that does not 

necessarily apply for anacetrapib which has been shown to increase HDL-C levels by 138% 

accompanied by more robust reductions in LDL-C levels (112). Whether the failure of dal-

OUTCOMES challenges the benefits of raising HDL-C, in general, or rather the underlying 

mechanisms of how HDL-C is to be raised will be answered by the phase III study with 

anacetrapib which is expected over the next few years.

CHALLENGES TO THE HDL HYPOTHESIS

The HDL hypothesis states that a reduction of plasma HDL concentration may accelerate the 

development of atherosclerosis by impairing the clearance of cholesterol from the arterial 

wall. It implies that the efficiency of reverse cholesterol transport is partly dependent on the 

concentration of HDL and individuals with low HDL have a greater risk of CAD than 

individuals with high HDL levels. In a recent study, Voight and colleagues, using Mendelian 

randomization, tested the hypothesis that increased plasma HDL-C is protective for 

myocardial infarction (MI) by examining the relationship between genetic variations 

associated with elevated levels of plasma HDL-C and the risk of MI (113). The loss of 

function single nucleotide polymorphism (SNP) in the endothelial lipase gene (LIPG 

Asn396Ser) that is associated with an elevated mean plasma level of HDL-C (but no change 

in the plasma level of low-density lipoprotein cholesterol [LDL-C] or triglycerides) was 

evaluated in ~21,000 MI cases and ~95,000 controls. Interestingly, no significant effect on 

risk of MI was observed. The authors concluded that some genetic mechanisms that raise 

plasma HDL-C does not necessarily lower the risk of MI consistent with recent studies in 

which the plasma level of HDL-C was raised pharmacologically (i.e., AIM-HIGH (101), 

ILLUMINATE (103), dal-OUTCOMES (114–115), and HPS2-THRIVE (102)) without 

evidence that there were any reductions in cardiovascular events.

Although there are some who feel that the above data indicates that HDL should no longer 

be a therapeutic target, the above developments only emphasize that HDL biology is 

complex. In fact, they have led to a reshaping of the HDL hypothesis to focus on HDL 

function (i.e. efflux capacity). It should be mentioned that studies have indicated that HDL 

cholesterol efflux capacity is a significant inverse predictor of coronary heart disease even 

after adjusting for HDL-C concentrations (116). In other words, it is not HDL cholesterol 

itself that has a causal relation to atheroprotection, but rather HDL function, which cannot be 

reliably estimated through the simple measurement of HDL-C. This concept has recently 

been reinforced by a recent report that demonstrated that cholesterol efflux capacity was 

inversely associated with the incidence of cardiovascular events in a population-based cohort 

(117). That improvements in HDL function and HDL-C concentrations are dissociated has 

been demonstrated in the dal-ACUTE study where the effect of dalcetrapib on HDL efflux 

activity was disproportionately lower than on HDL-C levels (118).
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FUTURE DIRECTIONS

It is quite clear that HDL-C does not provide all the pertinent information. Studies such as 

VA-HIT (119), MESA (120), HPS (121), and JUPITER (122) have shown that HDL particle 

number is a stronger, more independent predictor of CAD risk than HDL-C. In the Dallas 

Heart Study (117), though, cholesterol efflux capacity in macropages was an independent 

predictor of incident cardiovascular events, and unrelated to HDL particle number indicating 

that the measure of HDL function continues to have no true surrogate at this time. Although 

there are still many unanswered questions, one thing is clear-that the development of HDL 

targeted therapeutics should still be a goal. The key, however, is that the focus should be on 

promoting aspects of the reverse cholesterol transport pathway rather than on raising HDL-C 

(123). Infusion of apoAI containing recombinant HDL particles or of lipid-poor HDL 

particles is an approach that continues to progress in the clinic (89, 103, 124). There is 

substantial enthusiasm for this approach, which is the closest in concept to the HDL-targeted 

approaches that have been most successful in animal models. In addition, a therapeutic 

approach targeted towards upregulating efflux pathways in macrophages could be 

atheroprotective (125). For example, liver X receptor agonists (which can lead to 

upregulation of ABCA-1 and ABCG-1) have been shown to promote macrophage reverse 

cholesterol transport and reduce or even regress atherosclerosis in animals (126–130). The 

limitation to its use is increased lipogenesis which can be overcome by the use of selective 

agonists as there are two known isoforms, alpha and beta. Finally, another approach being 

explored is antagonism of miR-33 (which would lead to enhanced cholesterol efflux) (79–

80), a target that was described earlier.

CONCLUSION

Regression of atherosclerosis is characterized by broad changes in the plaque macrophage 

transcriptome with preferential expression of genes that reduce cellular adhesion, enhance 

cellular motility, and overall act to suppress inflammation (78). Plaque regression is actually 

a coordinated set of complex molecular events (Figure 3). To date, the animal and human 

studies that achieved plaque regression required reductions in plasma levels of apoB. 

Unfortunately, most patients who take statins, for example, will not achieve and sustain the 

dramatically low LDL-cholesterol levels seen in chow-fed nonhuman primates. The PCSK9 

inhibitors, however, seem to be promising (131–132). In contrast to the intervention studies 

that have directly established LDL as a causative factor in atherosclerosis progression, 

several recent pharmacological and genetic studies in humans have failed to demonstrate that 

increased plasma levels of HDL-C resulted in decreased cardiovascular disease risk, giving 

rise to a controversy regarding whether HDL is even as protective as assumed. However, 

based on the pre-clinical and human HDL studies to date, a general pattern emerges that 

links HDL to beneficial effects on the plaque (Table 1, Figure 4). The evidence shows that 

HDL can indeed promote the regression when the levels of functional particles are increased 

suggesting that the recent negative clinical trials should not eliminate HDL from 

consideration as an atheroprotective agent. Indeed the plaque and its components are 

dynamic-atherosclerosis regression and the beneficial roles of HDL are not myths at all.
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Figure 1. Regression of plaques in the mouse transplantation model
ApoE−/− mice were fed a Western diet for 16 weeks to develop advanced atherosclerosis. 

Aortic arches from these mice were either harvested and analyzed by histochemical 

methods, or they were transplanted into apoE−/− (‘progression’) or wild-type (‘regression’) 

recipient mice. Three or seven days later, the same analyses were performed. Shown are the 

histochemical results for the foam-cell marker CD68 (red). The pictures show the 

immunostaining of representative aortic lesions in cross section. The virtual absence of foam 

cells can be seen in the ‘regression’ group. In contrast with the ‘regression’ results, the 

‘progression’ group showed persistence of foam cells. (Adapted from Trogan E, Feig JE et 

al. PNAS 2006;103:3781–3786).
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Figure 2. Reverse cholesterol transport and HDL metabolism
Cholesterol from the periphery (macrophage) is effluxed and participates in the maturation 

of HDL ultimately returning to the liver and beginning the cycle again.
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Figure 3. HDL promotes atherosclerosis regression
HDL can inhibit processes 1–3 (red arrows) and promotes 4–6 (green arrows). Macrophage 

egress can occur through the upregulation of CCR7 via activation of the SREBP pathway.
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Figure 4. The Many Hats of HDL
HDL has many functions including promoting reverse cholesterol transport, endothelial 

protection, possessing anti-oxidant as well as anti-inflammatory properties, limiting 

progression of atherosclerosis, and importantly can cause regression of lesions.
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