
Habitat Suitability Model for the Distribution of Ixodes scapularis 
(Acari: Ixodidae) in Minnesota

T. L. Johnson1,2, J. K. H. Bjork3, D. F. Neitzel3, F. M. Dorr3, E. K. Schiffman3, and R. J. Eisen1

J. K. H. Bjork: jenna.bjork@state.mn.us; D. F. Neitzel: david.neitzel@state.mn.us; F. M. Dorr: franny.dorr@state.mn.us; E. 
K. Schiffman: elizabeth.schiffman@state.mn.us; R. J. Eisen: dyn2@cdc.gov
1Bacterial Diseases Branch, Division of Vector-borne Diseases, National Center for Emerging and 
Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Rd, 
Fort Collins, CO 80521

3Minnesota Department of Health, 625 Robert St N, St. Paul, MN 55164

Abstract

Ixodes scapularis Say, the black-legged tick, is the primary vector in the eastern United States of 

several pathogens causing human diseases including Lyme disease, anaplasmosis, and babesiosis. 

Over the past two decades, I. scapularis-borne diseases have increased in incidence as well as 

geographic distribution. Lyme disease exists in two major foci in the United States, one 

encompassing northeastern states and the other in the Upper Midwest. Minnesota represents a 

state with an appreciable increase in counties reporting I. scapularis-borne illnesses, suggesting 

geographic expansion of vector populations in recent years. Recent tick distribution records 

support this assumption. Here, we used those records to create a fine resolution, subcounty-level 

distribution model for I. scapularis using variable response curves in addition to tests of variable 

importance. The model identified 19% of Minnesota as potentially suitable for establishment of 

the tick and indicated with high accuracy (AUC = 0.863) that the distribution is driven by land 

cover type, summer precipitation, maximum summer temperatures, and annual temperature 

variation. We provide updated records of established populations near the northwestern species 

range limit and present a model that increases our understanding of the potential distribution of I. 
scapularis in Minnesota.
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The black-legged tick, Ixodes scapularis Say, is the primary vector to humans in the eastern 

United States of several human pathogens including Borrelia burgdorferi (Lyme disease), 

Anaplasma phagocytophilum (anaplasmosis), Babesia microti (babesiosis), and the deer tick 

lineage of Powassan encephalitis virus (Dennis et al. 1998, Homer et al. 2000, Piesman and 

Gern 2004, Brown et al. 2005, Goodman 2005, Ebel 2010). Over the past two decades in the 

United States, the incidence of I. scapularis-borne diseases has increased, and the geographic 

distribution of cases has expanded (Centers for Disease Control and Prevention [CDC] 
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2014). Annual case counts of Lyme disease, the most commonly reported vector-borne 

disease in the United States, increased 101% from 1992 to 2006 (Bacon et al. 2008). While 

the mean number of counties reporting at least one Lyme disease case remained relatively 

stable in several states in the Northeast and mid-Atlantic regions (Connecticut, Delaware, 

Massachusetts, Maryland, New Jersey, and Rhode Island) from 1992 to 2006, during the 

same time period the percentage of counties reporting at least one case increased in other 

regions, particularly in the Upper Midwest. The greatest increase was in Minnesota, where 

the percentage of counties reporting at least one human case increased from 33% in 1992 to 

74% in 2006 (Bacon et al. 2008). From 1996 to 2011, the number of reported I. scapularis-

borne disease cases (including Lyme disease, anaplasmosis, and babesiosis) increased by 

742% in Minnesota, which was coupled with an expanded geographic distribution of 

reported cases throughout the state (Robinson et al. 2015).

Although some of these national and regional changes could have occurred as a result of 

changing surveillance, increased awareness, and reporting inconsistencies, a true increase in 

the number of infections is likely. Increased rates of transmission to humans is possible as a 

result of I. scapularis range expansion, increased tick densities in some localities, increased 

encounter rates between ticks and humans, and possibly an increase in pathogen-infected 

ticks (Mather et al. 1996, Stafford et al. 1998, Bacon et al. 2008, Diuk-Wasser et al. 2012, 

Pepin et al. 2012, Robinson et al. 2015). At the national scale, the distribution of Lyme 

disease cases is closely correlated with the distribution of host-seeking nymphal I. scapularis 
(Diuk-Wasser et al. 2010). Ixodes-scapularis is distributed throughout much of the eastern, 

central, and Upper Midwestern United States, but the density of host-seeking nymphs, as 

assessed by drag sampling, is greatest in coastal states in the Northeast and Mid-Atlantic and 

in the Upper Midwest, particularly in Wisconsin and eastern-central Minnesota (Dennis et 

al. 1998, Diuk-Wasser et al. 2010).

Several previous studies have estimated the distribution of I. scapularis in Minnesota as part 

of efforts to map the species’ distribution at a national spatial scale (Dennis et al. 1998; 

Estrada-Peña 2002; Brownstein et al. 2003, 2005; Diuk-Wasser et al. 2006, 2010, 2012). The 

earlier distribution models (Estrada-Peña 2002, Brownstein et al. 2003, 2005) were based on 

species records at the county scale that were collected through literature review and a survey 

of acarologists and public heath entomologists (Dennis et al. 1998). Later studies (Diuk-

Wasser et al. 2006, 2010, 2012) conducted systematic sampling of host-seeking nymphs at 

304 sites east of the 100th meridian with 26 sites in Minnesota and used these data to 

identify ecological correlates of acarological risk for Lyme disease (density of host-seeking 

I. scapularis nymphs and infection rates with B. burgdorferi in these nymphs). Recognizing 

that the data used to inform the existing models were collected nearly a decade ago, that 

Lyme disease incidence has continued to increase and I. scapularis distribution has expanded 

in Minnesota since that time (Robinson 2015), we developed a species distribution model 

utilizing 25 unique georeferenced established populations (as per Dennis et al. 1998) of I. 
scapularis collected from 18 counties in Minnesota from 2005 through 2014. In an attempt 

to identify areas at a subcounty scale that are suitable for I. scapularis to establish, high 

resolution (<1 km) predictive variables were used to develop the species distribution model. 

The model presented here increases our understanding of the potential distribution of I. 
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scapularis in Minnesota and presence data used to inform the model provide updated records 

of established populations near the northwestern species range limit.

Materials and Methods

Tick Occurrence Data

Tick occurrence data were compiled from field collections of immature and adult I. 
scapularis made by the Minnesota Department of Health (MDH) Vector-borne Diseases Unit 

between 2005 and 2014. The majority of tick location records were obtained by dragging a 

modified 1-m2 white canvas cloth with weighted fingers over the ground in order to collect 

host-seeking I. scapularis. Locations were chosen based on the known endemic areas of I. 
scapularis as well as locations near the periphery of endemic areas. Specific sampling sites 

were selected based on appropriate I. scapularis habitat (i.e. wooded and brushy mesic areas 

with at least 50% canopy coverage), land manager recommendations, and ease of access. A 

small number of tick location records used in the development of this model were obtained 

via an additional effort with the Minnesota Department of Natural Resources (DNR). For 

this particular effort, DNR forestry staff submitted any ticks they found on themselves while 

performing fieldwork in wooded areas to MDH along with specific location data. All ticks 

collected in the field, either on the drag cloth or the person, were labeled with the date and 

location of collection and identified according to genus and species, life stage, and sex (if 

adult) at MDH. Georeferenced sampling locations and associated records of the number and 

life stages of I. scapularis were provided by the MDH and were used to inform the model of 

existing I. scapularis habitat. Only records of established tick populations, i.e. at least two 

life stages or at least six ticks of any one life stage (Dennis et al. 1998), were included as 

presence locations. All data were projected to Albers Equal Area North American Datum 

1983 (NAD83). There were a total of 122 georeferenced locations from which ticks were 

collected across the state; however, these data were highly spatially clustered. To avoid 

pseudoreplication, we used nearest neighbor statistics in ArcMap 10.3 (ESRI, Redlands, 

CA) to reduce clustering and produce a random distribution of presence locations across the 

state. Among the full dataset, there were 25 main clusters of established I. scapularis 
populations, from which a single randomly chosen presence point was selected. Nearest 

neighbor analysis was performed and the z-score and associated p-value were calculated to 

ensure a random distribution was achieved.

Environmental Data

We sought to identify areas that are ecologically conducive to the establishment of I. 
scapularis populations in Minnesota using both landscape and climatic variables 

(covariates). We began with 69 variables including elevation (National Elevation Dataset, 

USGS; http://ned.usgs.gov/; accessed February 2014), land cover (US Geological Service 

Gap Analysis Program (GAP); http://gapanalysis.usgs.gov/; accessed February 2014), and 

67 bioclimatic variables obtained from the WorldClim database (Hijmans et al. 2005; http://

worldclim.org/current; accessed April 2014). To limit the number of land cover classes, the 

GAP National Vegetation Classification Standard, v. 2, formation classification 

(NVC_FORM) was used. Formation is a third-level classification that describes 

macroclimate conditions that are modified by altitude, seasonality of precipitation, 
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substrates, and hydrologic conditions (Whittaker 1975, Lincoln et al. 1998, Federal 

Geographic Data 2008). There are 11 total NVC_FORM classes in Minnesota, including 

“open water,” which was masked out of the model.

We chose to eliminate correlated variables to decrease model complexity and increase the 

interpretability of model output (Merow et al. 2013). We identified correlated variables 

(Pearson’s r ≥ |0. 80|), using the Band Collection Statistics Tool in ArcMap 10.3 (ESRI, 

Redlands, CA), which calculates the Pearson’s correlation coefficient (r) between all pairs of 

variables. High levels of correlation were noted throughout the WorldClim dataset, which 

included the following five data categories: minimum, mean, and maximum monthly 

temperatures, average monthly precipitation, and BIOCLIM 1–19 which captures annual 

extremes in temperature and precipitation. A single variable was chosen from each of the 

five aforementioned categories, resulting in a set of seven uncorrelated climatic variables 

(representing all variables in the WorldClim dataset). These were combined with elevation 

and land cover to model the distribution of I. scapularis in Minnesota. All environmental 

layers were projected to Albers NAD 1983, resampled to 30 m to align with the spatial 

resolution of the land cover layer, and all layers were clipped to the extent of the Minnesota 

state boundary.

Species Distribution Models

We modeled the potential distribution of suitable habitat for I. scapularis in Minnesota using 

Maxent version 3.3.3k (http://www.cs.princeton.edu/schapire/maxent/, accessed April, 

2014). Maxent is a machine learning algorithm based on the principle of maximum entropy 

and uses environmental data at occurrence and background locations to predict the 

distribution of a species across a landscape (Phillips et al. 2006) and routinely out-performs 

other presence-only models (Elith et al. 2006, Merow et al. 2013). Maxent identifies a 

probability distribution across the landscape that is constrained by parameter values at 

occurrence locations. This constraint ensures that the mean of each variable used in the 

model is close to the mean of the variable over occurrence sites, and a regularization 

parameter prevents overfitting to occurrence locations (Phillips et al. 2006).

We developed a “full model” including all nine ecological variables (Table 1) and all default 

Maxent settings. Based on output from the full model, we reduced the number of variables 

by eliminating variables not contributing to model fit and changed the features setting to 

only include hinge features. Hinge features are capable of modeling piecewise linear 

responses to variables and allow for more simple and succinct approximations of the 

response to environmental variables and have been shown to substantially improve model 

performance and smooth the fit to the data, thus simplifying the fitted features (Phillips and 

Dudík 2008; Elith et al. 2010, 2011). Hinge features fit the data similar to a generalized 

additive model with nonlinear fitted functions (Elith et al. 2011). Tenfold cross validation 

was used ensuring that all data points were utilized to train and test the model fit.

Final model fit was assessed using the AUCtest statistic. An AUC was calculated for each of 

the 10 models and represents the probability that a random presence point will be ranked 

above a randomly chosen background site (Phillips et al. 2006). Spatially autocorrelated data 

can artificially inflate AUC scores, especially when performing cross-validation (Hijmans 
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2012); therefore, it was important to remove correlation among presence points prior to 

modeling, as described above. Variable contribution was assessed using permutation 

importance and jackknife tests. Permutation importance was determined by randomly 

permuting the values of each variable among the presence and background training points 

and measuring the resulting decrease in training AUC. Values were normalized to 

percentages; a large decrease indicated that the model relied heavily on that variable. 

Jackknife tests evaluate and compare AUC values of the model utilizing all variables, with 

models created using only a single variable in turn and models leaving out one variable in 

turn. To further investigate the influence of ecological variables, we produced response 

curves to characterize the effect of each variable on the logistic probability of suitability.

The probability of suitability was estimated across the state of Minnesota. We used the 10th 

percentile logistic training threshold as the ROC cutoff value to create a binary suitability 

map. The 10th percentile logistic training threshold is a conservative threshold value 

determined by the Maxent software that assumes that 10% of the presence data may be 

prone to errors, thus, using only 90% of the training data to determine the final distribution 

of suitable habitat (Raes et al. 2009). We chose this conservative measure because the 

presence data were collected over several years and by multiple collectors (Raes et al. 2009). 

To visualize the geographic distribution of predicted suitability, we produced a binary raster 

representing areas with values greater (suitable) or less than (unsuitable) the 10th percentile 

logistic training threshold.

Results

Tick occurrence data for established I. scapularis populations revealed 122 locations with 

established populations; 25 of which were independent locations used to model the potential 

distribution of I. scapularis in Minnesota (Fig. 1). These 25 presence points were randomly 

distributed across the state as indicated by a z-score = −1.624 and a p-value = 0.104. The 

sites were distributed across 15 counties and four land cover types, with the majority (52%) 

classified in cool temperate forest habitat, while lowland and montane boreal forest 

accounted for 28% of occurrence points (Table 2). The potential distribution of I. scapularis 
in Minnesota was based on land cover, elevation, and five uncorrelated BioClim variables 

(Table 2). The mean AUCtest for the 10 replicate models was 0.86 (s.d. = 0.05), which 

represents the probability that a randomly chosen presence site is ranked above a random 

background site. In total, 19.3% of Minnesota was classified as suitable habitat for I. 
scapularis (Fig. 1). We further tested model performance by using the remaining 97 presence 

locations and show an overall model sensitivity of 79.5%.

Seven variables contributed to model fit (Table 3). However, land cover (GAP) 

overwhelmingly had the most influence on the model, having a permutation importance of 

almost 80 (Table 3). Other variables, including the maximum temperature during the 

warmest month, precipitation of the wettest quarter, and annual temperature range, had the 

next highest permutation importance (Table 3). In Minnesota, July is typically the warmest 

month while the warmest and coldest quarters correspond with June through August and 

December through February, respectively. Jackknife tests of variable importance showed 

comparable results to the permutation importance findings and indicated that land cover 
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alone contained the most useful information. That is, it produced the highest gain in AUC 

when used in the model alone. Eliminating this variable from the model caused the largest 

drop in AUC because it contained the most information that isn’t present in other variables 

(Fig. 2). Both summer precipitation and annual temperature range contributed a large 

amount of unique information when used as single variables in the model. Eliminating the 

aforementioned variables from the model caused the third highest drop in AUC, indicating 

some unique information is contained within these variables (Fig. 2). Maximum temperature 

during the warmest month by itself did not provide a good fit to the data, but exclusion of 

this variable from the model resulted in the second largest drop in AUC. Jackknife results of 

the remaining variables showed minimal effects of removing each one in turn (Fig. 2).

Response curves were produced in Maxent, with each curve representing a model created 

using individual variables. The plots characterize the dependence of the predicted suitability 

on each variable as well as dependencies induced by underlying correlations between the 

selected variable and other variables. Although we removed correlated climate variables, we 

did not identify correlations between land cover and other variables; therefore, it was 

important to consider these effects when interpreting results. Although the cool temperate 

forest and temperate grassland, meadow, and shrubland categories had the highest logistic 

probability of suitability (Fig. 1), greater than 50% of both input and predicted points were 

classified as cool temperate forests while less than six percent of input and predicted points 

were classified as temperate grassland, meadow, and shrubland (Table 2). The predicted I. 
scapularis distribution was composed of 10 land cover types (Table 2); however, the majority 

(91.5%) of the distribution was predicted to occur in three types of forest containing 

deciduous hardwood species including maple, basswood, oak, and aspen (Table 4). The 

response curve for summer precipitation exhibits a threshold of 28 cm, below which it 

appears there is not enough moisture to support I. scapularis (Fig. 3B). Areas of the state 

with annual temperature ranges between 39°C and 42°C have the highest probability of 

suitability (Fig. 3C). Overall, the highest probability of suitability occurred when the 

maximum temperature of the warmest month is between 24.0–28.5°C (Fig. 3D). The values 

for the maximum temperature of the warmest month for input and predicted points range 

from 23.6–28.8°C and 21.8–29.9°C, respectively.

Discussion

Based on updated tick distribution records, we created a fine resolution, subcounty-level 

distribution model for I. scapularis in Minnesota that expands on previous efforts to define 

the spatial distribution of I. scapularis in the eastern United States and Upper Midwest 

(Dennis et al. 1998; Estrada-Peña 2002; Diuk-Wasser et al. 2006, 2010). Our study, 

combined with results from Diuk-Wasser et al. (2006, 2010), reports the establishment of I. 
scapularis in 21 additional counties since county records were reviewed by Dennis et al. 

(1998). At that time only eight Minnesota counties were classified as established (greater 

than six individual ticks of a single life stage) and 13 were classified as reported, although it 

is likely that the actual distribution of I. scapularis was greater than what was officially 

documented through field efforts. Here, we classified 18 counties as having established I. 
scapularis populations, six of these were also classified as established by Diuk-Wasser et al. 

(2010). Three additional counties that were not included in our study were shown to be 
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established by Diuk-Wasser (2010). Many of these new establishment records are further 

north and west than the original distribution limits (Dennis et al. 1998). Notably, the report 

by Dennis et al. (1998) and our current study span roughly the 16-yr surveillance period in 

Minnesota that was reported by Robinson et al. (2015) in a study that described the 

northwesterly expansion of Lyme disease and anaplasmosis in Minnesota. Our findings 

support the notion that geographic expansion of I. scapularis-borne illnesses in Minnesota 

are driven by range expansion of the vector. The model presented here is concordant with 

Minnesota counties that pose the largest threat of I. scapularis-borne diseases, based on the 

average incidence (cases/100,000 population) of Lyme disease and human anaplasmosis 

cases reported to the MDH between 2007 and 2013 (Fig. 1). All counties classified as posing 

either high or moderate risk of disease were classified as having at least some suitable 

habitat to support I. scapularis populations. However, the model predicts some areas in 

northern and southern Minnesota to have potentially suitable habitat, yet I. scapularis-borne 

disease risk remains low in these areas. These may represent areas 1) with potentially 

suitable habitat that have yet to be colonized or are unable to be colonized by the tick, 2) 

where suitable tick habitat exists but where there is minimal human activity, or 3) where the 

prevalence of infection is low in ticks, perhaps owing to host community composition in 

these areas. Future studies are needed to determine causes for discordance between suitable 

I. scapularis distribution and the occurrence of I. scapularis-borne diseases.

In agreement with each of the existing models (Estrada-Peña 2002, Brownstein et al. 2003, 

Diuk-Wasser et al. 2010), our model predicts that the most suitable areas for I. scapularis 
include much of the eastern border with Wisconsin. Based on our model, the distribution 

radiates to the northwest across one half to two-thirds of Minnesota, a finding consistent 

with Diuk-Wasser et al. (2010), more broad in distribution than expected by Estrada-Pena 

(2002) and more limited in its western limit than predicted by Brownstein et al. (2003). 

Much of the area predicted to be suitable is dominated by cool temperate forests (Fig. 1B). 

Similar to our model, each of the other models predicted the northern tier of the state to be 

less suitable than the central portion (Estrada-Peña 2002, Brownstein et al. 2003, Diuk-

Wasser et al. 2010). Northern Minnesota is composed of a mix of boreal forest and limited 

temperate forest and is highly fragmented by open water or bog habitat (Fig. 1B). As a result 

of land cover and the lower temperatures characteristic in that part of the state, our model 

predicted limited suitability in the north. The model identifies some areas in north-central 

Minnesota, along the Canadian border, adjacent to reported locations of the acquisition of 

Lyme disease in Canada. However, the model does not predict suitability in north western 

Minnesota in an area adjacent to other risk areas in Canada (Ogden et al. 2015), suggesting 

that our model could be under-predicting in this area. The landscape of southern and western 

Minnesota is dominated by agriculture, but there are areas of aspen parkland and other 

upland forest that may provide suitable I. scapularis habitat in these areas. Our model 

predicted suitable habitat near the Iowa and South Dakota borders in the southwestern part 

of the state and near the Iowa border in southcentral Minnesota and extending up the 

Minnesota River Valley. These predictions are in agreement with the distribution put forth by 

Brownstein et al. (2003), however, in the model presented here the distribution of suitability 

is limited by land cover (e.g. temperate shrublands that may provide adequate habitat; Fig. 
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1B) and thus does not encompass large contiguous portions of Minnesota as shown in 

Brownstein et al. (2003).

The presence of forested habitat or indirect measures of habitat quality such as the 

Normalized Difference Vegetation Index (NDVI) are consistently important predictors of the 

I. scapularis distribution (Estrada-Peña 2002, Killilea et al. 2008, Diuk-Wasser et al. 2010, 

this study). Tick survival is highly dependent on access to a stable microclimate that exists 

beneath a layer of leaf litter on the floor of deciduous forests with closed canopies (Ginsberg 

and Ewing 1989, Ginsberg and Zhioua 1996, Ginsberg et al. 2004). Although a majority of 

suitable habitat is characterized as cool temperate forest (Table 2), other vegetation types 

were also predicted to be suitable for establishment of I. scapularis. For example, the 

majority of the potentially suitable habitat in western and southwestern Minnesota is 

classified as temperate grassland, meadow, and shrubland (Fig. 1B). Although the tick is not 

yet established in most southwestern counties, wooded habitat within these areas may 

represent potential areas for the spread and future establishment of I. scapularis in western 

Minnesota. Further, not all areas covered with deciduous forests were classified as suitable, 

likely because climatic conditions were not conducive to establishment. Adequate leaf litter 

and canopy cover help to stabilize the tick microclimate, but tick survival, metamorphosis, 

and reproduction are still largely influenced by temperature and humidity (Lindsay et al. 

1995, Ogden et al. 2014).

Climate variables, particularly minimum and maximum temperatures, have been recognized 

as limiting the distribution of I. scapularis (Estrada-eña 2002, Brownstein et al. 2003, Diuk-

Wasser et al. 2010). Here, we identified the maximum temperature during the warmest 

month as the most influential climate variable. The range for maximum temperature during 

the warmest month with the highest predicted suitability in Minnesota was 22.9 to 29.8°C, 

which includes most of the variability within the state (Table 2) but also represents the range 

for this variable found across the eastern United States where I. scapularis and human 

incidence of Lyme disease are well documented (e.g., primarily east of the 100th meridian 

and at latitudes greater than 35°N). While the effects of maximum temperature may both 

augment developmental and hatching rates or hinder overall survival and oviposition 

success, low minimum temperatures can limit tick distributions by directly killing them or 

inhibiting host-seeking activity (Vail and Smith 1998, Perret et al. 2000, Schulze et al. 2002, 

Ogden et al. 2004, Rand et al. 2004). However, minimum temperature contributed minimally 

to defining the distribution given by the Maxent model here. The areas of Minnesota 

predicted to be suitable for I. scapularis cover nearly the entire range of this variable (Table 

2), a result that might be expected when considering that winter precipitation and leaf litter 

both provide insulating effects during the coldest portion of the year (Lindsay et al. 1995, 

Lindgren and Gustafson 2001, Brunner et al. 2012). Sufficient summer precipitation is 

needed to offset heat-induced mortality as is indicated in the response curve showing a 

marked threshold below which conditions are unsuitable for I. scapularis (Fig. 2). Areas in 

southern and western Minnesota where predicted habitat suitability is low also receive the 

lowest amount of summer precipitation and have the highest temperatures during the 

summer (Fig. 3).
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We present a distribution map of habitat suitability for I. scapularis in Minnesota, created 

using updated records of established tick populations and high resolution variables 

representing climatic conditions and vegetation type in Minnesota. We emphasize that the 

use of fine resolution data allowed us to recognize small-scale differences in suitability and 

may point to pockets within counties that pose an elevated risk for exposure to tick-borne 

pathogens (Eisen and Eisen 2008). In disease surveillance, reports are classified according to 

county of residence rather than county of exposure, which may confound results, especially 

in cases with potential travel-associated exposures. Further investigation is necessary to 

better quantify spatial risk at a subcounty spatial scale and to increase our understanding of 

human disease risk across Minnesota. This study increases the breadth of knowledge 

regarding the distribution of I. scapularis, a key vector for tick-borne pathogens posing 

significant public health risk, and adds to a growing body of knowledge on the continued 

range expansion of I. scapularis and increased distribution and incidence of tick-borne 

diseases, especially Lyme disease, in North America. Nonetheless, to provide an improved 

acarological risk assessment for this area where Lyme disease is increasing both in incidence 

and geographic extent, future studies are needed to quantify the density of I. scapularis 
across Minnesota, as well as the prevalence of B. burgdorferi infection and other tick-borne 

pathogens.
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Fig. 1. 
(A) The predicted distribution of I. scapularis in Minnesota is shown in red and is overlaid 

onto the risk of I. scapularis-borne disease based on the average incidence (cases/100,000 

population) of Lyme disease and human anaplasmosis cases reported to the Minnesota 

Department of Health, 2007–2013. Low risk is defined as <10, moderate risk is defined as 

10–25, and high risk is defined as ≥25 cases/100,000 population. (http://

www.health.state.mn.us/divs/idepc/diseases/lyme/highrisk.html, accessed August, 2014). (B) 

The distribution of dominant land cover types (United States Geological Service, National 

Gap Analysis Program (GAP) National Vegetation Classification—formation or land use 

classification) across Minnesota. The majority (67%) of predicted suitable habitat for I. 
scapularis in Minnesota is located in cool temperate forests, shown in bright green.
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Fig. 2. 
Jackknife tests were used to estimate variable importance based on the drop in AUC when 

excluding each variable in turn as well as models including only single variables. Decreases 

in AUC when variables are excluded (dark bars) indicate that unique information is 

contained in a variable that is not present in other variables. Models using land cover as the 

only variable have the largest AUC, demonstrating that land cover has the most useful 

information when used alone, as indicated by the large light-colored bar. GAP = United 

States Geological Service, National Gap Analysis Program (GAP) National Vegetation 

Classification—formation or land use classification, BIO16 = precipitation of the warmest 

quarter, BIO19 = precipitation of the coldest quarter, BIO2 = mean diurnal range (mean of 

monthly (maximum temperature – min temperature)), BIO5 = maximum temperature of the 

warmest month, BIO7 = annual temperature range, ELV = elevation.
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Fig. 3. 
Response curves reflect the dependence of the predicted suitability on each variable and on 

dependencies caused by correlations between each selected variable and other variables. 

Shading indicates the standard deviation of the 10 replicate model runs. Four variables were 

most important in describing the potential distribution of I. scapularis in Minnesota. The y-

axis shows the logistic probability of presence; higher logistic probabilities indicate higher 

suitability. The variables include: (A) United States Geological Service, National Gap 

Analysis Program (GAP) National Vegetation Classification—formation or land use 

classification: BSFS = boreal flooded and swamp forest, CTF = cool temperate forest, DU = 

developed and urban, HAV = herbaceous agricultural vegetation, ISNV = introduced and 

seminatural vegetation, LMBF = lowland and montane boreal forest, OW = open water, 

RDM = recently developed or modified, TBFWMM = temperate and boreal freshwater wet 

meadow and marsh, TFSF = temperate flooded and swamp forest, TGMS = temperate 

grassland, meadow and shrubland, (B) summer precipitation, (C) annual temperature range, 

and (D) the maximum temperature during the warmest month.
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Table 1

Uncorrelated ecological variables used to model the distribution of potentially suitable habitat for I. scapularis 
in Minnesota

Layer Original datum Original resolution Source

Land cover NAD83 30 m2 USGS, National Gap Analysis Projecta

Elevation WGS84 28 m2 National Elevation Datasetb

Mean diurnal temperature range WGS84 0.77 km2 Worldclim Datasetc

Isothermalityd WGS84 0.77 km2 Worldclim Datasetc

Maximum temperature of the warmest month WGS84 0.77 km2 Worldclim Datasetc

Annual temperature range WGS84 0.77 km2 Worldclim Datasetc

Mean temperature of the coldest quarterd WGS84 0.77 km2 Worldclim Datasetc

Precipitation of the wettest quarter WGS84 0.77 km2 Worldclim Datasetc

Precipitation of the coldest quarter WGS84 0.77 km2 Worldclim Datasetc

a
http://gapanalysis.usgs.gov/gaplandcover/, accessed April, 2014

b
http://ned.usgs.gov/, accessed April, 2014

c
http://worldclim.org/current, accessed April, 2014

d
Nine uncorrelated ecological variables were included in the full model. All variables except isothermality and mean temperature of the coldest 

quarter were included in the reduced model.
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Table 2

Ecological variables included in the Maxent model to predict the potential distribution of I. scapularis in 

Minnesota

Variable MN rangea Presence points rangea Maxent rangea

Mean diurnal temperature range (°C) 9.8–13.5 10.0–13.0 9.9–13.5

Maximum temperature during the warmest month (°C) 21.8–30.1 23.6–28.8 21.8–29.9

Annual temperature range (°C) 40.2–50.5 40.6–48.5 40.2–50.1

Precipitation during the wettest quarter (mm) 214–336 275–324 221–336

Precipitation during the coldest quarter (mm) 39–116 50–80 39–116

Elevation (m) 175–668 190–492 177–660

Land coverb % MN % Presence points % Maxent predicted presence

Cool temperate forest 14.3 52.0 67.1

Lowland and montane boreal forest 13.6 28.0 15.7

Temperate flooded and swamp forest 5.8 16.0 8.7

Temperate grassland, meadow and shrubland 1.4 4.0 5.6

Developed and urban 5.4 0.0 1.9

Recently disturbed or modified 1.8 0.0 0.5

Temperate and boreal freshwater wet meadow and marsh 1.5 0.0 0.4

Boreal flooded and swamp forest 10.8 0.0 0.1

Herbaceous agricultural vegetation 45.5 0.0 < 0.1

Introduced and seminatural vegetation < 0.1 0.0 < 0.001

a
The range for the entire state is reported in addition to the range of values of each variable at the presence points used to train the model and the 

range of each variable chosen to represent suitable habitat.

b
National Vegetation Classification—formation or land use classification
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Table 3

Contribution of eight ecological variables to the distribution of I. scapularis in Minnesota

Variable Permutation importancea

Land coverb 79.5

Maximum temperature during the warmest month   8.2

Annual temperature range   3.6

Precipitation during the wettest quarter   3.0

Mean diurnal temperature range   2.5

Elevation   1.7

Precipitation during the coldest quarter (mm)   1.5

a
Permutation importance is the resulting drop in AUC when each variable is permuted in turn. Isothermality and mean temperature during the 

coldest quarter had permutation importance values of zero in the full model; thus, both variables were excluded from the reduced model.

b
National Vegetation Classification—formation or land use classification (See Table 2).
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Table 4

Land cover classification of the predicted suitable areas for I. scapularis occurrence with deciduous tree 

species

Proportion Formationa Macrogroup Ecosystem group Dominant tree species

0.23 Cool temperate forest Northern mesic hardwood 
and conifer forest

Laurentian-Acadian northern hardwoods 
forest

Acer spp., Betula spp.

0.10 Cool temperate forest Central mesophytic 
hardwood forest

North-central interior maple-basswood 
forest

Acer spp., Tilia spp.

0.10 Lowland and montane 
boreal forest

Eastern and Central North 
American boreal conifer 
and hardwood forest

Boreal aspen-birch forest Populus spp., Betula spp.

0.071 Cool temperate forest Central oak-hardwood 
and pine forest

North-central interior dry-mesic oak forest 
and woodland

Quercus spp.

0.07 Lowland and montane 
boreal forest

Eastern and Central North 
American boreal conifer 
and hardwood forest

Boreal white spruce-fir-hard wood forest Populus spp., Betula spp.

0.05 Cool temperate forest Northern and eastern 
pine–oak forest, 
woodland and barrens

Laurentian pine-oak barrens Quercus spp.

0.04 Cool temperate forest Northern mesic hardwood 
and conifer forest

Laurentian-Acadian northern pine-(oak) 
forest

Quercus spp.

0.04 Boreal flooded and 
swamp forest

North American boreal 
swamp forest

Boreal-Laurentian conifer acidic swamp 
and treed poor fen

Betula spp.

0.03 Temperate flooded and 
swamp forest

Northern and central 
floodplain forest and 
scrub

Laurentian-Acadian swamp systems Fraxinus spp.

0.02 Temperate flooded and 
swamp forest

Northern and central 
floodplain forest and 
scrub

Laurentian-Acadian floodplain systems Acer spp., Quercus spp.

0.02 Developed and urban Developed and urban Developed, open space Quercus spp.

0.02 Temperate flooded and 
swamp forest

Northern and central 
swamp forest

North-central interior and Appalachian 
rich swamp

Acer spp.

0.01 Temperate grassland, 
and shrubland

Great Plains tallgrass 
prairie and shrubland

Northern tallgrass prairie Quercus spp., Populus 
spp.

0.01 Temperate grassland, 
meadow and shrubland

Great Plains tallgrass 
prairie and shrubland

Central tallgrass prairie Quercus spp.

0.01 Temperate flooded and 
swamp forest

Northern and central 
floodplain forest and 
scrub

Central interior and Appalachian 
floodplain systems

Acer spp.

a
National Vegetation Classification—formation or land use classification (See Table 2). Table shows Ecosystem groups representing areas of at 

least 1% of the predicted suitable habitat in Minnesota.
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