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Abstract

Over the past decade we have witnessed the increasing sophistication of machine learning 

algorithms applied in daily use from internet searches, voice recognition, social network software 

to machine vision software in cameras, phones, robots and self-driving cars. Pharmaceutical 

research has also seen its fair share of machine learning developments. For example, applying such 

methods to mine the growing datasets that are created in drug discovery not only enables us to 

learn from the past but to predict a molecule’s properties and behavior in future. The latest 

machine learning algorithm garnering significant attention is deep learning, which is an artificial 

neural network with multiple hidden layers. Publications over the last 3 years suggest that this 

algorithm may have advantages over previous machine learning methods and offer a slight but 

discernable edge in predictive performance. The time has come for a balanced review of this 

technique but also to apply machine learning methods such as deep learning across a wider array 

of endpoints relevant to pharmaceutical research for which the datasets are growing such as 

physicochemical property prediction, formulation prediction, absorption, distribution, metabolism, 

excretion and toxicity (ADME/Tox), target prediction and skin permeation, etc. We also show that 

there are many potential applications of deep learning beyond cheminformatics. It will be 

important to perform prospective testing (which has been carried out rarely to date) in order to 

convince skeptics that there will be benefits from investing in this technique.
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Introduction

We have previously suggested that cheminformatics should look to other industries that use 

high performance computing approaches for inspiration (1). Six years on what is surprising 

is that we may not have to look to industries but instead we already have used the algorithms 

which we should be considering for cheminformatics (and other areas) in our everyday 

transactions, work or social-life online. Every time we use our smartphones with voice 

recognition software like Siri or read the news on them, make a purchase on the internet via 
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Amazon or use our social network software, we take for granted that we are confronted with 

suggestions of other products we might like to buy or friends to connect too. Large 

companies such as Baidu, Google, Facebook etc. all use deep learning in facial recognition 

algorithms alone. We also live in an age in which self-driving cars and robot assistants are 

emerging rapidly after decades of research. Therefore we are literally surrounded by 

artificial intelligence software that use machine learning (2) that can in many ways now 

predict our needs before we know what they are. Perhaps for the first time we may also be 

directly seeing a preview of how such software tools could assist us in healthcare related 

research and development. We just did not know it until now.

In the area of pharmaceutical research and development and specifically that of 

cheminformatics there are many machine learning methods such as support vector machines 

(SVM), k-Nearest Neighbors, Naïve Bayesian, Decision Trees etc. (3) which have seen 

increasing use as our datasets have grown to become ‘big data’ (4-7). These methods are 

equally applicable in other areas and come with their own pros and cons (3) that can be used 

for binary classification, multiple classes or continuous data. The application of different 

computational approaches and machine learning algorithms to problems tends to follow the 

growth of datasets (8). As pharmaceutical datasets started out quite small, the methods 

initially used would focus on local models like pharmacophores and quantitative structure 

activity relationships (QSAR). In more recent years the biological data amassed from high 

throughput screening and high content screens has called for different tools to be used that 

can account for some of the issues with this bigger data (6). The power of computer 

processing has also increased so that more complex non-linear problems can be solved in 

real time with relatively inexpensive compute resources. Many of these resulting machine 

learning models can also be implemented on a mobile phone (9, 10). In recent years, there 

has been increasing use of one approach called deep learning (DL), (which builds on many 

years of artificial neural network research)(11), that has shown powerful advantages in 

learning from images and languages (12). This may represent the next era of 

cheminformatics and pharmaceutical research in general that is focused on mining the 

heterogeneous big data which is accumulating using more sophisticated algorithms such as 

DL.

Delving into deep learning

Standard artificial neural networks (ANN) approaches use an input layer, hidden layer and 

output layer where each connection has a weight and these vary during training in order to 

connect input to output data. This method has been used widely but suffers from overfitting 

of data, and a poor ability to generalize with an external dataset (3), although more recent 

versions such as Bayesian regularized artificial neural networks are more difficult to 

overtrain (13). DL or deep neural networks (3) in many ways is similar to ANN in that it 

mimics how the brain works and takes information in an input layer but unlike ANN has 

many hidden layers (14) to combine signals with different weights, passes the results 

successively deeper in the network until an output layer (Figure 1). The DL model is trained 

with a dataset by adjusting the weights to give the response expected for a certain input (e.g. 

if a compound is active or inactive or the level of activity/inactivity). The ability to have 

multiple learnable stages makes this approach more useful for tackling more complex 
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problems. Deep learning can be used for unsupervised learning and appears to work well 

with noisy data. However it still suffers from the potential to over fit data, the black box 

problem, as well as higher computational cost than ANN or other methods (15). There has 

been relatively limited application of DL to pharmaceutical problems to date and very few in 

the area of cheminformatics compared with other machine learning methods (11). DL tools 

are available in popular open source statistical software such as R (16). In addition there is 

TensorFlow (17), Deeplearning4j (18) while Facebook made their deep learning software 

(Torch) open source (19, 20) followed a year later by Microsoft (CNTK) (21). Some of these 

methods have been summarized in a recent review (22). It should be noted that these deep 

learning toolkits are likely far from ‘plug and play’ type software tools for the average 

scientist which they can input their molecules and data to train a model (or for that matter 

any training or test datasets) and then generate predictions. It is likely that expertise in using 

these software toolkits is needed as well as integrating with molecular descriptor software. It 

is more likely that a specialized programmer / statistician / cheminformatician will be 

needed with knowledge of the software tools in order to generate the models which can then 

be made available for others to use. Existing cheminformatics and other software companies 

could facilitate making deep learning more accessible to non-expert users by developing 

accessible fully integrated tools which they can use for any dataset.

Applications of deep learning in bioinformatics

DL has seen a rapid increase in the number of publications associated with bioinformatics 

(23) and computational biology (22) and has been used in diverse applications (15) such as 

protein disorder prediction (24). This resulted in a fast approach which was comparable to 

other machine learning approaches based on area under the curve (AUC) and recall statistics 

for test datasets. While it did not out-perform the other disorder methods it had the 

advantage of being fast (24) (Table 1). DL has also been used to refine docked protein 

complexes (25) based on 35,000 unbound docking complexes generated by RosettaDock and 

tested on 25 docking complexes not in the training set. Although this model was not 

compared to other methods it resulted in RMSD of 1.40Å indicating accurate predictions 

(25). DL has also been used to model structural features of RNA-binding protein targets 

using CLIP-seq datasets and testing on 24 datasets using the area under the receiver operator 

characteristic to evaluate the performance which was found to be close to the state of the art 

(Table 1)(26). DL has been applied and compared with other methods for mechanism of 

action prediction from high content image analysis data (27) and it was found to be superior 

to SVM with (87.62 vs 20.95% accuracy). Although it should be noted that the processing 

time was ten times longer for DL which is likely a major limitation for learning versus other 

methods (27). The preprocessing time can likely be offset by parallelization of calculation 

processes.

Pharmaceutical applications of deep learning

One of the earliest applications of DL to a pharmaceutically relevant problem was to predict 

aqueous solubility using four published datasets and was shown to compare favorably to 

other machine learning methods using 10 fold cross validation (28) (Table 1). DL has been 

used to predict the site of epoxidation in molecules with average AUC > 94.0% for cross 

Ekins Page 3

Pharm Res. Author manuscript; available in PMC 2017 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



validation, although this method was not compared to additional machine learning methods 

(29) or used for prospective prediction. DL has been put to use with gene expression data to 

learn from drugs and therapeutic categories using pathway level or landmark gene level as 

data reduction methods. In both cases after 10 fold cross validation deep neural networks 

surpassed SVM used internal testing, suggesting this as a drug repurposing approach (Table 

1)(30). In the area of drug formulation, predicting drug release from poly-lactide-co-

glycolide (PLGA) microspheres showed deep learning to be comparable to random forest, 

single tree and genetic algorithms after 10 fold cross validation (31). At Merck, deep neural 

networks have been compared to random forests for use with large QSAR datasets and out-

performed random forests for 11 out of 15 datasets (used in a Kaggle crowdsourcing 

competition) and 13 of 15 datasets in a second evaluation using time-split test sets (32). This 

utilization by a major pharmaceutical company suggests there is serious interest in the 

approach and it is likely other companies may have already performed similar evaluations. 

More frequently DL is applied to a single dataset such as drug induced liver injury. In this 

case multiple training and testing sets were used and comparison with normal neural 

networks was performed showing slight improvement with DL (33). In addition, one model 

was tested with 6 datasets as a form of external validation. The accuracy of DL with DILI 

data was around 60% for these test sets which is comparable to what has been seen 

elsewhere using other algorithms (34). Based on a non-exhaustive assessment of several 

different end points relevant to pharmaceutical research, while it appears that most have seen 

utilization of Bayesian or SVM approaches to develop predictive models, few have so far 

utilized DL (Table 2). Recent examples of computational models appearing in this journal 

alone over the past 18 months include: modeling thermodynamic proxies (35), predicting 

mouse liver microsomal stability (36), predicting autooxidation (37), drug solubility in 

human intestinal fluid (38), site of metabolism prediction in CYP2C9 (39), human skin 

permeability prediction (40, 41), blood brain barrier penetration modeling (42), predicting 

clearance mechanism (41) and skin concentration due to dermal exposure (43). Many of 

these datasets could likely utilize and benefit from DL and it would be of interest to see for 

how many an improvement in predictions could be obtained.

The future of Deep Learning

While there has been recent exhaustive analysis of artificial intelligence and its impact on 

jobs, ethical considerations and geopolitical impact (44) there have been very few 

discussions of the potential for using DL in pharmaceutical research (14, 15). Based on the 

results obtained to date which admittedly have focused on internal validation with little 

prospective testing as seen with other machine learning methods (Table 1)(45, 46), DL 

appears promising and will likely see greater application in the years ahead. Perhaps the 

largest example of validation of DL models alongside other machine learning approaches is 

in the case of the Tox21 Challenge. DL with multitask learning (47) slightly outperformed 

the closest consensus artificial neural network method (48) across nuclear receptor and stress 

response datasets (Table 1).

It is yet to be seen if DL could facilitate the ultimate robot scientist (49), as we see 

application to different datasets, it or other machine learning methods may become an 

invisible research assistant, a tool that we take for granted to perform the predictions we 
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need before performing the experiments. This may come with challenges such as how much 

power do we provide to the software to make the decisions for us. Which raises the question 

of whether the experiments need human involvement at all? The rapid development of DL 

outside science suggests it is far from a new fad, and the impact is already being felt in 

numerous areas from fraud detection to internet search engines. So how long before DL is 

widespread in pharmaceutical research (14) and what can we expect? It is possible that DL 

could be the source of more predictive models but hurdles remain on the implementation and 

accessibility of models. What is clearly needed is software that is tightly integrated with the 

data to be modeled. This data would most frequently reside in private or public databases 

and could represent many different endpoints both quantitative and qualitative (Figure 2). 

Therefore any efforts to bring the molecules, sources of data and DL algorithms together 

would greatly streamline model generation and make it more accessible to other scientists. 

But as with other computational modeling approaches we may also want to consider the 

applicability domain (50) and various factors such as the quality of the underlying data (51, 

52) which may determine the utility and relevance of a DL model for making a prediction 

(53).

A major concern would be how could DL shape research and the future of science and 

biomedical research in particular? It is possible that DL or any machine learning method 

might be able to assist by increasing the efficiency of research and perhaps rule out likely 

less successful avenues of research. This is especially important in areas where research 

funding is tight like rare (54) and neglected diseases (55). Any advantage that DL could 

provide would be welcome in these and other resource constrained areas as a side effect. 

Clearly we should be educating the next generation of pharmaceutical researchers to use a 

wide array of machine learning approaches as well as assessing the likely impact and 

application of DL. Developing scientists that can generate predictions in silico and test them 

in vitro or in vivo would also be welcomed. It may be only a short time before we have vice 

presidents of machine learning or DL in pharmaceutical and biotechnology companies. 

There are of course still many criticisms of these black box machine learning approaches but 

it is probably now accepted that with greater accuracy in prediction will come limitations in 

transparency.

While we have only just seen the beginning of the era of DL, we should be prepared for how 

it will be used and its potential impact on a wide array of potential pharmaceutically relevant 

endpoints (Table 2). Already comparisons of DL with additional machine learning 

algorithms have shown that it frequently improves upon the state of the art using 

predominantly cross validation as the form of evaluation. We will likely see improvements in 

DL and maybe even alternative approaches that are superior by combining with other 

machine learning or other methods or data as consensus approaches. This in particular is an 

area we have yet to see developed for pharmaceutical applications. If we are to imagine 

machine learning models being ubiquitous in the pharmaceutical industry, DL may facilitate 

that. We predict the near future will likely see an increase in studies published in this and 

other journals applying DL and comparing it prospectively and retrospectively to other 

machine learning methods for predicting various molecule properties important for 

pharmaceutical research.
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While at the time of writing there are over 100 DL startup companies globally, few are 

focused on pharmaceutical applications (56, 57). We anticipate that this will be an active 

area as the DL connection will be one way to attract technology investors who would 

normally steer clear of drug discovery and pharmaceuticals as an investment. It is likely that 

researchers in academia and industry could immediately apply DL if it was more accessible 

in software and they could plug their data into it. In the interim it may require some 

collaboration with those more experienced data scientists using R and the various available 

DL toolkits. There are several areas that could perhaps see an immediate benefit, for 

example in the areas of predicting metabolism, interactions with P450s and transporters as 

well as other ADME/Tox properties there has been an increasing number of large datasets 

and computational machine learning models published (Table 2) some of which are non-

proprietary. Big datasets like melting point with over 300,000 compounds (58), DMSO 

solubility with over 163,000 compounds (59), all of the ChEMBL (5) datasets and of course 

data in PubChem (60), would represent “Big Data” (14) that could be used with DL. The 

data from PubChem and to a lesser extent ChEMBL, may need curation and organization 

prior to use in DL models. While the focus of this perspective has been predominantly 

molecule centric, clearly the application of DL outside the pharmaceutical industry attests to 

the broad array of applications and potential for impact, there is likely overlap in these 

domains. For example could we learn from social media data using DL methods what might 

be potential side effects of drugs or even new uses identified by the population. DL could be 

applied not only to adverse event prediction but also formulation properties, 

pharmacokinetic simulation, cost effectiveness and even clinical trial simulation and design. 

How far DL will take us and how quickly it will have an impact on research and the industry 

remains to be seen, but there is considerable opportunity to develop user accessible tools and 

apply them now to the accumulating public datasets. DL is already off to a good start in 

many areas and pharmaceutical researchers would do well to take a closer look and embrace 

it faster than they have other computational technologies in the past.
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SVM support vector machines
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Figure 1. 
A schematic of a deep learning neural network applied to cheminformatics and a single 

property with output as a quantitative or qualitative prediction.
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Figure 2. 
Using public and private data for generating deep learning models for application across vast 

numbers of endpoints whether quantitative or qualitative (classification models).
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Table 1

Examples of deep learning studies. Deep learning (DL), Support Vector Machine (SVM) and artificial neural 

network (ANN)

Example
end point
modelled

Dataset size Model statistics Summary References

Solubility 1144,
1026,
74,
125

0.92 RMSE 0.58,
0.91 RMSE 0.60,
0.81 RMSE 0.72,
0.67 RMSE 0.90
All 10 fold cross
validation

Did not compare
to other machine
learning methods
themselves.
Addition of log P
in some cases
improved models.

(28)

Drug Induced
Liver Injury

190,
475,
1065

80.5,
88.4,
70.1,
Accuracies from
internal cross
validation

DL Models also
assessed with
external test sets.
DL outperformed
ANN with different
PaDEL and Mold2
descriptors used.

(33)

ADME and
target activity

Multiple
models
from 2092
(microsomes)
to
318,795
(hERG)

Compared DL to
random forest
(RF) models on
external datasets
(11 of 15 DL
models
outperform RF
models from
Kaggle test and
13 out of 15
additional
models)

15 Kaggle
datasets available
consisting of
activities and
descriptors.

(32)

Biomarkers 62,419
records and
46 blood
markers

R2 = 0.80 and
82% prediction
accuracy in
predicting
chronological age
within a 10 year
window.

Ensemble model
performs better R2

= 0.82 accuracy
83.5%

(61)

Protein
contact maps

ASTRAL
database
release 1.75

CASP 8 and 9
data is used for
test sets.
CMAPpro more
accurate on the
CASP 8 dataset
than other
methods.
Improvement
10% or higher.

Predicts contact
maps with
accuracy of 30%

(62)

Cancer
diagnosis

13 published
cancer gene
expression
datasets

10 fold cross
validation
average
classification
accuracy 46.33 –
100%

Principal
Component
Analysis was
used to
preprocess data

(63)

Gene
expression
patterns

2000 genes
from Allen
Developing
Mouse Brain
Atlas

Average AUC
0.894 versus 0.82
for bag of words
for annotating
gene expression
pattern. Gene
ontology
functional
annotation
average AUC =

Used deep
convolutional
neural network.
Relative
performance of
different methods
differs across
different
developing
stages.

(64)
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Example
end point
modelled

Dataset size Model statistics Summary References

0.59 vs 0.57 for
bag of words

Protein
disorder
prediction

1111
proteins

AUC 86.8 on
training set
AUC 80.9 on
CASP10 dataset

More
sophisticated
methods such as
DISOPRED3 and
DNdisorder have
test AUC 87.2
and 82.3
respectively

(24)

RNA binding
protein
features

24 datasets 10 fold cross
validation used
AUROC values
0.71 – 0.99

Outperformed the
GraphProt
method when
using base
sequence,
secondary and
tertiary structural
profiles.

(26)

High content
analysis of
breast cancer

148,649 rows Leave one out
cross validation
Accuracy 87%

Linear SVM
Accuracy 20.95,
SVM using radial
basis function
Accuracy 21.04
Uses a public
dataset for
training.

(27)

Epoxidation 702 Site of
epoxidation AUC
94.9% and
separation of
epoxidation vs
non epoxidation
molecules with
AUC 79.3% after
leave one out
cross validation

The DL was
compared with a
logistic regression
model which gave
Site of
epoxidation AUC
93.7% and
epoxidation vs
non epoxidation
molecules AUC
78.9%

(29)

Tox21 11,764
training set,
296
Leaderboard
set,
647 test set

DL average AUC
= 0.837, SVM
average AUC =
0.832, RF
average AUC =
0.803

DL with multitask
learning out
performed single
task learning on
10 of 12 assays
and DL won 9 of
15 challenges
with nuclear
receptor and
stress response
panels

(47)

Tox21 11,764
training set,
296
Leaderboard
set,
647 test set

Consensus model
Balanced
accuracies from
0.599-0.903

Analyzed 12
targets using
associative neural
networks. Built
consensus
models. Training
and leaderboard
sets were
combined.
Reported to have
the best balanced
accuracy

(48)

Refinement of
docked
proteins

35,000
samples of
35 unbound
dimer
proteins

Tested on 25 test
cases across 5
proteins - RMSD
1.40Å

No information on
dataset
availability
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Example
end point
modelled

Dataset size Model statistics Summary References

Drug
repurposing

977
Landmark
genes
271 signaling
pathways

10 fold cross
validation deep
learning
outperforms SVM
for both datasets.
DL F1 score of
0.70 and SVM
0.53 for pathway
3 class problem.

Deep learning
models trained
just on gene data
did not perform
well at classifying
12 groups of
drugs. Pathways
performed better.

(30)

Label free cell
classification

Not defined 5 fold Cross
validation shows
16 multivariate
features can
provide a
balanced
accuracy of
96.4%

Classification of
blood cells (OT-II)
and cancer cells
(SW-480).
Deep learning
outperforms
logistic
regression, SVM
and Bayesian but
all accuracies are
greater than 85%

(65)

Classifying
microscopy
images

103
treatments –
25 images
per class for
training

Test set accuracy
0.96

Used an available
MFC-7 breast
cancer imageset
BBBC021v1

(66)

Lung tumors 130 patients Improved mean
square error by
29.98% and
prediction
overshoot by
70.93%

Computation time
of 1.54ms might
achieve real-time
estimation of
intra-fractional
variation and
better tracking for
radiotherapy.

(67)

Target-ligand
interaction
prediction

sc-PDB, 836
targets and
2710 ligands

5 fold cross
validation AUC
0.959. Out
performs other
published
methods such as
BLM-NII (AUC
0.858) and CS-
PD (AUC 0.799)

Used a pairwise
input neural
network. % fold
accuracy = 0.887

(68)
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Table 2

Representative examples of machine learning models applied to pharmaceutically relevant end points to 

indicate areas used for machine learning that could be useful datasets for potential future use of deep learning. 

Other publically accessible datasets are available in OCHEM (69), Chembench (70), CDD (71) etc.

Example
end point
modelled

Naïve Bayesian Support Vector
Machine

Deep Learning

Solubility (72) (73) (28)

Drug Induced Liver
Injury

(34) (74) (33)

hERG (75, 76) (77, 78) (32)

ADME (36, 72) (79) (29, 32)

Blood Brain Barrier
penetration

(75) (77)

Biological Targets (5, 80) (81) (32, 82)

Skin Permeability (40, 41)

Transporters (10, 83-85) (86-88) (32)

Mutagenicity (75, 89) (89, 90)

Formulation (91)

Adverse event
prediction

(92) (93, 94)

Counterfeit drug
detection

(95)

Docking (96)

Small molecule pKa (3)
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