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The dynamic AMPA receptor extracellular region:
a platform for synaptic protein interactions
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Abstract AMPA receptors (AMPARs) are glutamate-gated cation channels that mediate fast
excitatory neurotransmission and synaptic plasticity. Structures of GluA2 homotetramers in
distinct functional states, together with simulations, emphasise the loose architecture of the
AMPAR extracellular region (ECR). The ECR encompasses �80% of the receptor, and consists
of the membrane-distal N-terminal domain (NTD) and ligand-binding domain (LBD), which
is fused to the ion channel domain. Minimal contacts within and between layers, together with
flexible peptide linkers connecting these three domains give rise to an organisation capable of

Javier Garcı́a-Nafrı́a is a postdoctoral researcher with a PhD from the
University of York, UK. He works on the structural biology and drug
discovery of glutamate ion channels. Beatriz Herguedas is a postdoctoral
researcher with a PhD from the University of Zaragoza, Spain. She specialises
in the structural biology of glutamate receptors. Jake Watson is a PhD student
at the MRC Laboratory of Molecular Biology (MRC-LMB) in Cambridge, UK
and combines electrophysiology and imaging techniques to dissect synaptic
function. Ingo Greger is a group leader at the MRC-LMB. After a PhD at the
University of Oxford, UK, he underwent postdoctoral training at New York
University School of Medicine/Howard Hughes Medical Institute, New York, USA. Following a Royal Society Fellowship at the MRC-LMB in Cambridge,
UK, he is now a group leader working on various aspects of AMPA receptor function.

This review was presented at the “5th European Synapse Meeting” which took place at the University of Bristol, UK between 7–9 September 2015.

C© 2016 MRC Laboratory of Molecular Biology. The Journal of Physiology C© 2016 The Physiological Society DOI: 10.1113/JP271844



5450 J. Garcı́a-Nafrı́a and others J Physiol 594.19

dynamic rearrangements. This building plan is uniquely suited to engage interaction partners in
the crowded environment of synapses, permitting the formation of new binding sites and the
loss of existing ones. ECR motions are thereby expected to impact signalling as well as synaptic
anchorage and may thereby influence AMPAR clustering during synaptic plasticity.
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Abstract figure legend The dynamic AMPA receptor extracellular region (ECR). The flexible ECR of AMPARs (red
schematic) is expected to permit rearrangements that may impact association with synaptic proteins, three known
interaction partners are indicated in blue (N-cadherin, neuronal pentraxin [NP1/2], TARPs). Dynamic reconfigurations
could impact AMPAR allosteric signaling as well as diffusion and clustering at synapses.

Abbreviations AMPARs, AMPA receptors; ANM, anisotropic network model; EC, extracellular cadherin (domain);
ECR, extracellular region; EM, electron microscopy; iGluRs, ionotropic glutamate receptors; KARs, kainate receptors;
LBD, ligand-binding domain; LL, lower lobe (NTD); N-cad, N-cadherin; NMDARs, N-methyl-D-aspartate receptors;
NPs, neuronal pentraxins; NPR, NP receptor; NTD, N-terminal domain; LTP, long-term potentiation; PSD, postsynaptic
density; PVs, parvalbumin-expressing interneurons; TARPs, transmembrane AMPAR regulatory proteins; TMD, trans-
membrane domain; UL, upper lobe (NTD).

Introduction

Ionotropic glutamate receptors (iGluRs) are cation
channels embedded in the postsynaptic density (PSD)
opposite presynaptic neurotransmitter release sites.
Ion flux through the channel is triggered by the
binding of L-glutamate, the major excitatory trans-
mitter in the central nervous system. iGluRs play
central roles in synapse development and synaptic
plasticity (Traynelis et al. 2010); their dysfunction is
associated with a variety of neuropathologies (Bowie,
2008). Three iGluR subfamilies, kainate receptors
(KARs), N-methyl-D-aspartate receptors (NMDARs) and
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
receptors (AMPARs), contribute different components
to the postsynaptic response, whereas the δ receptors
(GluDs) mediate synaptogenesis and synapse maintenance
primarily in the cerebellum (Yuzaki, 2011). The rapid
kinetics of AMPARs permit point-to-point signalling
(Geiger et al. 1997; Trussell, 1999) and their accumulation
at synapses is crucial for synaptic plasticity, which under-
lies learning (Kessels & Malinow, 2009).

AMPARs predominantly exist as hetero-tetramers,
assembled from the GluA1–4 subunits in various
stoichiometries (Hollmann & Heinemann, 1994).
Assembly is controlled at various levels (Herguedas et al.
2013) and ultimately increases the functional repertoire,
relative to homomeric receptors. The vast majority of
AMPARs incorporate the functionally critical GluA2 sub-
unit, which restricts Ca2+ permeability, relieves poly-
amine block and lowers channel conductance (Isaac
et al. 2007). Subunit composition and association with
various auxiliary subunits (Jackson & Nicoll, 2011) greatly
diversifies AMPAR trafficking and signalling at synapses
(Traynelis et al. 2010).

Like other iGluRs, AMPARs are composed of four
domain layers (Fig. 1A): a cytoplasmic C-terminus that
directs trafficking and synaptic anchorage of the receptor
(Shepherd & Huganir, 2007), a transmembrane domain
(TMD) forming the channel pore, and an extensive,
bipartite extracellular region (ECR), consisting of the
ligand-binding domain (LBD) and the membrane-distal
N-terminal domain (NTD). The NTD comprises 50% of
the receptor and, together with the C-terminus, is the
most sequence-diverse region across the four AMPAR
paralogues (Fig. 2A). The NTD has, so far, been implicated
in subunit assembly and clustering at synapses (Sia et al.
2007; Kumar et al. 2011; Rossmann et al. 2011).

AMPARs transit between different functional states:
(1) a resting, closed-channel state, (2) active open
states, where agonist-binding triggers opening of the
channel pore, and (3) desensitised states, where prolonged
exposure of agonist induces a closed channel state with
agonist still bound. Each subunit can bind glutamate
independently and hence a multitude of subconductance
states exist (Robert & Howe, 2003), facilitated by the
loose architecture of the tetramer. Functional diversity
combined with a modular building plan and the need
to interact with a variety of auxiliary subunits (Jackson
& Nicoll, 2011) renders the AMPA-type iGluR a versatile
signalling machine. Here we review recent insights into
AMPAR structure and ask how its uniquely flexible
architecture will impact receptor operation in the crowded
environment of the synaptic cleft.

Structure and organisation of the ECR

Structures of isolated ECR domains have provided insights
into iGluR pharmacology and a framework for under-
standing receptor activation and desensitisation (Sun et al.
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2002). The architecture of an AMPAR tetramer was first
revealed by an antagonist-bound structure of a near-intact
GluA2 homomer (Sobolevsky et al. 2009), exhibiting a
modular architecture with an overall Y-shape, the arms
of the Y formed by two NTD dimers (Fig. 1A). The
structure revealed a symmetry mismatch with twofold
symmetry in the LBD and NTD layers and a quasi fourfold
symmetric TMD. Furthermore, the NTD and LBD layers
engage in domain swapping, with different subunit pairs
forming NTD and LBD dimers, a building plan conserved
in NMDARs (reviewed in Karakas et al. 2015).

A series of recent X-ray crystallography and
cryo-electron microscopy (EM) structures of iGluRs
provided further insights into their organisation and
operation (Chen et al. 2014; Durr et al. 2014; Karakas
& Furukawa, 2014; Lee et al. 2014; Meyerson et al.
2014; Yelshanskaya et al. 2014). AMPAR GluA2 homo-
mers were trapped in different functional states; in
addition to the first, antagonist (ZK-200775)-bound,
structure (PDB code 3KG2), ligand-free (resting)
and agonist-bound (desensitised) states were obtained
(reviewed in Karakas et al. 2015). These revealed
state-dependent reorganisations in the LBD layer at
multiple levels: the clamshell cleft, the dimer interface and
between LBD dimers, in line with the dynamic nature of
this layer discerned from functional experiments (Plested
& Mayer, 2009).

In addition, the distal NTD tier showed striking
differences between functional states and between iGluR
subfamilies (Karakas et al. 2015). In both KARs and
AMPARs, NTD dimers associate via a small �330 Å2

tetramer interface (Fig. 1A; green star) (Jin et al. 2009;
Kumar et al. 2011), giving rise to the ‘classic’ receptor

Y-shape (Sobolevsky et al. 2009). In KARs this NTD
tetramer interface is tighter than in AMPARs: (i) it
is evident in solution, in analytical ultracentrifugation
experiments, and (ii) it is maintained upon entry into
the desensitised state (Kumar et al. 2011; Schauder
et al. 2013; Meyerson et al. 2014). By contrast, GluA2
NTD tetramers are labile (Clayton et al. 2009) and the
tetrameric interface can rupture upon desensitisation
(Durr et al. 2014; Meyerson et al. 2014). Agonist-mediated
rearrangements of the NTD layer have been observed in
both GluA2 cryo-EM and crystal structures and were
seen in earlier studies of native (heteromeric) AMPARs
assayed by negative stain EM (Nakagawa et al. 2005).
Related to this, little (Sobolevsky et al. 2009) or no contact
(Meyerson et al. 2014) between the NTD and LBD layers is
apparent in KAR and AMPAR structures. In stark contrast,
in NMDARs the NTD layer forms close associations
with the LBD layer resulting in a more compact ECR
(Karakas et al. 2011; Karakas & Furukawa, 2014; Lee
et al. 2014). This inter-layer interface, in concert with the
LBD–NTD linkers, facilitates allosteric communication
triggered by NMDAR NTD ligands, which ultimately
impact channel open probability (Gielen et al. 2009;
Yuan et al. 2009). A recent GluA2/3 AMPAR heteromer
structure, determined by cryo-EM, suggests that AMPARs
can also adopt NMDAR-like conformations in their ECR
(Herguedas et al. 2016).

Impact of the loose ECR organisation

Questions arise when considering the impact of the
large, flexible ECR in a synaptic setting. This unique
organisation, not evident in other ligand-gated ion
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Figure 1. Structure and dynamics of the AMPAR extracellular region (ECR)
A, cryo-EM structure of GluA2 receptor in complex with antagonist ZK200775 (PDB code 4UQJ) with the three
receptor layers coloured in red (NTD), blue (LBD) and purple (TMD). An NTD dimer is highlighted (ellipsoid), the
NTD tetramer interface is denoted with a green star. B, ANM modes (low frequency) of the GluA2 crystal structure
in complex with ZK200775 (PDB code 3KG2) showing the different conformation states of the ECR in the various
modes (Dutta et al. 2015). In mode 1 the complete NTD layer bends down towards the membrane. In mode 2 the
two NTD dimers separate and approach the upper leaflet of the membrane. In mode 4, the NTD and LBD layers
adopt a compact conformation resembling the crystal structures of NMDARs.
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channel families (Unwin, 2005; Kawate et al. 2009;
Miller & Aricescu, 2014), is expected to permit sub-
stantial structural dynamics, which may enable transient
interactions in the crowded environment of synapses.
Associations with synaptic components could trigger
reconfigurations of the AMPAR tetramer (Abstract figure)
and ultimately impact receptor signalling, trafficking,
diffusion and anchorage. In addition to the drastic
rearrangements of the NTD layer upon desensitisation,
flexibility within the ECR is emphasised by GluA2 crystal
structures in complex with a snail toxin (Chen et al. 2014).
The toxin wedges between the NTD and LBD, pushing
the NTD layer up by �10 Å relative to the original
antagonist-bound GluA2 (PDB 3KG2), a displacement
readily accommodated by the peptide linkers connecting
the NTD and LBD. Clearly a deeper understanding of
NTD–LBD linker flexibility and conformational dynamics
is of interest.

ECR dynamics are also emphasised in simulations of
GluA2 (PDB 3KG2) using the anisotropic network model
(ANM), which have revealed low-energy modes of motion
that the receptor may sample (Dutta et al. 2015; Krieger
et al. 2015). This model only considers Cα atoms, i.e.
is ‘coarse-grained’ and thus enables calculation of global
motions accessible to a given structure under equilibrium
conditions. The first modes describe the energetically most
favourable conformational changes (Bahar et al. 2010),
thus offering a view onto the ensemble of sub-states
encoded by the structure (examples of which are shown in
Fig. 1B).

Here we summarise three ANM modes of GluA2 (PDB
code 3KG2), which are illustrated in Fig. 1B. In mode 1,
the entire AMPAR ECR bends down towards the upper
leaflet of the lipid bilayer, where it may interact with
AMPAR auxiliary subunits such as the TARPs (see below;
Fig. 2). Similarly, mode 2 shows a downward bending and
separation of the two NTD dimers, somewhat resembling
desensitised conformations captured by crystallography
and EM (Nakagawa et al. 2005; Durr et al. 2014; Meyerson
et al. 2014). In mode 2 the two NTD dimers also
approximate and could be crosslinked via an engineered
disulfide bridge across the NTD tetramer interface (at
GluA2 K262C), providing an experimental validation of
the simulation data (Dutta et al. 2015). Interestingly, in
mode 4 vertical stretching and compression of the ECR
is seen. The compression results in close approximation
between the NTD and LBD reminiscent of the NMDAR
conformation (Karakas & Furukawa, 2014; Lee et al. 2014)
(Fig. 1B). This motion suggests that an interface between
the NTD and LBD layers can also form in AMPARs
and permit allosteric regulation in this iGluR subtype,
which appears unlikely in the loose, Y-shape arrangement
(Fig. 1A). Indeed, a recent cryo-EM structure of an
AMPAR GluA2/3 heteromer (captured in an apo-state)
reveals interfaces between NTD and LBD layers, analogous

to GluA2 mode 4 (Herguedas et al. 2016). As a consequence
of these dynamics, platforms for protein interactions in the
ECR are likely to be reconfigured, altering the binding
of known associates (described below) and generating
alternative binding sites. These reconfigurations may
stabilise conformations and thereby impact signal
transmission.

AMPAR-interacting proteins at synapses: TARPs and
beyond

The NTD provides a substantial, sequence-diverse docking
platform (Fig. 2A) stretching approximately midway into
the synaptic cleft where it approaches the presynaptic
machinery. The cleft of a hippocampal synapse has an
estimated width of �24 nm, as estimated by cryo-EM
(Zuber et al. 2005). The ECR of antagonist-bound GluA2
can reach a vertical height of up to 13 nm (in a
recent cryo-EM structure; PDB 4UQJ; Meyerson et al.
2014).

AMPAR NTDs preferentially exists as heterodimers,
forming tight (low nanomolar) assemblies (Rossmann
et al. 2011) and generating a large surface area of
�32,000 Å2. Since sequence identity between the four
AMPAR NTDs is only �56% (the LBD and TMD are
�90% identical), different AMPAR heteromers could
selectively engage synaptic components via the NTD,
potentially resulting in subtype-specific diffusion and
anchorage (discussed further below; Fig. 3).

AMPARs interact with a large number of accessory
proteins (>30; Schwenk et al. 2012; Shanks et al. 2012),
a unique feature among iGluRs (i.e. for KARs only Neto1
and Neto2 have been described to date; Zhang et al. 2009).
Some act as auxiliary subunits that alter receptor signalling
and trafficking (Jackson & Nicoll, 2011) while others,
mostly cytosolic factors, route and scaffold the receptor at
synapses (including the membrane-associated guanylate
kinases (MAGUKs); Shepherd & Huganir, 2007). The
function of the majority of AMPAR-interacting proteins
is currently elusive.

AMPAR auxiliary subunits have a profound impact on
multiple aspects of AMPAR signalling, including gating
kinetics, ion permeation, voltage dependence (i.e. poly-
amine block) and receptor pharmacology (reviewed in
Jackson & Nicoll, 2011). Native AMPARs most likely
exist in complex with a variety of these subunits, which
differ between different neuronal cell types and perhaps
even between individual synapses. All auxiliary sub-
units characterised to date are transmembrane proteins
and include: the tetraspanning TARPs (transmembrane
AMPAR regulatory proteins) (Chen et al. 2000) and
GSG1L (germ cell-specific gene 1-like) protein (Schwenk
et al. 2012; Shanks et al. 2012), the three-transmembrane
CNIHs (cornichon-2 and -3; Schwenk et al. 2009) and
CKAMP (cysteine-knot AMPAR-modulating protein)-44,
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-52, -39 and -59 (also known as Shisa-9, -6, -8, -7), single
membrane-spanning factors (Schwenk et al. 2009; Farrow
et al. 2015). Their interaction regions with the receptor are
largely unknown.

Based on secondary structure prediction and on
homology to mouse claudin-15, a TARP-related protein
(Suzuki et al. 2014), the extracellular portion of TARPs
is minimal (Fig. 2B) and they are therefore expected
to engage the TMD and the membrane-proximal LBD.
Recent studies started to identify the TARP-binding sites
on GluA2 and AMPAR binding sites on TARPs and CNIH3
(Cais et al. 2014; Shanks et al. 2014). Unexpectedly, an
interaction between TARPs (γ-2 and γ-8) and the NTD
emerged from peptide array mapping and the binding
of TARP γ-2 to GluA2 was reduced upon deletion of
the NTD in immunoprecipitations, further supporting
an interaction between TARPs and the membrane-distal
NTD (Cais et al. 2014). NTD bending towards the lipid
bilayer, as suggested by ANM simulations (modes 1 and 2;
Fig. 1B) (Krieger et al. 2015), and by early single particle
EM (Nakagawa et al. 2005), may facilitate the NTD–TARP
interaction, most likely enabled by the NTD–LBD linkers
(Fig. 3; right panel). Deletion of linker residues indeed
altered the TARP modulation of AMPAR gating kinetics
(Cais et al. 2014).

In addition to gating, the NTD–TARP contact could
impact AMPAR sequestration at synapses. AMPARs
are highly dynamic and constantly exchange between
synaptic and extrasynaptic sites (Choquet & Triller,
2013). Long-term potentiation (LTP)-type stimuli that
induce plasticity recruit additional AMPARs into synapses
and result in their immobilisation (Newpher & Ehlers,
2008; Opazo & Choquet, 2011). Within the postsynaptic
density (PSD) AMPARs are concentrated in �70 nm-wide
nanodomains of approximately 30 receptors/domain
(Nair et al. 2013) (an AMPAR ECR has a sphere of
�12 nm diameter, which would be consistent with this
estimate). Anchorage to the PSD can be mediated (i) via
the receptor C-termini harbouring PDZ motifs (Barry &
Ziff, 2002), and (ii) via TARPs, which directly bind to
PSD-95 (Chen et al. 2000; Schnell et al. 2002), a prominent
postsynaptic scaffolding factor (Bats et al. 2007). The latter
appears to be crucial, as interfering with the TARP/PSD-95
linkage increases AMPAR mobility whereas deletion of the
C-terminal PDZ motif (in GluA1 and GluA2) has little
effect (Bats et al. 2007; Hoze et al. 2012; Kerr & Blanpied,
2012) and deletion of the entire C-terminal tail still permits
LTP (Granger et al. 2013).

Receptor activation has been suggested to result in
‘shedding of the TARP’ and hence AMPAR release from
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Figure 2. Sequence variations in AMPAR NTDs and the TARP ECR
A, surface representation of GluA2 homotetramer (PDB 4UQJ) coloured by sequence conservation among sub-units
(left). While the TMD and LBD are highly sequence conserved (purple), the NTD contains great variability (cyan).
This NTD sequence variability is shown in expanded format on the right. B, schematic and sequence alignment
among the two TARP extracellular loops (Ex1, Ex2), highlighting their variability between family members.
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the PSD-95–TARP anchorage (Tomita et al. 2004), in
turn enabling rapid diffusion away from synaptic sites
(Constals et al. 2015) and endocytosis. The NTD–TARP
interaction would be of consequence as NTD sequence
diversity together with variation in the TARP binding
region between the TARP members (Fig. 2A and B)
may selectively stabilise some AMPAR heteromers over
others and thereby differentially affect their expression at
synapses. Selective sequestration of AMPARs could also be
mediated by other components associating with the ECR,
as discussed below.

Other synaptic components interacting with the
AMPAR ECR: N-cadherin and pentraxins

AMPAR ECR reconfigurations accompanying TARP
binding may alter the binding of other NTD-targeting
factors including N-cadherin (N-cad) and neuronal
pentraxins (NPs) (Fig. 3; Abstract figure). N-cad, a
homophilic, Ca2+-dependent cell-adhesion molecule is
associated with AMPARs through intracellular inter-
actions, mediated by the N-cad-associated protein
δ-catenin (NPRAP; neural plakophilin-related armadillo
repeat protein) (Silverman et al. 2007; Heisler et al. 2014).

NPRAP interacts with GRIP1/2 (glutamate receptor inter-
acting protein), multi-PDZ scaffolding factors that in turn
bind to AMPAR subunits GluA2 and GluA3 (Barry & Ziff,
2002). However, N-cad has also been shown to bind the
GluA2 NTD directly (Saglietti et al. 2007) although the
details of this interaction are elusive.

The N-cad extracellular region is composed of five
extracellular cadherin (EC) domains, each forming a
seven-stranded β-barrel (Harrison et al. 2011). When
stabilised in an extended (crescent-shaped) conformation
by Ca2+ ions, binding to the inter-EC linkers, N-cad
would arch above the AMPAR (Fig. 3). Removal of Ca2+
shifts N-cad into a ‘floppy’ conformation that disfavours
trans-synaptic, homophilic interactions but promotes
associations with AMPARs (Nuriya & Huganir, 2006; Tai
et al. 2008). The five ECs are not identical in sequence,
but whether there is any specificity for binding the NTD
is not known. Also, whether the AMPAR–N-cad inter-
action occurs in cis (Nuriya & Huganir, 2006; Morita
et al. 2009) or in trans (Saglietti et al. 2007) needs further
clarification. The flexible AMPAR ECR could ‘scan’ the
membrane-proximal ECs of Ca2+-bound, extended N-cad
and may access all five ECRs of the Ca2+-free, floppy
N-cad conformer (Fig. 3). Initially postulated to bind the

N-cadherin AMPAR TARP

NP1/2

NPR

? ?

1

2

3

4

5

N-cadherin

Figure 3. Possible interactions of the AMPAR ECR at synapses
The motions available to the AMPAR (red) allow interactions with a variety of synaptic partners from TARPs at
membrane height (right) to possible trans-synaptic interactions with pentraxins (centre). Reconfiguration of the
AMPAR-NTD would allow scanning for interaction partners at different levels, for example different EC domains
of N-cadherin (left, numbered 1–5). Different configurations are likely to produce mutually exclusive interactions,
conferring partner-specific consequences on AMPAR signalling and synaptic clustering in LTP.
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NTD front face (Saglietti et al. 2007), a secondary N-cad
binding site at the GluA2 NTD–LBD linker has recently
been described. This requires a specific N-glycosylation
signature on the linker and aids surface AMPAR trafficking
and stabilisation (Takeuchi et al. 2015).

The proposed interaction between N-cad and GluA2
would stabilise GluA2-containing AMPARs at synapses
and control the balance between synaptic anchorage
and AMPAR endocytosis. This makes it a candidate
for LTD (long-term depression) induction, as shown
for mGluR-mediated LTD (Morita et al. 2009; Zhou
et al. 2011; Mills et al. 2014). Modulation of N-cad
expression levels or altering AMPAR binding due to
the extracellular calcium concentration could directly
influence AMPAR synaptic content and turnover.
Concordantly the regulatory role of N-cad has been linked
to multiple forms of plasticity (LTP: Tang et al. 1998;
Bozdagi et al. 2000; Mills et al. 2014; structural: Mendez
et al. 2010; LTD: Zhou et al. 2011; short-term plasticity
(STP): Jungling et al. 2006). How AMPAR ECR dynamics
impact N-cad binding, which EC domain(s) associate(s)
with the NTD, and how this interaction is influenced by
TARPs (Fig. 3; Abstract figure) and other NTD interactors
remain open questions.

In addition to C-terminal scaffolding factors, NPs have
been shown to induce postsynaptic AMPAR clustering via
the NTD (O’Brien et al. 1999) and their impact must be
considered in the light of AMPAR ECR reconfigurations
at synapses (Fig. 3). NPs, a family of Ca2+-dependent
lectins, include the secreted NP1 and NP2, as well as
the membrane-bound NP receptor (NPR). They harbour
a C-terminal pentraxin domain, targeting the NTD and
mediating AMPAR clustering, and an N-terminal coiled
coil domain, allowing NP multimerisation, which under-
lies their clustering ability (O’Brien et al. 2002; Xu et al.
2003). NP1 and NP2 are secreted from glutamatergic
terminals, directing AMPAR aggregation at postsynaptic
sites somewhat analogous to cerebellins, secreted C1q-type
proteins, which mediate GluD2 clustering at parallel
fibre–Purkinje cell synapses in the cerebellum (Yuzaki,
2011). NPR is an integral membrane protein, which may
facilitate a trans-synaptic interaction via secreted NPs and
AMPARs (Sia et al. 2007; Pelkey et al. 2015). Whereas NP1
is constitutively expressed (Xu et al. 2003), NP2 is induced
by neuronal activity (O’Brien et al. 1999), fine-tuning
the synaptic response by regulating AMPAR density at
synapses (Chang et al. 2010).

NP–NTD interactions have so far been characterised
for GluA4 only (Sia et al. 2007), with GluA4-containing
AMPARs requiring NP2 and NPR to be stabilised at post-
synaptic shaft synapses in parvalbumin-expressing inter-
neurons (PVs) (Chang et al. 2010; Pelkey et al. 2015).
Despite this, there is evidence of NP interactions with
all AMPAR subunits (O’Brien et al. 1999; Xu et al. 2003;
Sia et al. 2007). The molecular details of NP interaction

with AMPAR NTDs are currently unclear. This is of
interest given the sequence diversity between AMPAR
NTDs (Fig. 2A), hence the scope for stabilising specific
AMPAR combinations and potentially permitting the
fine control required for synaptic regulation. Significant
questions also remain about the synapse specificity of this
interaction. At present, pentraxins appear to play a pre-
dominant role at interneuronal synapses, being highly
enriched at synapses formed between pyramidal cells
and parvalbumin-positive interneurons (PVs) (Xu et al.
2003; Chang et al. 2010). NP2/NPR double knockout
mice exhibit PV cell dysfunction affecting the entire
hippocampal circuitry, without an apparent effect on
Schaffer collateral–CA1 spine synapses (Pelkey et al.
2015). Whether AMPAR stability at shaft synapses also
requires the TARP/PSD-95 scaffold is not known and
raises questions about the combinatorial interaction
possibilities of the AMPAR NTD.

Another group of secreted lectins, the galectins, have
the potential to modulate AMPAR and KAR gating
kinetics, in a subunit-selective manner. The eel galectin
Cgn1 substantially slowed the desensitisation kinetics of
recombinant, homomeric GluA4 and GluK2 KAR; similar,
albeit more subtle effects were seen with mammalian
galectins (Copits et al. 2014). The more substantial galectin
modulation observed with KARs versus AMPARs may
be explained by the fact that KARs are N-glycosylated
more extensively and glycans are also present on the
LBD; in AMPARs, N-glycans are restricted to the NTD
and the NTD–LBD linker. The effect on desensitisation
was dependent on the location and type of the glycan
and was also observed in the presence of auxiliary sub-
units (TARP γ-2 in the case of GluA4 and Neto-1 for
GluK2) (Copits et al. 2014). Lastly, AMPAR proteomics
screens have unearthed other secreted factors including
Noelins and brorins (Schwenk et al. 2012), which will
interact with the LBD, the NTD or with both ECR domains
simultaneously. Their direct impact on the receptor and
their influence on the action of other ECR-targeting inter-
actors is currently unknown.

Conclusion

The ECR, particularly in non-NMDARs, is unique in both
its vertical extent (�13 nm in PDB 4UQJ) and its flexible
organisation, an architecture dramatically deviating from
other ligand-gated ion channels such as Cys-loop (Unwin,
2005; Miller & Aricescu, 2014) and P2X receptors (Kawate
et al. 2009). In addition to a highly dynamic LBD layer, the
interface between the NTD dimers ruptures specifically in
AMPARs (Nakagawa et al. 2005; Durr et al. 2014; Meyerson
et al. 2014) permitting substantial reconfiguration of the
ECR. Here we postulate that this organisation will have
consequences at synapses where AMPARs are surrounded
by a large number of pre- and postsynaptic interaction
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partners. Together with the sequence diversity of the
NTD this setting would permit a multitude of potentially
selective associations with consequences on signalling
through the ion channel TMD and perhaps on retrograde
(‘outward’) trans-synaptic signalling. Since AMPAR
location at synapses is tightly controlled (Opazo &
Choquet, 2011), the ECR may turn out to be a key player
in receptor positioning, clustering and stabilisation in
synaptic plasticity.
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acetylcholine receptor at 4 Å resolution. J Mol Biol 346,
967–989.

Xu D, Hopf C, Reddy R, Cho RW, Guo L, Lanahan A, Petralia
RS, Wenthold RJ, O’Brien RJ & Worley P (2003). Narp and
NP1 form heterocomplexes that function in developmental
and activity-dependent synaptic plasticity. Neuron 39,
513–528.

Yelshanskaya MV, Li M & Sobolevsky AI (2014). Structure of
an agonist-bound ionotropic glutamate receptor. Science
345, 1070–1074.

Yuan H, Hansen KB, Vance KM, Ogden KK & Traynelis SF
(2009). Control of NMDA receptor function by the NR2
subunit amino-terminal domain. J Neurosci 29,
12045–12058.

Yuzaki M (2011). Cbln1 and its family proteins in synapse
formation and maintenance. Curr Opin Neurobiol 21,
215–220.

Zhang W, St-Gelais F, Grabner CP, Trinidad JC, Sumioka A,
Morimoto-Tomita M, Kim KS, Straub C, Burlingame AL,
Howe JR & Tomita S (2009). A transmembrane accessory
subunit that modulates kainate-type glutamate receptors.
Neuron 61, 385–396.

Zhou Z, Hu J, Passafaro M, Xie W & Jia Z (2011). GluA2
(GluR2) regulates metabotropic glutamate
receptor-dependent long-term depression through
N-cadherin-dependent and cofilin-mediated actin
reorganization. J Neurosci 31, 819–833.

Zuber B, Nikonenko I, Klauser P, Muller D & Dubochet J
(2005). The mammalian central nervous synaptic cleft
contains a high density of periodically organized complexes.
Proc Natl Acad Sci USA 102, 19192–19197.

Additional information

Competing interests

None declared.

Funding

J.G.-N., B.H., J.F.W. and I.H.G. were funded by grants from the
Medical Research Council (MC U105174197).

Acknowledgements

We thank James Krieger and Jonathan Hanley for critically
reading the manuscript. We acknowledge Joanna Westmoreland
and Graham Lingley for help with the Abstract figure.

C© 2016 MRC Laboratory of Molecular Biology. The Journal of Physiology C© 2016 The Physiological Society


