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The human motor neuron pools receive a dominant
slow-varying common synaptic input
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Key points

� Motor neurons in a pool receive both common and independent synaptic inputs, although the
proportion and role of their common synaptic input is debated.

� Classic correlation techniques between motor unit spike trains do not measure the absolute
proportion of common input and have limitations as a result of the non-linearity of motor
neurons.

� We propose a method that for the first time allows an accurate quantification of the absolute
proportion of low frequency common synaptic input (<5 Hz) to motor neurons in humans.

� We applied the proposed method to three human muscles and determined experimentally that
they receive a similar large amount (>60%) of common input, irrespective of their different
functional and control properties.

� These results increase our knowledge about the role of common and independent input to
motor neurons in force control.

Abstract Motor neurons receive both common and independent synaptic inputs. This
observation is classically based on the presence of a significant correlation between pairs of
motor unit spike trains. The functional significance of different relative proportions of common
input across muscles, individuals and conditions is still debated. One of the limitations in our
understanding of correlated input to motor neurons is that it has not been possible so far to
quantify the absolute proportion of common input with respect to the total synaptic input
received by the motor neurons. Indeed, correlation measures of pairs of output spike trains only
allow for relative comparisons. In the present study, we report for the first time an approach for
measuring the proportion of common input in the low frequency bandwidth (<5 Hz) to a motor
neuron pool in humans. This estimate is based on a phenomenological model and the theoretical
fitting of the experimental values of coherence between the permutations of groups of motor unit
spike trains. We demonstrate the validity of this theoretical estimate with several simulations.
Moreover, we applied this method to three human muscles: the abductor digiti minimi, tibialis
anterior and vastus medialis. Despite these muscles having different functional roles and control
properties, as confirmed by the results of the present study, we estimate that their motor pools
receive a similar and large (>60%) proportion of common low frequency oscillations with respect
to their total synaptic input. These results suggest that the central nervous system provides a large
amount of common input to motor neuron pools, in a similar way to that for muscles with
different functional and control properties.
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Introduction

Motor neurons in the spinal cord individually receive
thousands of excitatory and inhibitory synaptic inputs
(Heckman & Enoka, 2004, 2012). To improve the
controllability of the motor system, some of these inputs
are shared across motor neurons in the same motor pool
and between different motor nuclei (Ishizuka et al. 1979;
Lawrence et al. 1985). This generates common fluctuations
in the membrane potentials of the motor neurons that
determine significant correlation levels between their
output spike trains (De Luca et al. 1982; Semmler,
2002). For this reason, the amount of correlation between
pairs of motor unit spike trains has been used to infer
connections in the spinal neural networks (Kirkwood &
Sears, 1978; Farmer et al. 1997; Vaughan & Kirkwood,
1997). Classically, the degree of correlation between pairs
of motor unit spike trains in individual muscles has
been considered as an indication of the number of
last-order cortical projections on their motor neuron
pools (Kirkwood, 1979). In general, the estimated levels
of correlation in motor unit spike trains are relatively low.
This phenomenon has been interpreted in the presence
of only a small amount of shared synaptic input to the
motor neurons (De Luca et al. 1993). However, recent
studies have demonstrated that this interpretation may be
not fully correct (Taylor & Enoka, 2004; Keen et al. 2012;
Negro & Farina, 2012).

Time and frequency domain measures between pairs
of motor neuron spike trains are influenced by the
non-linear nature of the motor neurons (de la Rocha
et al. 2007; Tchumatchenko et al. 2010, 2011; Negro
& Farina, 2012). Because of this non-linearity, there is
no direct association between correlation measures of
the motor neuron outputs and the correlation in input.
Moreover, pairwise correlations of spike trains have high
variability (Negro & Farina, 2012; Farina & Negro, 2015),
which limits any interpretation of the results (Schmied
& Descarreaux, 2010). Finally, the classic correlation
approach to pairs of motor units does not provide insight
into the statistical structure carried by a population of
motor neurons (Averbeck et al. 2006; Negro & Farina,
2011b). In addition to these problems, the main limitation
to our understanding of the role of common input to
motor neurons is that, so far, it has not been possible

to measure the absolute proportion of common input to
motor pools. Indeed, the correlation between output spike
trains is not a measure of the input correlation (de la Rocha
et al. 2007; Tchumatchenko et al. 2010, 2011) and can only
be used for relative comparisons (Nordstrom et al. 1989;
Nordstrom & Miles, 1990; Nordstrom et al. 1992; Semmler
et al. 1997; Semmler et al. 2004; Keen et al. 2012).

In the present study, we focus on the low frequency
band (<5 Hz) of common synaptic input because this
bandwidth is directly associated with force generation
(De Luca & Erim, 1994). We first provide a theoretical
description based on a phenomenological model of the
level of correlation between the outputs of populations of
motor neurons that receive a combination of common and
independent synaptic inputs. The independent synaptic
input resembles the summation of synaptic fluctuations
that are individual for each motor neuron (e.g. membrane
noise) and the common synaptic input refers to the
contribution that is shared across the motor neuron pool
(e.g. control signal). From this derivation, we show that
a reliable measure of the proportion of common input
to the population of motor neurons can be derived
by fitting experimental data to the derived analytical
model. This measure (i.e. the optimized parameters in
the experimental fitting) provides an estimate of the
proportion of common input to the motor neuron pool
with respect to the total synaptic input. We apply this
measurement method to three human muscles (of the
hand, thigh and leg) that have known differences in
force control seeking to investigate the functional role of
common and independent input.

The present study aims to measure the proportion
of low frequency shared input received by the motor
neurons belonging to the same motor pool in humans
and to compare this in muscles with different functional
properties and accuracies in force control.

Methods

We first provide a theoretical derivation for the proposed
index using a phenomenological model derived by the
interpretation of previous experimental results (Negro
et al. 2009; Negro & Farina, 2012; Farina et al. 2014;
Castronovo et al. 2015). This analytical derivation
is based on a simplified motor neuron behaviour
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(leaky integrate-and-fire; LIF) and will be validated in
simulations based on a more complex motor neuron
model to prove its generalization.

Theory

We consider a pool of N LIF motor neurons that receive
stochastic input currents. Each motor neuron receives an
input current that is a linear combination of common
and independent Gaussian noises. The independent noise
resembles the fluctuation of the membrane potential
generated by the summation of synaptic inputs that
are individual for each motor neuron (e.g. ion channel
noise, uncoupled and unshared interneurons, etc.). On
the other hand, the common synaptic input refers to the
membrane fluctuations resulting from the summation of
shared synaptic inputs received by the population of motor
neurons (e.g. shared projections from cortical neurons
or interneurons, activity from supopulations of neurons
that are correlated in nature). This includes inputs that
are projected across all motor neurons or different inputs
that project on subpopulations of motor neurons but that
are correlated. In this case and under the assumptions of
linearity of the input–output relationship (linear response
theory) of the motor neuron (Vilela & Lindner, 2009;
Sharafi et al. 2013), the power spectrum of the output
spike train of each motor neuron Sy(f ) can be simplified
as:

Sy (f ) = SN (f ) + |X (f )|2SS (f ) (1)

where SN(f) is the power spectrum of the output spike
train when it is driven by independent synaptic input
only, X(f) is the response function (susceptibility) of
the motor neuron to the stimulus and SS(f) the power
spectrum of the stimulus. In the present study, the
stimulus is the common synaptic input received by all
motor neurons. The linear response theory shown in
eqn (1) is valid only for weak stationary synaptic input
(variance of the common noise σ2 << μ2, where μ is
the mean of the total synaptic current) and its accuracy
increases for a large number of motor neurons (Negro
& Farina, 2011b), as considered in the present study.
In the case of larger oscillations, non-linear phenomena
(e.g. rectification) may influence the results. In the pre-
sent study, we assume that both the stimulus and the
independent synaptic input (e.g. membrane noise) are
coloured noise realizations with a given bandwidth. These
currents represent the summation of all excitatory and
inhibitory postsynaptic potentials received by the motor
neurons, which are partly shared across the pool and partly
individual for each motor neuron. Close analytical forms
of the susceptibility functions exist for the LIF model,
although they have a relatively complex formulation
(Vilela & Lindner, 2009). With the purpose of obtaining

an invertible formulation, we use approximations that will
be validated in simulations.

If we consider the summation of n spike trains from n
identical motor neurons that receive a common stimulus
(shared synaptic input) and are driven by independent
noise realizations, the power spectrum of the cumulative
output spike train SY(f) can be expressed as:

SY (f ) = nSN (f ) + n2|X (f )|2SS (f ) (2)

In eqn (2), we make use of unperturbed (not
modulated by the input) spike trains being independent
(their power spectra sum linearly with n), whereas the
stimulus-dependent parts of their power spectra sum as
n2 because they are common to all motor neurons (Sharafi
et al. 2013). Therefore, the effect of the common synaptic
input increases when the number of motor neurons
increases, as previously shown experimentally (Negro &
Farina, 2012; Farina et al. 2014; Castronovo et al. 2015).

Using eqn (2), it is possible to derive the coherence
function between the cumulative spike trains of two
groups of n motor neurons, each in the same motor pool:

C (f ) =
∣∣n2|X (f )|2SS (f )

∣∣2

[
nSN (f ) + n2|X (f )|2SS (f )

]2 (3)

Under the above assumptions, we can parameterize
eqn (3) as:

C̄f1,f2 = |n2A |2

[nB + n2A]2 (4)

where C̄f1,f2 is the mean of the coherence in the frequency
band [f1,f2] selected for the analysis, and A and B
(parameters) are the power of the common synaptic input
(multipled by the absolute square of the susceptibility)
and the response of the pool of motor neurons that receive
only independent synaptic inputs in the same bandwidth,
respectively. If the frequency range of interest is lower than
the average discharge rates of the estimated motor neuron
spike trains, the susceptibility is assumed to be constant
in the bandwidth of interest (Vilela & Lindner, 2009). For
higher frequencies, this assumption is not strictly valid
and a certain amount of distortion should be expected.
Therefore, we focus on the low frequency range (<5 Hz),
which is also the range of frequencies of the neural drive
to muscle that produces force (Farina et al. 2014). In
this frequency range, we show with simulations that the
approximation of a constant X(f) has a minimal effect on
the final estimation for a large range of inputs.

Given the output population of spike trains, we are
interested in the estimation of the square root of the
ratio A/B, which we demonstrated in simulations (see
below) to be a good approximation of the proportion
of the common synaptic input with respect to the total
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synaptic input received by the motor neurons. The same
result was derived theoretically using the formulations
for X(f) and SN(f) that are available for the perfect
integrate-and-fire model (results now shown). The ratio
can be estimated by an experimental measure of the mean
coherence in the frequency range [f1,f2] C̄f1,f2 for varying
n (number of motor neuron spike trains used in the
calculation (Negro & Farina, 2012)) using eqn (4). This
can be performed using standard nonlinear least-square
solvers. In the present study, for this purpose, we used the
function ‘lsqcurvefit’ available in the optimization toolbox
of MATLAB (MathWorks Inc., Natick, MA, USA).

Figure 1 describes the schematic assumption of
common input to a population of motor neurons and the
integral of the coherence function with n as independent
variable. A pool of motor neurons receives common and
independent synaptic inputs and their output spike trains
show some degree of correlation that can be estimated
with frequency domain techniques. However, the amount
of coherence estimated by pairs of output spike trains
is not representative of the original correlation in input
because it depends on the discharge rates and variability
in discharge of the selected units (Negro & Farina,
2012).

From eqn (4) it is possible to establish a fitting of
experimental coherence (Fig. 1) data to estimate the square
root of the ratio A/B. Using a least-square curve fitting of
the estimated values of coherence for different numbers
of motor neuron spike trains (cumulative spike trains),
the parameters A and B of eqn (4) can be estimated.
The cumulative spike trains are constructed by summing

two groups of n spike trains and applying the coherence
function between them. The square root of the ratio A/B,
which we refer to as the proportion of common input
(PCI), is an estimate of the relative proportion of the
common synaptic input with respect to the total synaptic
input (excluding the mean value) and is an estimate
of the variable γ (proportion of common membrane
fluctuations) in the scheme of Fig. 1. Therefore, the mean
injected current that drives the motor neuron pool is
assumed to change the global probability of discharge
only. The mean injected current is determined by the
summation of all EPSP and IPSP events, common and
independent but, in the present study, we consider only
the fluctuations of those inputs, as we have done in all
our previous studies (Negro & Farina, 2012; Farina et al.
2013; Farina et al. 2014; Dideriksen et al. 2015b; Farina
& Negro, 2015; Negro et al. 2015). Figure 1 represents
the mathematical model assumed for the estimation of
the proportion γ of common membrane fluctuations.
The components of this model do not necessarily directly
reflect anatomical pathways for the delivered inputs.
The proposed regression assumes that the properties of
the motor neurons in the pool are similar. However,
the estimation provided by eqn (4) was shown to be
robust also when the characteristics of the motor neurons
were distributed across certain ranges (see simulation
results).

With respect to previous correlation measures between
output spike trains, the proposed PCI index is an absolute
estimate of γ in Fig. 1 and has therefore an immediate
physiological meaning. Conversely, output correlation
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Figure 1. Representative scheme of the model used
A pool of motor neurons receives common and independent synaptic input with SDs equal to γ σ T and (1 – γ )σ T,
respectively. σ T refers to the SD of the total synaptic input. The output spike trains of the motor neurons are
linearly summed to estimate the magnitude of the coherence in the frequency band <5 Hz (delta band) for
different numbers of motor neurons. The average values of coherence are fitted using eqn (4) to estimate the
proposed index common to independent ratio (PCI). In this example, the simulated value of γ was 0.5 and the
estimated PCI value was 0.55. As discussed in the Results, the PCI index was shown to be a good estimation of
the proportion of common synaptic input γ .
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indices, such as the common drive index (De Luca & Erim,
1994), the short-term synchronization indices (Kirkwood
& Sears, 1978; Nordstrom et al. 1992) or coherence
measures between pairs of motor unit spike trains, are
relative measures only indirectly associated with γ and
can be used for comparing relative conditions only. The
approach that we propose is therefore the only currently
available to directly estimate the proportion of common
and independent input to motor neurons in the frequency
bandwidth of voluntary control and force generation
(<5 Hz). As such, for the first time, this measure allows us
to provide a quantification of these proportions in human
muscles during voluntary contractions.

Both the modelling and the simulation approaches
assume a shared input across the whole motor neuron
population. The common synaptic input should originate
from correlated synaptic activity. Therefore, the proposed
assumption does not imply that, anatomically, the
branched axons from cortical, subcortical and afferent
pathways should innervate all motor neurons in the same
pool. In the case of partial shared synaptic inputs, the
proposed method would provide an average value of the
proportion of the common synaptic input, comparable to
the same scenario with full connectivity. In this sense, the
measure PCI provides information on the average input
across the motor neuron pool. Two motor neurons taken
at random would not necessarily share the proportion
of common input indicated by PCI because this is a
population measure. However, when the pair of motor
neurons is randomly changed, the proportion of common
input that is measured on average over a large number of
pairs would be predicted by the measure PCI. For example,
if only half of the motor neurons receive shared input,
the measure PCI would provide a value as average across
motor neurons that do not share input and others that
share a certain amount of input. In this example, PCI
would underestimate the value of common input in the
subpopulation that shares the input and overestimate it in
the population that does not share common input, as is
expected by a population measure.

Simulations

The theoretical derivation of the PCI index as estimated
from non-linear regression of coherence values assumes a
LIF model for the motor neuron behaviour. We validated
this expression in numerical simulations by representing
motor neurons with a Hodgkin–Huxley type model.
This approach shows that more complex motor neuron
models (as used in simulation) provide results that deviate
negligibly from the theoretical derivation obtained with
the approximated model.

The simulations were based on a model of populations
of motor neurons that received common and independent
inputs. A similar modelling approach has been used in

previous studies (Negro & Farina, 2011a, 2012; Farina
et al. 2013; Dideriksen et al. 2015a).

The motor neuron model was based on that described
by Cisi & Kohn (2008). It consists of two compartments,
six conductances (with three voltage-dependent conduct-
ances, Na, Kf and Ks) and four state variables. The
pulse-based simplification used in the original model was
removed from the present study and a full formulation,
proposed previously (Traub & Miles, 1991) was used
instead. The motor neuron parameters were the same as
used by Cisi & Kohn (2008) and selected according to an
exponential distribution over the pool of motor neurons
(Fuglevand et al. 1993).

The number of motor neurons was set to 300, similar
to the histological findings in the abductor digiti minimi
(ADM) muscle (Santo Neto et al. 1985), which is one of
the muscles investigated in the experiments. The input to
motor neurons included a linear summation of common
and independent Gaussian noises. The common and
independent noises had a bandwidth of 50 Hz. In most
simulations, the amplitude of the synaptic input was
chosen to obtain output spike trains with a coefficient of
variation for the interspike interval (ISI) of �15% (Moritz
et al. 2005). The mean currents were simulated between 5
and 15 nA. In all simulations, the variance of the common
synaptic noise σ2 was selected substantially smaller than
the square of the mean synaptic current.

The model was implemented in MATLAB. The system
of differential equations for the motor neuron model was
solved with the Adams–Bashforth–Moulton PECE solver
(Shampine, 1975), using optimized time steps within
intervals of 1 ms. Each simulation was 50 s long.

Experiments

Experiments were performed on the ADM, tibialis anterior
(TA) and vastus medialis (VM) muscles at moderate force
levels. These three muscles were selected because they are
known to have different properties and functional roles.
For example, the ADM, similar to other muscles in the
hand, shows relatively poor steadiness in force compared
to TA and VM (Tracy, 2007; Tracy et al. 2007). The
maximal motor unit discharge rates in these muscles are
also very different, with values for the ADM and TA that are
almost double those for VM (Enoka & Fuglevand, 2001).
Additionally, their levels of short-term synchronization,
as classically reported, are also different, with moderate to
high levels for the ADM and TA and very low levels for
the VM (Dideriksen et al. 2009; Keen et al. 2012; Negro &
Farina, 2012).

We identified the spike trains of motor neurons
(described below) in these three human muscles during
voluntary contractions by processing electromyography
(EMG) signals and estimated the coherence function
between cumulative spike trains of groups of motor
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neurons. Subsequently, we used this information to
fit the theoretical derivation reported in eqn (4). The
experimental data used for this analysis are partly taken
from two previous studies (Hedayatpour et al. 2007; Negro
et al. 2009). The experimental procedures of those studies
are reported briefly here for completeness.

Three separate groups of five healthy men (mean ± SD,
age: 24 ± 2 years for the ADM, 28 ± 2 years for the
TA, and 24 ± 1 years for VM muscle) participated
in the experiments. The experiments were conducted
in accordance with the Declaration of Helsinki and
approved by the local ethics committee of Region North
Jylland Denmark. All participants provided their written
informed consent form before inclusion.

Single motor unit action potentials were recorded with
I.M. electrodes in all muscles. I.M. EMG was conducted
using two pairs of Teflon-coated stainless steel wires
(diameter 0.1 mm; A-M Systems, Carlsborg, WA, USA)
inserted via 25 gauge hypodermic needles (23 gauge for the
VM experiment). The needles were inserted and removed
after insertion, leaving the wires inside the muscle. Each
wire was cut to expose the cross section of the tip. Bipolar
I.M. EMG signals were amplified (Counterpoint EMG;
Dantec Medical, Skovlunde, Denmark), bandpass filtered
(500 Hz to 5 kHz) and sampled at 10 kHz (20 kHz for the
VM experiment).

For all muscles, after inserting the wire electrodes,
the subjects performed three maximal voluntary contra-
ctions (MVCs) with a rest of 2 min in between. The
maximum force achieved during the maximal contra-
ctions was considered as the reference MVC.

For the ADM recordings, the subject was seated on an
adjustable chair with the right arm extended in a force
brace (Aalborg University, Aalborg, Denmark). The fifth
finger was fixed in the isometric device for measurement
of finger-abduction forces. The forearm and the four
digits were fixed with Velcro straps (Velcro Ltd, Mid-
dlewich, UK). The subject then sustained the target
force level for 60 s. In the original study (Negro et al.
2009), the target force levels recorded for this muscle
corresponded to 5%, 7.5% and 10% MVC. However, only
those recordings corresponding to 10% MVC were used
in the present analyses. The subject had feedback on force
during all contractions. The force produced by the fifth
finger was measured using two force transducers (Inter-
face, Scottsdale, AZ, USA): one in the transverse plane
and one in the sagittal plane. During each contraction, the
force on the sagittal plane was monitored and contractions
during which this force was not negligible were repeated.
The force signals were sampled at 10 kHz and stored on
a computer. Visual feedback of the abduction force was
provided via an oscilloscope.

For the TA muscle, the subject was seated in an upright
position, with the right leg fully extended and with the
foot restraint in a force transducer (Aalborg University).

The angle of the ankle was �20°with respect to the neutral
position (0°). The leg was fastened to the isokinetic device
by means of Velcro straps to avoid altering the position of
the ankle throughout the task. In the original experiment,
the subject performed three submaximal contractions at
10% MVC, 15% and 20% MVC with a duration of 60 s,
in random order. For the TA muscle, only the 10% MVC
was used for the present analyses.

For measurements from the VM muscle, the subject was
seated on a chair with the right thigh flexed and fixed at 90
degrees. An ankle strap was attached with a chain to a load
cell fixed on the wall. In the original experiment, the sub-
ject performed seven submaximal contractions between
2.5% and 30% MVC with a duration of 180 s. In the pre-
sent study, we report the results only for the contractions
at 10% MVC for 60 s.

Signal analysis

The action potentials of individual motor units were
identified from the I.M. EMG signals by use of a
decomposition algorithm (McGill et al. 2005). Given
the recent improvements of this algorithm (EMGLAB),
the data have been fully re-analysed with respect to the
original studies to reach the maximum degree of accuracy
in decomposition. The spike trains of each motor unit
were used to extract the average discharge rate and the
ISI variability of the unit. Moreover, coherence analysis
was performed between the cumulative spike trains of
two equally sized groups of motor units using Welch’s
averaged periodogram method in 1 s non-overlapping
windows. All permutations of the detected units were
used in the two groups, varying the number of motor
units in each group from 1 to the maximum number (half
of the number of detected units) (Fig. 1). The coherence
function was calculated in the frequency range 1–5 Hz.
This selection was chosen to focus on a frequency range of
voluntary control that is preserved in the force output
signal. The averaged value of the coherence (without
respect to significance) in this bandwidth was computed
for all unit permutations. The averaged values of coherence
as a function of the number of motor units used for the
calculation were fitted by least-squares using eqn (4), by
optimizing the parameters A and B. In this way, the PCI
index, as previously defined, was computed as a direct
estimate of γ (Fig. 1).

The values of the common drive index (CDI) were
also calculated based on the procedures described pre-
viously (De Luca et al. 1982; De Luca & Erim, 2002).
Moreover, the common input strength (CIS) (Nordstrom
et al. 1992) was computed as described by Semmler
et al. (1997). The common drive is related to the low
frequency bandwidth of motor unit spike trains, whereas
CIS represents the correlation in the full frequency
bandwidth.
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Statistical analysis

Data are reported as the mean ± SD. The coefficient of
variation for the ISI was calculated as the SD divided by
the mean value (%). The variability of the indices CIS and
CDI across the motor neuron population was quantified
by the respective coefficients of variation over the pairs
chosen for their calculation. One-way ANOVA was used
to compare PCI, CIS and CDI between muscles. P < 0.05
was considered statistically significant. Linear regression
analysis was used to assess the relationship between PCI,
CDI and CIS and the simulated proportion of common
input.

Results

Simulation and experimental results are described and
interpreted using the predictions derived from the
analytical derivations (see Methods).

Simulations

The estimation of the coherence between pairs of
composite spike trains showed a tendency to increase faster
for greater levels of input correlation (Fig. 2), as predicted
theoretically. Figure 2 shows the estimated coherence for
pairs of composite spike trains, as a function of the number
of motor units, for low (Fig. 2A) and high (Fig. 2B)
activation levels. In the low activation case (Fig. 2A),
the mean ± SD synaptic current was 8 ± 1.2 nA. Only
neurons discharging at 8 pps or higher were selected.
In this simulation, corresponding to the low activation
level, the total number of motor neurons that fulfilled this
criterion was 172. The graph shows the average coherence

values for four levels of simulated common synaptic input
(γ). The profiles of average coherence values were fitted
with the mathematical expression in eqn (4) to provide an
estimation of the proportion of the SD of the common
synaptic input (excluding the mean value) relative to
the total synaptic input (PCI). The error between the
estimated γ and the simulated value depended on the
strength of common input. It varied between 3% at 85%
of simulated common synaptic input to 40% with only
10% of common synaptic input. In the high activation
case, the mean ± SD synaptic current was 10 ± 1.5 nA
and the total number of active motor neurons was 262. In
this case, the percentage of error between the simulated
value of γ and PCI was 0% (within the second decimal
approximation) at 85%, 8% at 60%, 20% at 35%, and 50%
at 10% of common synaptic input. These results show that
the proposed technique provides a reliable estimation of
the proportion of common synaptic input relative to the
total synaptic input for moderate to high levels of common
input (error γ � 0.4). The experimental results show
that the condition of high common input, and thus high
accuracy in the estimation of its proportion, is satisfied.

The main limitation of pairwise output correlation
measures is their dependency on the discharge rates of
the motor neurons and their variability (de la Rocha et al.
2007; Negro & Farina, 2012). A reliable index of correlation
should be able to provide a robust estimate, independent
of the average discharge rate of the motor neuron pool.
Figure 3 reports the values of PCI along with those of CDI
and CIS for simulations where the average discharge rates
of the motor neurons were varied. With a medium level
of activation (Fig. 3A), the average discharge rate of the
pool of motor neurons was 11.6 pps (8.2–13.4 pps). In this
scenario, the CDI was 0.40 and the CIS 0.50 pps. Under
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Figure 2. Estimation of the simulated proportion of common synaptic input using the proposed index
for different numbers of motor neuron spike trains
Profiles for four levels of simulated common synaptic inputs (γ ): 10%, 35%, 60% and 85% and the corresponding
estimated values (γ ). The results are shown for two simulated conditions. A, low level of activation (mean synaptic
current of 6 nA). B, high level of activation (mean synaptic current of 10 nA). The values of coherence are reported
as the mean ± SD for each selection of number of spike trains in the composite spike train. The estimated values
of PCI were a good approximation of the true simulated values γ for both cases.
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these conditions, the estimated value for γ (PCI) was 0.43,
with an error of 14% with respect to the simulated true
value of 0.5. Note that the proposed index PCI is a direct
estimate of γ and can thus be directly interpreted as a
proportion of common input, according to the definition
of Fig. 1, whereas the indices CDI and CIS reflects stati-
stical properties of the output spike trains and can
be used only to determine relative differences in
proportion of common input across conditions, within
approximations, but not absolute estimates. When
increasing the proportion of common synaptic input
relative to the independent input (γ = 0.75), CDI changed
only modestly (CDI = 0.46), showing a limited sensitivity
to the changes in proportion of common input. Under
these conditions, CIS increased to 1.72 pps, whereas PCI
was 0.76 (Fig. 3B). This corresponded to an error in the
PCI value with respect to γ of �1% of the true value. When
the level of activation of the motor neuron pool increased,
the average discharge rate of the active motor neurons also
increased to 29.2 pps (8.4–35.5 pps). This influenced the
CIS index, which doubled from 0.50 pps, with low average
rate, to 1.10 pps, with high rate, despite the same common
input being simulated in the two conditions (with the same
bandwidth). Conversely, the CDI and PCI indices were less
sensitive to the change in discharge rates (Fig. 3C). These
representative simulations indicate that CIS is extremely
sensitive to discharge rates (de la Rocha et al. 2007; Negro
& Farina, 2012), whereas CDI is more robust to changes

in discharge rate, but with a small sensitivity to changes in
common input. Neither CDI, nor CIS provide an absolute
estimate of common input, but only indirect relative
changes. Conversely, PCI provided an accurate estimate of
the absolute proportion of common input in all conditions
with minimal sensitivity to discharge rate.

The representative results shown in Fig. 3 were
confirmed by a more extensive set of simulations. Figure 4
shows the relationship between the CDI and CIS indices
and the simulated value of γ, for γ changing in the range
0.1–0.9. Two scenarios with different average discharge
rate (mean synaptic currents of 6 and 10 nA) were
simulated. The common synaptic input had a bandwidth
of 50 Hz, as in the previous simulations. All indices
were estimated using the motor neurons with average
discharge rates of 8 pps. The average discharge rates
were 14.0 and 21.4 pps for the low and high activation
cases, respectively. In this way, we selected only the motor
units fully recruited by the simulated synaptic input.
Moreover, the indices were normalized with respect to
their maximum values. This normalization, which is not
possible experimentally, allowed comparison of CDI and
CIS with PCI, despite the first two indices not reflecting
the same physical quantity as PCI. Normalization was
needed because only PCI is an absolute measure. Figure 4A
and B depicts the values of CDI normalized to its
maximum as a function of the normalized simulated γ

values for the low and high activation cases, respectively.
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Figure 3. Influence of the average discharge rate of the motor neuron pool on the proposed index
The three plots show the average magnitude of the coherence calculated between groups of motor neuron spike
trains (mean ± SD). A, in this simulation, the motor neuron pool received a mean current of 5 nA and a proportion
of common synaptic input γ equal to 0.5. The average discharge rate of the motor neurons was 11.6 pps (8.2–13.4
pps) and the coefficient of variation for the ISI (CoVISI) was 14.3%. The estimated average values of CIS and CDI
were 0.5 pps and 0.40. The proposed index PCI provided an estimation of 0.43. B, same parameters as in A
but with higher common synaptic input (γ = 0.75). In this case, the CIS index increased substantially (1.72 pps),
whereas the CDI index showed a minimal variation (0.46). On the other hand, the proposed PCI index was equal
to 0.76, which is similar to the simulated proportion of common synaptic input. C, same as in (A) (γ = 0.5) but
the mean current was set to 15 nA. In this case, the average discharge rate of the motor neurons was greater
(29.2 pps, 8.4–35.5 pps) but the CoVISI was similar to the previous case (14.8%). The CIS values showed a marked
dependence on the average discharge rate of the motor neuron pool (CIS = 1.1 pps) but the CDI did not. The
proposed PCI was similar to the simulated value (0.49). The regression provided by the example of Fig. 3A is
superimposed and shows good agreement.
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The relationship was non-linear. Conversely, the linear
regression between the estimated values of shared input
calculated using the PCI index and the simulated values
was significant (P < 0.001) with a slope of �1, for both
activation levels. Figure 4C and D shows the behaviour of
the normalized CIS value as a function of the normalized
simulated γ values in the conditions that have been pre-
viously described. As for the CDI index, the CIS index
did not increase linearly with the simulated proportion of
common synaptic input. For example, under the condition
of moderate activation level, a normalized proportion of
common input between 10% and 40% can result in similar
values of CIS and CDI. More specifically, when comparing
two conditions with simulated values of the normalized
proportion of common synaptic input of 22% and 44%,
in a linear case, all parameters should vary by �22%. In
our simulations, the CIS index varied by �9% and the
CDI index by 6% (Fig. 4A–C). Conversely, the estimated
proportion of common synaptic input calculated using the
proposed approach showed a variation of 21%, similar to
the simulated one. Moreover, CDI and CIS showed a large

variability (grey areas in Fig. 4A–D) in the estimation
across the different pairs of motor units used for the
estimates, despite the simulations including common
input distributed uniformly across all motor neurons.
Conversely, the proposed index PCI was linearly associated
with γ (Table 1).

The simulation results presented in Figs 3 and 4 indicate
that the PCI measure is an accurate estimate of the absolute
proportion of common input to the motor neuron pool,
at least for relatively strong common inputs. Conversely,
correlation measures of output correlation (e.g. CDI and
CIS) do not provide a direct estimate and are also limited
for relative comparisons because of a small sensitivity
to changes in common input or dependency on motor
neuron discharge rates.

Experiments

Across all subjects, the coefficients of variation of the
generated force were 3.1 ± 1.0% (ADM), 1.8 ± 0.9% (TA)
and 3.4 ± 1.3% (VM). The averaged (total) number of
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Figure 4. Linearity of the proposed index
A and B, estimation of the CDI index for nine values of simulated proportion of common input between 10–90%
and comparison with the proposed PCI index. The results are shown for two levels of activation: low (6 nA) (Fig. 4A)
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Table 1. Regression parameters for the results reported in Fig. 4

Figure PCI vs. γ CDI vs. γ CIS vs. γ

4A y = 1.1∗x – 7.5 (8.10) y = 0.80∗x + 27.0 (26.90)
4B y = 1.1∗x – 6.5 (13.04) y = 0.67∗x + 22.0 (22.04)
4C y = 1.1∗x – 7.5 (8.10) y = 1.0∗x – 24.0 (31.97)
4D y = 1.1∗x – 6.5 (13.04) y = 1.1∗x – 23.0 (28.78)

The normalized regression error is given in parentheses.

identified motor unit spike trains for a single trial was 9 ± 2
(45) for ADM, 13 ± 4 (51) for TA and 8 ± 2 (40) for VM.
Motor unit discharge patters with obvious gaps or sharp
changes in the estimated instantaneous discharge rates
were excluded from the analysis. The average discharge
rate was 12.1 ± 2.0 pps for ADM, 17.7 ± 8.9 pps for
TA and 9.4 ± 1.9 pps for VM. The averaged coefficients of
variation for the ISI were 18.4 ±1.9% (ADM), 13.5±1.4%
(TA) and 12.7 ± 2.9% (VM).

Figure 5 shows a representative example of the analysis
of motor unit spike trains. The smoothed discharge rates
of the identified motor units are shown for each muscle
(Fig. 5, upper). The average coherence profiles are shown
for different numbers of spike trains used in the calculation
(Fig. 5, middle). The average values of coherence in the
bandwidth<5 Hz are reported as a function of the number
of motor unit spike trains used in the calculation (Fig. 5,
lower), as in Fig. 1. The PCI values were 0.73, 0.83 and
0.80, respectively. For these results, the normalized errors
in the fitting of the experimental data with eqn (4) were
negligible: 0.1% (ADM), 0.3% (TA) and 0.2% (VM). The
averaged fitting errors across all subjects were 0.2 ± 0.3%
(ADM), 0.9 ± 0.7% (TA) and 8.7 ± 13.3% (VM). The
values of CDI and CIS for the examples in Fig. 5 were,
respectively, 0.34 and 0.98 pps (ADM), 0.55 and 0.54
pps (TA), and 0.47 and 0.16 pps (VM). The averaged
values of CDI across all subjects were 0.38 ± 0.08 (ADM),
0.52 ± 0.10 (TA) and 0.42 ± 0.18 (VM). The averaged
values of CIS across all subjects were 1.19 ± 0.50 (ADM),
1.15 ± 0.62 (TA) and 0.20 ± 0.07 pps (VM). The average
values of PCI were 0.75 ± 0.12 (ADM), 0.82 ± 0.17 (TA)
and 0.63 ± 0.20 (VM)

The average coefficients of variation of the CDI
index within subjects across the motor unit pairs
were 30.6 ± 13.4% (ADM), 29.2 ± 10.4% (TA) and
35.2 ± 16.9% (VM). For the CIS index, the variability
among motor unit pairs was 31.6 ± 13.7% (ADM),
62.0 ± 19.6% (TA) and 57.0 ± 24.0% (VM). When
averaging across all pairs of motor units within each sub-
ject, the variability among subjects for CDI was 20.6%
(ADM), 20.8% (TA) and 42.7% (VM) and, for CIS, it
was 41.6% (ADM), 53.9% (TA) and 35.9% (VM). The
coefficient of variation for PCI calculated across subjects
was 16.0% (ADM), 20.7% (TA) and 31.7% (VM). The
larger variability found in the VM muscle was probably

a result of the lower number of motor units identified in
this muscle.

The averaged values of PCI, CDI and CIS for the
three muscles are shown in Fig. 6. Interestingly, the
estimated proportion of common input was greater than
60% for the three muscles, and therefore constituted
the majority of the input to the pool of motor neurons
with respect to independent noise. PCI and CDI did not
show a statistical difference across the muscles investigated
(Fig. 6A). Moreover, PCI and CDI were positively
associated (r2 = 0.52, P < 0.05) (Fig. 6B). However, this
association also showed a relatively high level of variability.
For example, a PCI value of 0.8 could correspond to
values of CDI in the range 0.30–0.55 (Fig. 6B). CIS was
significantly smaller for the VM muscle with respect to
ADM and TA. This difference was determined by the
observed absence of coherence for the VM muscle in the
frequency range >5 Hz for all subjects (Fig. 5).

To check for negative controls, we have also performed
the calculation of the PCI index using several random sets
(n = 100) of spike trains extracted from the recordings
available (TA and ADM muscles, one spike train per
recording). This procedure assured a fair control situation
with completely uncorrelated spike trains. Under these
conditions, the averaged estimation of the proportion of
the common input was 5 ± 3%. A lower limit different
from zero is expected because the coherence calculations
are performed over signals with finite duration. Moreover,
eqn (3) assumes the presence of a stimulus (common
input); therefore, some indeterminacy is present in the
case of fully uncorrelated spike trains.

Discussion

Our knowledge about the correlation between inputs
to motor neurons derives almost entirely from analyses
on pairs of motor unit spike trains (Farmer et al.
1997). These analyses have limitations and are not direct
measures. In the present study, we provide a direct measure
of the absolute proportion of common synaptic input
received by a motor pool and report these estimates in
three human muscles. The estimation is derived from
a phenomenological model of motor neuron activity
based on the observation that the summation of multiple
spike trains recorded during voluntary contractions can
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reproduce the synaptic control signal (stimulus) better
with an increasing number of spike trains (Negro et al.
2009; Negro & Farina, 2012; Farina et al. 2014; Farina
& Negro, 2015). For the three muscles investigated, the
estimated common input was the majority of the input

to the respective motor neuron pools. Moreover, its
proportion was similar across the three muscles studied.

The proposed measure is based on a theoretical
derivation obtained for the LIF motor neuron model,
which was derived using previous analytical results
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(Vilela & Lindner, 2009; Sharafi et al. 2013). Simulations
performed with a more realistic motor neuron model
were well in agreement with the theoretical derivation.
The proposed technique was able to accurately estimate
the proportion of common synaptic input simulated
in a motor neuron pool in the low frequency band
(<5 Hz). Because this bandwidth is the most important
for voluntary control and force generation (Farina et al.
2014; Farina & Negro, 2015), the characterization of the
common synaptic input received by motor neuron pools
in this bandwidth provides an insight into the neural
mechanisms of human muscle control.

An important aspect of the present study is that it
re-examines the use of correlation indices classically used
to infer connectivity and commonality for the motor
neuron pool. These measures are known to be quite
variable across motor neuron pairs (de la Rocha et al. 2007;
Negro & Farina, 2012). Indeed, pairs of motor neuron
spike trains may show occasionally null or negative values
of correlation (De Luca & Kline, 2014) as a result of the
non-linearity of motor neurons (Negro & Farina, 2012).

The theoretical derivation reported in eqn (3) (Sharafi
et al. 2013) was validated extensively in simulation and
experiments and proved to be a robust description of the
coherence profiles calculated as a function of the number
of spike trains in composite spike trains (Figs 2 and 3).
The equation assumes a shared stimulus/synaptic input
across the motor neuron pool but does not describe any
specific connectivity to the motor neuron pool. Apart
from the presence of some shared synaptic input, it
defines only its average distribution. The derived measure
(PCI) is therefore essentially a population measure that
characterizes the pool on average and not the specific
connectivity of individual neurons. Because the method
used is a robust regression based on minimization of
the mean square error, the error in the estimate of the
parameters was relatively low in most cases (Fig. 2), even
when only a small number of spike trains was available
(Fig. 2A). This is an important feature of the proposed
method because the number of motor units that can be
identified experimentally may be limited. Additionally, in
contrast to CIS, the estimated proportion of common
synaptic input derived by the coherence profiles was
not significantly influenced by substantial changes in the
average discharge rate of the motor neuron pool (Fig. 3).
Because the proposed approach is an estimation of the
proportion of common synaptic input, it was found to
be linearly correlated to the true value of this variable
(Fig. 4), in contrast to indices based on the correlation
between pairs of spike trains (output).

The experimental results confirmed the features of the
proposed approach that were revealed by the simulations.
The experimental coherence profiles followed a similar
dependence with the number of motor unit spike trains
used in the cumulative or composite spike train (CST)

(Fig. 5), as described in the theoretical and simulation
results. The estimation of the proportion of common
synaptic input on the data recorded on the ADM, TA and
VM muscles in five subjects showed that the amount of
common synaptic projections in the low frequency band
is relatively large, ranging between 60% and 80% (Figs 5
and 6A) but not statistically different among the muscles
studied.

Interestingly, in the higher frequency bands, substantial
differences were evident between the VM and the other two
muscles investigated. In particular, the VM muscle did not
show any significant coherence for frequencies >6 Hz. The
origin of this substantial difference is not clear, although
it probably originates from the combined differences in
the descending commands and the peripheral muscular
factors of these muscles. For example, VM is known to
share most of its shared synaptic inputs with the vastus
lateralis muscle (Laine et al. 2015), a phenomenon that
may be partly explained by the specific organization of
the crossed spindle afferent projections of the muscles.
Additionally, it is worth noting that ADM and TA are
more distal muscles compared to the VM. Because the
afferent loop is known to play an important role in the
generation of common oscillations in the motor neuron
pools (Christakos et al. 2006), this may be an additional
explanation to the lack of higher frequency components
in the neural drive to VM.

The results show that human motor neurons receive the
majority of their input as common (>60% of the input),
at least in the functional frequency bandwidth. This is
shown to be a reliable quantification of this proportion
in humans. Previous studies have demonstrated that
motor unit average discharge rates show in-phase common
modulations during sustained contractions in several
muscles (De Luca et al. 1982; De Luca & Erim, 1994,
2002). Therefore, our results confirm these observations
and provide a correct quantification of the phenomenon.
The exact source of this relatively large proportion of
shared input is unknown, although it may probably be
found in the synaptic contributions of cortical and sub-
cortical areas to motor neuron pools (Lawrence et al. 1985)
and the shared synaptic inputs originated from muscle
receptors (Ishizuka et al. 1979). Interestingly, the three
muscles investigated (ADM, TA and VM) showed a similar
proportion of common synaptic input in the delta band,
even though they have very different functional roles. This
contrasts with the hypothesis of a functional significance
of synchronization and its variability across muscles. In
particular, the strength of short-term synchronization has
been related to the shared synaptic input arising directly
from corticomotoneural neurons (Porter & Lemon, 1993).
The corticospinal projections are known to supply distal
muscles in larger amounts compared to more proximal
muscles. This phenomenon is considered to be related
to the dexterity of primates and humans (Lemon, 2008)
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and to have an influence on the steadiness of the force
output. Nonetheless, the results of the present study show
that muscles with different steadiness, ISI variability and
functional needs receive similar amounts of common
inputs in the effective neural drive bandwidth.

The application of the proposed approach indicates
that, despite having different variability in ISI and
accuracy in force tracking, the three muscles receive
similar, relatively large, proportions of common input.
These observations have important implications. First,
the proportion of common input needed to observe a
small correlation between pairs of motor unit spike trains
is very large. For example, pairs of motor unit spike
trains would have a correlation in output (coherence
values for frequencies <5 Hz) smaller than 0.2 even with
a proportion of common input of 80% (Fig. 2). This
is in agreement with the relative difficulty in inducing
output correlation between motor neurons in in vitro
studies (Türker & Powers, 2001). The reason for this
decorrelation in output is the non-linear nature of the
motor neurons (Negro & Farina, 2011a, 2012). The results
of the present study indicate that the actual common input
to motor neuron pools is the majority of the synaptic
input that the pool receives, with respect to independent
input. Second, the common input was similar between
muscles showing a different accuracy in force control.
The steadiness of force in our experiments was greater
for the ADM and VM with respect to the TA. However,
the estimated proportions of common input were similar
for the three muscles. Therefore, there was no association
between the actual proportion of common input and the
accuracy in force control. This observation may under-
lie a similar relative level of independent synaptic input
across different muscles. This noise is filtered out by
the averaging process intrinsic in the determination of
the neural drive to muscles (Farina et al. 2014). The
relatively high level of common input implies that a small
number of motor neurons is needed for full filtering of
the independent synaptic input in the neural drive to
the muscles. The combination between the proportion
of common synaptic input and the number of active
motor neurons probably provides an output minimally
influenced by the level of independent synaptic input.
Therefore, the results of the present study also indicate that
the type of noise that determines accuracy in force control
is not the independent one, but rather is the common one,
because it remains after the averaging process generated
at the muscular level (Farina et al. 2014; Farina & Negro,
2015).

In conclusion, in the present study, we provide for the
first time a quantification of the proportion of common
input to motor neuron pools with respect to total synaptic
input. We show that, despite a relatively small correlation
in output spike trains of pairs of motor units, the
proportion of common input is very large (>60% of the

input). This large proportion implies a fast averaging of
independent synaptic input when the force increases such
that the independent synaptic input does not influence the
accuracy of the generated force. We also show that muscles
with different functional properties and with different
abilities to produce an accurate force have similar levels of
common input, which implies that different motor pools
essentially receive a total input with similar proportions
of correlated activity.
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