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The anatomical, cellular and synaptic basis of motor atonia
during rapid eye movement sleep
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Abstract Rapid eye movement (REM) sleep is a recurring part of the sleep–wake cycle
characterized by fast, desynchronized rhythms in the electroencephalogram (EEG), hippocampal
theta activity, rapid eye movements, autonomic activation and loss of postural muscle tone
(atonia). The brain circuitry governing REM sleep is located in the pontine and medullary
brainstem and includes ascending and descending projections that regulate the EEG and motor
components of REM sleep. The descending signal for postural muscle atonia during REM sleep
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And his eyes have all the seeming of a demon’s that is dreaming – Edgar Allan Poe, The Raven
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is thought to originate from glutamatergic neurons of the sublaterodorsal nucleus (SLD), which
in turn activate glycinergic pre-motor neurons in the spinal cord and/or ventromedial medulla to
inhibit motor neurons. Despite work over the past two decades on many neurotransmitter systems
that regulate the SLD, gaps remain in our knowledge of the synaptic basis by which SLD REM
neurons are regulated and in turn produce REM sleep atonia. Elucidating the anatomical, cellular
and synaptic basis of REM sleep atonia control is a critical step for treating many sleep-related
disorders including obstructive sleep apnoea (apnea), REM sleep behaviour disorder (RBD) and
narcolepsy with cataplexy.
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Abstract figure legend Representative images of electroencephalographic (EEG) and electromyographic (EMG)
changes during the transition from slow-wave sleep (SWS) or non-REM (NREM) sleep. During this time, the electro-
encephalogram transitions from a low frequency, high amplitude, slow-wave enriched pattern to a theta-enriched, high
frequency, low amplitude pattern. At the same time, the electromyogram amplitude declines, reaching a minimal level
(atonia). This electromyographic change is driven by projections from the REM sleep atonia circuit in the brainstem
that inhibits motor neurons in the spinal cord or brainstem.

Abbreviations BLA, basolateral nucleus of the amygdala; CeA, central nucleus of the amygdala; DpMe, deep
mesencephalic reticular nucleus; DRN, dorsal raphe nucleus; EEG, electroencephalogram; EMG, electromyogram;
GAD, glutamic acid decarboxylase; GG, genioglossus nucleus; GiA, α gigantocellular reticular nucleus; GiV, ventral giga-
ntocellular reticular nucleus; IPSP, inhibitory postsynaptic potential; LC, locus coeruleus; LDT, laterodorsal tegmental
nucleus; LH, lateral hypothalamus; LPGi, lateral paragigantocellular nucleus; LPT, lateral pontine tegmentum nucleus;
MCH, melanin-concentrating hormone; mPFC, medial prefrontal cortex; OSA, obstructive sleep apnoea; OxR1 and
OxR2, orexin receptors 1 and 2; PB, parabrachial nucleus; PC, precoeruleus nucleus; PD, Parkinson’s disease; peri-LCα,
peri-locus coeruleus alpha nucleus; PnO, oralis pontine nucleus; PPT, pedunculopontine tegmental nucleus; REM,
rapid eye movement; RBD, REM sleep behaviour disorder; SLD, sublaterodorsal nucleus; subLC, subcoeruleus nucleus;
SWS, slow-wave sleep; vGat, vesicular GABA transporter; vGlut2, vesicular glutamate transporter 2; vlPAG, ventrolateral
periaqueductal grey matter; VMM, ventromedial medulla.

The behavioural state of rapid eye movement (REM)
sleep itself is characterized by the appearance of
fast, desynchronized rhythms in the cortical electro-
encephalogram (EEG), hippocampal theta activity, auto-
nomic activation, muscle atonia and its eponymous
hallmark feature, bursts of rapid eye movements. REM
sleep is also associated with dream content, although the
extent to which dream content, REM sleep and rapid
eye movements are correlated remains unclear. Given the
striking resemblance of the REM cortical EEG to that of
the waking state, some investigators have instead preferred
the term ‘paradoxical sleep’ or ‘active sleep’ to describe this
behavioural state.

There is near consensus among sleep neuroscientists
that REM sleep is important, if not necessary, for normal
neurobehavioural and physiological function. In large
part this consensus derives from the ubiquitous and
recurring nature of REM sleep, its strong ‘rebound’ after
deprivation (Beersma et al. 1990), and the finding that
REM deprivation, over the course of several weeks, is
lethal in rodents (Kushida et al. 1989). And while the
latter finding is credited with inspiring greater interest
in REM sleep function, it remains to date unclear whether

the reported lethal outcomes associated with REM sleep
deprivation were in fact due to REM deprivation per se, or
were rather secondary to the stress of the deprivation inter-
vention itself. In general support of a contributing stress
covariate is the finding that chronic, e.g. pharmacological,
suppression of REM sleep does not appear to have
deleterious effects on the body or mind, including in
humans. Hence a unified explanation for REM sleep
remains elusive.

As indicated, REM sleep is characterized, in part,
by changes in muscle activity, including a complete
loss of muscle tone in axial postural muscles, phasic
muscle twitches in distal limb and orofacial muscles
and, of course, phasic bursting of oculomotor muscles.
Respiratory-related muscles are also tonically suppressed
during REM sleep, but to a variable degree, ranging
from nearly unaffected (diaphragm) to complete
suppression (genioglossus muscle). The importance
of postural atonia, in particular, during REM sleep is
profoundly illustrated in human patients with REM sleep
behaviour disorder (RBD). RBD is a parasomnia in which
patients have excessive tonic and phasic electromyogram
(EMG) activity during REM sleep, which can manifest
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behaviourally as involuntary movements including
kicking, punching, shouting and screaming (Schenck
et al. 1986, 2013). These unconscious movements can be
violent, often resulting in injury to both the individual
and bed partner alike, occasionally with life-threatening
outcomes. Emerging clinical data have also established
an intriguing link between RBD and several degenerative
neurological disorders including Parkinson’s disease
(PD) and other synucleinopathies, such as Lewy body
dementia, multiple systems atrophy and pure autonomic
failure (Boeve, 2013; Peever et al. 2014). Perhaps the most
important aspect of this link is that RBD may appear
decades prior to the motoric and cognitive symptoms of
these neurodegenerative disorders. Hence the diagnosis
of RBD may provide an early clinical predictor for some
degenerative neurological disorders, including PD, (Boeve
et al. 2007) and an early therapeutic window for delaying
their full development.

Cataplexy, which affects approximately 70% of people
with narcolepsy and is characterized by a bilateral loss
of muscle tone during wake, is another example of
pathological postural atonia control. Loss of muscle tone
in cataplexy is triggered by strong, typically positive
emotions (e.g. laughter, surprise) and can last from
seconds to minutes (Overeem et al. 2011). While cataplexy
can be partial, involving only individual muscle groups
(often of the face or neck), it more typically includes post-
ural muscle groups, resulting in patient collapse (Khoury
& Doghramji, 2015). Respiratory muscles, on the other
hand, are not affected. Interestingly, cataplexy occurs
almost exclusively in narcolepsy, a neurological condition
linked to low levels of orexin (also called hypocretin)
peptides in the cerebrospinal fluid (Nishino et al. 2000;
Peyron et al. 2000; Mignot et al. 2002), secondary to loss
of orexin/hypocretin neurons in the lateral hypothalamus
(Thannickal et al. 2000; Blouin et al. 2005; Crocker
et al. 2005). Because of the shared, albeit directionally
opposite, feature of dysregulated postural atonia control
between cataplexy and REM sleep, it has been hypo-
thesized that the failure of waking postural motor tone
in cataplexy involves state-inappropriate activation of the
same circuitry controlling postural muscle atonia during
REM sleep (Siegel, 2011; Burgess & Scammell, 2012).

Given the foregoing, defining the anatomical, cellular
and synaptic control mechanisms of motor atonia is
critical not only for elucidating the neural mechanisms of
sleep movement disorders (RBD and other parasomnias
and cataplexy) but also for aiding the identification of
early stage loci for a host of neurodegenerative diseases. In
this review, we highlight work leading to the identification
of pontine and medullary circuitry controlling REM
sleep and REM sleep muscle atonia. We next explore the
synaptic inputs that modulate the ‘executive’ elements
of the REM sleep atonia control circuit and conclude by
detailing the synaptic output mechanisms that contribute

to postural, orofacial and respiratory motor neuron
suppression during REM sleep.

REM circuitry: the pontine REM atonia generator

Pioneering experimental work in the 1960s (Jouvet &
Michel, 1960; Mouret et al. 1967) and mid (Henley
& Morrison, 1974) and late (Sakai et al. 1979) 1970s
identified a region of the dorsal rostral pons crucial for
the generation of muscle atonia during REM sleep in cats.
The specific pontine neurons that linked most strongly to
the generation of REM atonia were found in the ventral
and medial locus coeruleus (LC), termed the peri-locus
coeruleus α (peri-LCα) in cats (Sakai et al. 1979, 1981,
2001). The pontine homologue of the cat peri-LCα was
subsequently identified in rats and mice and comprised a
small region of the pontine tegmentum, just ventral to the
caudal laterodorsal tegmental nucleus (LDT) and the LC.
This region was termed the subcoeruleus (subLC; Pollock
& Mistlberger, 2003; Brown et al. 2006) or sublaterodorsal
nucleus (SLD; Boissard et al. 2002; Lu et al. 2006; Clement
et al. 2011; Figs 1 and 2).

A large number of experimental studies in rats and
mice have established that SLD neurons play a critical
role in both the initiation and the maintenance of post-
ural atonia during REM sleep. As examples, electrical
stimulation of the SLD region produces bilateral loss
of postural muscle tone (Hajnik et al. 2000), lesions of
the SLD produce REM without atonia (Mouret et al.
1967; Hendricks et al. 1982; Morrison, 1988; Sanford
et al. 2001; Lu et al. 2006), and rats killed during
REM sleep exhibit dense c-Fos immunolabelling in SLD
neurons, with the number of c-Fos-labelled cells positively
correlated with the percentage of time spent in REM
sleep (Maloney et al. 1999, 2000; Verret et al. 2005;
Lu et al. 2006; Sapin et al. 2009), the latter marking
SLD neurons as ‘REM-On’. Unit recording studies have
provided additional evidence that REM-On SLD neurons
satisfy the criteria for REM-generating neurons: SLD
neurons increase firing rate in anticipation of the onset
of REM sleep, fire maximally during REM sleep and
maintain sustained tonic discharge throughout REM sleep,
and become silent during the transitions from REM to
slow-wave sleep (SWS) or wakefulness (Sakai & Koyama,
1996; Sakai et al. 2001; Karlsson & Blumberg, 2005).
Pharmacological activation of SLD neurons via micro-
injections of glutamate, glutamate agonists or bicuculline
(the latter of which blocks GABAergic afferent inputs)
produces, with short-latency, a long-lasting REM-like state
characterized by low voltage EEG and continuous muscle
atonia (Lai & Siegel, 1991; Onoe & Sakai, 1995; Xi et al.
1999a; Hajnik et al. 2000; Boissard et al. 2002; Pollock &
Mistlberger, 2003; Sanford et al. 2003).

Human clinical reports have also revealed a strong
correlation between structural damage to the dorsal pons
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and the development of RBD. For example, Mathis et al.
(2007) reported a case of human RBD following an
encephalitis-induced lesion that was restricted to the
dorsal pontine tegmentum (presumably involving the
human SLD bilaterally). Development of RBD was also
reported in a patient following a unilateral stroke affecting
the right SLD region (Xi & Luning, 2009) and in another
patient following a discrete dorsomedial pontine lesion
due to vasculitis (St Louis et al. 2014). Taken together, the
foregoing experimental and clinical data provide evidence
that SLD neurons are both necessary and sufficient for
generating postural atonia during REM sleep.

A theoretical model of REM sleep control

In 1975 Hobson and McCarley introduced a ‘reciprocal-
interaction’ model of behavioural state control. In

this influential model, which was informed by the
work of Jouvet (1972), these scientists proposed that
reciprocal interactions between mesopontine cholinergic
REM-On neurons and aminergic REM-Off neurons
were responsible for the alternation of wakefulness,
SWS and REM sleep (Hobson et al. 1975; McCarley
& Hobson, 1975). The model predicted that, during
wakefulness, activity of the aminergic system would
inhibit the laterodorsal and pedunculopontine tegmental
nuclei (LDT/PPT) cholinergic system. With the onset of
SWS, aminergic inhibition would wane and cholinergic
excitation would wax, reaching a reciprocal trough and
peak during REM sleep. Consistent with this model,
monoaminergic neurons project to and inhibit cholinergic
LDT/PPT neurons (Kubota et al. 1992; Luebke et al.
1992; Semba & Fibiger, 1992; Williams & Reiner, 1993;
Honda & Semba, 1994; Fig. 2, Pathway 3, REM-Off),
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Figure 1. Anatomic representation of brain regions involved in the regulation of REM sleep and REM
sleep atonia
Sagittal representation of a rodent brain (left), with coronal views at three rostral–caudal levels (right, A–C). A
zone within the medulla, specifically in the ventromedial medulla (VMM), is thought to play a key role in REM
sleep atonia control. (1) The most rostral part of the VMM does not have a significant role in REM sleep atonia
(Sastre et al. 1981; Lu et al. 2006). (2) The VMM near the inferior olive, near Magoun’s inhibitory section, is
the key zone for REM sleep atonia control (Magoun & Rhines, 1946; Kanamori et al. 1980; Chase et al. 1984;
Schenkel & Siegel, 1989; Holmes & Jones, 1994; Lai & Siegel, 1997; Hajnik et al. 2000; Boissard et al. 2002;
Morales et al. 2006; Sapin et al. 2009). (3) Caudal to the inhibitory zone, glutamatergic neurons regulate REM
sleep atonia (Vetrivelan et al. 2009). Coronal views (A–C) show the zones of stimulation (continuous outlines)
or lesion (dashed outlines) that either induce muscle atonia (stimulation) or decrease muscle atonia (lesion).
(4) Lesions in the cat have targeted the VMM near the inferior olive (Holmes & Jones, 1994), while stimulation
studies (6, 7) have also targeted the VMM as an atonia zone (Magoun & Rhines, 1946). Other studies, both lesion
(5) studies (Schenkel & Siegel, 1989) and stimulation (8, 9) experiments (Takakusaki et al. 2001; Habaguchi et al.
2002) have targeted a more dorsal region just lateral to the midline, the caudal and dorsal extent of the nucleus
gigantocellularis and nucleus magnocellularis or dorsal paragigantocellular region. In rats, both lesion (10) studies
(Vetrivelan et al. 2009) and studies with electrical stimulation (11, 12) have targeted the ventromedial medulla as a
key atonia zone (Lai and Siegel, 1988; Hajnik et al. 2000). Overall, despite the use of different methods and species,
there is a significant overlap in the regions implicating the ventromedial medulla in atonia. Abbreviations: DpMe,
deep mesencephalic reticular nucleus; Gi, gigantocellular nucleus; GiA, α gigantocellular nucleus; GiV, ventral
gigantocellular nucleus; IO, inferior olive; LC, locus coeruleus; LDT, laterodorsal tegmental nucleus; LPT, lateral
pontine tegmentum; py, pyramids; SLD, sublaterodorsal nucleus; SOM, supraolivary medulla; vlPAG, ventrolateral
periaqueductal grey matter; VMM, ventromedial medulla; 7N, facial nucleus.
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and LDT/PPT cholinergic neurons project back to and
excite noradrenergic LC and serotoninergic dorsal raphe
nucleus (DRN; Svensson & Engberg, 1980; Egan &
North, 1985; Satoh & Fibiger, 1986; Jones, 1990; Semba
& Fibiger, 1992; Luppi et al. 1995; Fig. 2, Pathway 4,
REM-On).

Over the years, however, it became apparent that
the reciprocal inhibition model could not fully account
for the complexity of behavioural state transitions.
And to this end, more recent experimental work has
informed several modifications and additions to the
model (Pace-Schott & Hobson, 2002; Luppi et al. 2006;
McCarley, 2007). The first of these modifications to the
model was the introduction of non-cholinergic, possibly

glutamatergic, neurons as REM-generators (Sakai et al.
2001; Boissard et al. 2002; Lu et al. 2006; Luppi et al.
2006). In this conceptualization cholinergic inputs would
directly activate putative glutamatergic REM-generator
neurons (Fig. 2, Pathway 1, REM-On) and the strength
of REM-generator output would remain under the
control of the aminergic-cholinergic interplay (Fig. 2,
Pathway 3, REM-Off and Pathway 4, REM-On). The
second modification to the model was the addition of
GABAergic synaptic inputs that, during wakefulness and
SWS, and in addition to monoaminergic inputs (Fig. 2,
Pathway 2, REM-Off), would inhibit the glutamatergic
REM-generator (Fig. 2, Pathway 7, REM-Off; Boissard
et al. 2003; Lu et al. 2006).
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Figure 2. Schematic summary showing synaptic regulation of SLD REM-atonia neurons
The activity of SLD neurons is likely to be controlled by coordinated cholinergic, monoaminergic, GABAergic,
glutamatergic and peptidergic inputs. Key references for the represented pathways include (1) REM-On pathway
(Baghdoyan et al. 1987; Semba, 1993; Kubin, 2001; Weng et al. 2014); (2) REM-Off pathway (Semba, 1993;
Williams et al. 2012); (3) REM-Off pathway (Hobson et al. 1975; McCarley & Hobson, 1975; Luebke et al.
1992; Semba & Fibiger, 1992; Williams & Reiner, 1993); (4) REM-On pathway (Hobson et al. 1975; McCarley
& Hobson, 1975; Svensson & Engberg, 1980; Egan & North, 1985; Satoh & Fibiger, 1986; Jones, 1990; Semba
& Fibiger, 1992; Luppi et al. 1995); (5) REM-Off pathway (Hobson et al. 1975; McCarley & Hobson, 1975);
(6) REM-On pathway (Lu et al. 2006; Fuller et al. 2007); (7) REM-Off pathway (Boissard et al. 2003; Lu et al.
2006; Sapin et al. 2009); (8) REM-Off pathway (Lu et al. 2006; Fuller et al. 2007); (9) REM-On pathway
(Shammah-Lagnado et al. 1987; Lai et al. 1993; Semba, 1993; Boissard et al. 2003); (10) REM-Off pathway
(Peyron et al. 1998; Mileykovskiy et al. 2002; Zhang et al. 2004; Xi & Chase, 2010; Torterolo et al. 2013);
(11) REM-Off pathway (Peyron et al. 1998; Date et al. 1999; Ivanov & Aston-Jones, 2000; Brown et al. 2002; Liu
et al. 2002; Sakurai et al. 2005); (12) REM-Off pathway (Boissard et al. 2003; Lu et al. 2006); (13) REM-On pathway
(Bittencourt et al. 1992; Del Cid-Pellitero & Jones, 2012; Monti et al. 2013; Yoon & Lee, 2013; Devera et al. 2015);
(14) REM-On pathway (Luppi et al. 2013a); (15) REM-On pathway (Torterolo et al. 2009, 2013); (16) REM-On
pathway (Boissard et al. 2002; Morales et al. 2006; Sapin et al. 2009); (17) REM-On pathway (Lu et al. 2006);
(18) REM-On pathway (Vetrivelan et al. 2009); (19) REM-On pathway (Lu et al. 2006; Fuller et al. 2007);
(20) REM-On pathway (Chase et al. 1984, 1986; Soja et al. 1987b; Lai & Siegel, 1988; Castillo et al.
1991a,b; Holstege & Bongers, 1991; Kodama et al. 2003; Kato et al. 2006; Lai et al. 2010); (21) REM-On
pathway (Taal & Holstege, 1994; Alvarez et al. 2005); (22) REM-On pathway (Takakusaki et al. 2001, 2003).
Abbreviations: ACh, acetylcholine; BF, basal forebrain; DpMe, deep mesencephalic reticular nucleus; DRN, dorsal
raphe nucleus; GiA, α gigantocellular nucleus; GiV, ventral gigantocellular nucleus; glut, glutamate; LC, locus
coeruleus; LDT, laterodorsal tegmental nucleus; LH, lateral hypothalamus; LPT, lateral pontine tegmentum; MCH,
melanin-concentrating hormone; NA, noradrenaline; PB, parabrachial nucleus; PC, precoeruleus; PnO, oralis
pontine; PPT, pedunculopontine tegmental nucleus; SLD, sublaterodorsal nucleus; SOM, supraolivary medulla;
vlPAG, ventrolateral periaqueductal grey matter; 5-HT, serotonin.
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More recent experimental work has resulted in
further refinements to the original model, including
the identification of two functionally segregated,
but anatomically opposed sets of glutamatergic
REM-generating neurons. The first of these cell groups
spans the SLD, caudal LDT and adjacent precoeruleus
(PC) and promotes cortical activation through ascending
inputs to the parabrachial nucleus and forebrain (Fig. 2,
Pathway 19, REM-On; Fuller et al. 2011; Krenzer et al.
2011), whereas the second cell group, which includes SLD
REM-atonia neurons, generates postural muscle atonia
through descending projections to the medulla and spinal
ventral horn (Figs 1 and 2, Pathway 16, 17, 20 and 21,
all REM-On; Boissard et al. 2002; Lu et al. 2006; Morales
et al. 2006). The existence of separate pathways mediating
the cortical and motoric components of REM sleep in fact
provides a possible basis for the occasional dissociation of
cortical activation and muscle atonia during pathological
states such as cataplexy, sleep paralysis and RBD (Fuller
et al. 2007; Vetrivelan et al. 2009; Luppi et al. 2011).

Taken together, work over the past two decades has
identified glutamatergic SLD neurons as REM generators
and further shown that these neurons are regulated by
many neurotransmitter systems including not only acetyl-
choline and monoamines – as predicted by the original
1975 reciprocal-interaction model – but also GABA,
glutamate and peptides. In fact, contemporary models
of REM circuit control now consider the cholinergic
and aminergic components as modulatory, not central,
elements of the REM sleep regulatory circuit network.
We next discuss the synaptic regulation of SLD REM-On
atonia neurons by these systems.

Inputs: the cellular and synaptic SLD

Cholinergic regulation. The cholinergic hypothesis of
REM sleep induction derives from the observations that
systemic administration of the cholinergic antagonists
atropine or cholinesterase inhibitor physostigmine
block or enhance, respectively, REM sleep (Jouvet &
Michel, 1960) and that microinjections of carbachol
(a cholinergic agonist) into the pontine tegmentum
produce a long-lasting REM-like state in cats and rodents
(Baghdoyan et al. 1987; Hobson et al. 1993; Kubin, 2001).
Although the amount and onset delay of REM sleep
generated by carbachol in the pons varies by location
and dose of injection, species and the type of preparation
(Kubin, 2001; Grace & Horner, 2015), the hypothesis
that pontine cholinergic neurons participate in REM
genesis is still widely accepted. In support of this view,
acetylcholine levels in the dorsal pons are high during
REM sleep (Leonard & Lydic, 1997), depletion of acetyl-
choline inhibits REM sleep and blocking acetylcholine
degradation promotes REM sleep (reviewed in Jones,
1991a,b). In addition, LDT/PPT cholinergic neurons are

active during REM sleep and wakefulness but silent
during SWS (Boucetta et al. 2014), and when LDT/PPT
cholinergic neurons are optogenetically activated during
SWS they promote the transition from SWS to REM sleep
(Van Dort et al. 2015). LDT/PPT cholinergic neurons also
project to the SLD (Quattrochi et al. 1989; Jones, 1990;
Semba, 1993), and carbachol excites spinally projecting
SLD neurons (Fig. 2, Pathway 1, REM-On; Weng et al.
2014). It is also the case that the medulla (see below)
contains cholinergic neurons that may be REM-On
(Holmes & Jones, 1994); however, these neurons do not
project to the SLD (Semba, 1993; Holmes et al. 1994).
Taken as a whole these findings strongly support a role
for LDT/PPT cholinergic neurons in not only activating
monoaminergic REM-Off neurons (Fig. 2, Pathway 4,
REM-On; Svensson & Engberg, 1980; Egan & North, 1985;
Satoh & Fibiger, 1986; Jones, 1990; Semba & Fibiger, 1992),
but also in activating the pontine REM generator(s) (Fig. 2,
Pathway 1, REM-On; Jones, 1993; Steriade, 2004).

Importantly, a recent paper has cast doubt over the
necessity of cholinergic input to the SLD for generating
REM sleep (Grace et al. 2014). In this study the authors
specifically showed that microinjection of scopolamine –
a competitive antagonist at muscarinic acetylcholine
receptors – in the SLD region was without effect on the
frequency or duration of REM bouts and REM muscle
atonia. Scopolamine administration was, however, found
to increase both REM duration and the failure rate of
transitions from SWS to REM. Therefore, while the results
from Grace and colleagues convincingly show that acetyl-
choline is dispensable for the induction of REM sleep
and muscle atonia, cholinergic inputs may reinforce REM
sleep once initiated. To this end, the authors proposed that
cholinergic inputs to the REM-generator(s) including the
SLD REM-atonia neurons could help ensure rapid trans-
itions into REM sleep that are less likely to fail (Grace
& Horner, 2015). For the interested reader, Grace and
Horner recently published an elegant historical overview
of the cholinergic system in REM control (Grace & Horner,
2015).

Monoaminergic regulation. Both noradrenergic and
serotoninergic neurons of the LC and DRN, respectively,
are silent during REM sleep, resume firing just before
awakenings (McGinty & Harper, 1976; Trulson & Jacobs,
1979; Aston-Jones & Bloom, 1981) and, importantly, cease
discharging during periods of cataplexy (Wu et al. 1999,
2004). Silencing of LC and DRN neurons during REM
sleep has been attributed to both recurrent inhibition
(Fig. 2, Pathway 5, REM-Off; Hobson et al. 1975; McCarley
& Hobson, 1975) and GABAergic input from REM active
neurons (Nitz & Siegel, 1997a,b; Gervasoni et al. 2000;
Verret et al. 2006; Goutagny et al. 2008; Clement et al.
2014). Both the original and the modified reciprocal
inhibitory interaction models (see above) argue that
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this reduction of activity in brainstem monoaminergic
neurons is permissive in the generation of REM sleep
(Pace-Schott & Hobson, 2002; McCarley, 2007). In
other words, the models predict that noradrenergic and
serotoninergic synaptic inputs inhibit both LDT/PPT
cholinergic neurons (Fig. 2, Pathway 3, REM-Off) and
pontine REM-generating neurons, including REM-atonia
neurons of the SLD (Fig. 2, Pathway 2, REM-Off;
Pace-Schott & Hobson, 2002; McCarley, 2007).

To the foregoing, local application of noradrenaline
or an α2-adrenoceptor agonist, but not serotonin, in
the peri-LCα region in cats inhibits REM active neurons
and induces REM sleep without atonia, robustly so when
injections are placed in the caudal region of the peri-LCα

(Tononi et al. 1991; Sakai & Koyama, 1996; Crochet &
Sakai, 1999a,b). In agreement with the inhibitory response
of noradrenaline on REM active peri-LCα neurons,
spinally projecting neurons of the SLD are also directly
inhibited by noradrenaline (Williams et al. 2012). These
findings suggest that the activity of SLD REM-atonia
neurons may be suppressed by noradrenaline released
during wakefulness and, by extension, disinhibition of
SLD neurons would permit the onset and maintenance of
muscle atonia during REM (Fig. 2, Pathway 2, REM-Off).
Interestingly, antidepressants that are noradrenaline
reuptake inhibitors, and hence increase noradrenergic
tone, have been shown to be effective in reducing the
occurrence of cataplexy attacks (Schachter & Parkes, 1980;
Nishino & Mignot, 1997). Selective serotonin reuptake
inhibitors and tricyclic antidepressants have likewise
been used, albeit less frequently, to successfully suppress
cataplexy (Gowda & Lundt, 2014).

GABAergic regulation. During wakefulness and, to a
lesser extent, SWS, REM-generator neurons in the pons are
under strong GABAergic inhibitory tone, presumably to
prevent them from firing (Xi et al. 1999b; Luppi et al. 2006).
This hypothesis derives support from the observation that
local application of GABAA antagonists in the peri-LCα of
cats (Xi et al. 1999a, 2001) or in the SLD of rats (Boissard
et al. 2002; Pollock & Mistlberger, 2003; Sanford et al.
2003; Fenik & Kubin, 2009) rapidly produces a long-lasting
REM sleep-like state characterized by desynchronized
EEG and postural muscle atonia. Hence disinhibition
from GABAergic inputs could be an important synaptic
‘mechanism’ by which SLD REM-atonia neurons are
activated on entry into REM sleep. But what is the synaptic
source of SLD-projecting GABAergic REM-Off neurons?
Studies combining retrograde tracers, immunolabelling
for c-Fos and glutamic acid decarboxylase (GAD) or
in situ hybridization for GAD67 or GAD65 mRNAs have
identified three potential primary sources of this input,
which include the ventrolateral periaqueductal grey matter
(vlPAG), the lateral pontine tegmentum (LPT) – also
known as deep mesencephalic reticular nucleus (DpMe) –

and the oralis pontine (PnO) region, which includes the
SLD itself (Fig. 2, Pathway 7, REM-Off; Boissard et al.
2003; Lu et al. 2006; Sapin et al. 2009).

With respect to these potential sources of GABAergic
input, a dense projection from the vlPAG and LPT/DpMe
to the SLD has been confirmed in different species
(reviewed in Boissard et al. 2003) and, importantly,
lesions of both the vlPAG and LPT/DpMe as well as
pharmacological inactivation increase REM sleep and can
generate a cataplexy-like state (Sastre et al. 1996; Crochet
et al. 2006; Lu et al. 2006; Vanini et al. 2007; Kaur et al.
2009; Sapin et al. 2009). Taken together the foregoing
findings strongly suggest that GABAergic projections from
the tegmental area may provide critical inhibitory control
over the REM generator, including REM-atonia neurons.
Another potential source of SLD-projecting GABAergic
REM-Off neurons is the PnO (Fig. 2, Pathway 7,
REM-Off), which includes local SLD GABAergic neurons
(not represented in Fig. 2). The rostral PnO not only
projects to the SLD (Lai et al. 1993; Semba, 1993; Boissard
et al. 2003) but contains GABAergic REM-Off neurons
(Maloney et al. 2000). Moreover, antisense disruption
of GABA synthesis within the SLD region of the PnO
decreases wakefulness and increases REM sleep, suggesting
the interesting possibility that local GABAergic SLD
neurons may disinhibit glutamatergic SLD REM-atonia
neurons during REM sleep, and inhibit their activity
during wakefulness (Xi et al. 1999a).

In addition to their projections to glutamatergic SLD
REM-atonia neurons (Fig. 2, Pathway 7, REM-Off),
GABAergic REM-Off neurons of the vlPAG and
LPT/DpMe are reciprocally connected with GABAergic
REM-On neurons in the SLD region (Fig. 2, Pathway 6,
REM-On and Pathway 8, REM-Off). This mutual
inhibition has been proposed to form a ‘flip–flop’ switch
that would sharpen state transitions, which are typical
of the rapid switching from SWS to REM and vice versa
(Lu et al. 2006; Fuller et al. 2007). This model has
been challenged by the recent finding that disruption
of the GABA/glycine transmission in the vlPAG and
LPT/DpMe did not produce the predicted increase in
REM sleep (Krenzer et al. 2011). Yet a more recent
optogenetic study found that inhibition of vlPAG GABA
neurons did, in fact, potently promote REM sleep (Weber
et al. 2015). Interestingly, Weber et al. used GAD2-cre
mice, while Krenzer et al. used vGat-cre mice, potentially
highlighting alternative mechanisms of GABA transport
that differentiate key REM-inhibiting populations within
the vlPAG. Another challenge to this model is the reported
lack of REM-active GABAergic neurons in the SLD region
(Sapin et al. 2009), which conflicts with reports from two
other groups who found REM-On GABAergic neurons
in the SLD (Maloney et al. 1999; Lu et al. 2006). If the
former finding is correct, i.e. REM active GABAergic
neurons locate to the vlPAG, not SLD, this might help
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explain the absence of a REM effect following disruption
of GABA/glycine transmission in the vlPAG in the study
by Krenzer et al. (2011).

Collectively the available experimental evidence, with
minor exceptions, continues to support the flip–flop
switch model for REM sleep regulation. In this circuit
arrangement, two descending arms of the circuit (from
vlPAG and LPT/DpMe REM-Off GABAergic neurons)
provides inhibitory control over SLD REM-atonia neurons
(Fig. 2, Pathway 7, REM-Off) and SLD GABAergic
REM-Off neurons (Fig. 2, Pathway 8, REM-Off) during
wakefulness, whereas the ascending arm (from SLD
GABAergic REM-On neurons) inhibits REM-Off vlPAG
and LPT/DpMe neurons, and possibly the extra-SLD PnO,
(Fig. 2, Pathway 6, REM-On) during REM sleep. By
its design, this circuit would prevent the inappropriate
activation of REM-atonia neurons during wakefulness,
which of course would result in cataplexy, and at the
same time ensure rapid reconstitution of muscle tone on
awaking. Determining the precise source(s) of GABAergic
REM-Off input to the SLD REM-atonia neurons remains
a clear experimental priority.

Glutamatergic regulation. In addition to disinhibition
from monoaminergic and GABAergic inputs, there is
emerging experimental evidence that a glutamatergic
REM-On input directly activates SLD REM-atonia
neurons during REM sleep (Fig. 2, Pathway 9, REM-On;
Luppi et al. 2012). For example, local injections of
glutamate receptor agonists into the peri-LCα of cats
or into the SLD region of rats induce a REM-like state
with continuous muscle atonia (Lai & Siegel, 1991; Onoe
& Sakai, 1995; Hajnik et al. 2000; Boissard et al. 2002).
More importantly, local activation of glutamate receptor
antagonists rapidly reverses muscle atonia induced by
bicuculline application in rats, but does not alter the
cortical REM-like state, suggesting that glutamatergic
input to the SLD is required to generate atonia during
REM sleep but perhaps is not necessary for REM EEG
desynchronization (Boissard et al. 2002). Hence, it remains
possible that SLD REM-atonia neurons are either tonically
excited by glutamate during all sleep–waking states –
but that this excitation increases further at the onset of
REM sleep – or that there are glutamatergic REM-On
neurons that activate the SLD during REM (Luppi et al.
2012, 2013b). Indeed data on the effects of glutamatergic
antagonists in the SLD region across all sleep–wake states,
and particularly during naturally occurring REM sleep,
are eagerly awaited as they would shed considerable light
on this important question.

An important technical consideration for the foregoing
is that the methods to definitively identify glutamatergic
neurons vis a vis vesicular transporters are relatively new.
Previous studies on glutamatergic inputs to the SLD
used glutamate antibodies, which lacked both sensitivity

and specificity. Hence, the source of glutamatergic input
to the SLD remains unknown. For example, the lateral
hypothalamus, vlPAG and LPT/DpMe, and ventrolateral
medulla all contain glutamatergic neurons and project to
the SLD (Fig. 2, Pathway 9, REM-On; Shammah-Lagnado
et al. 1987; Lai et al. 1993; Semba, 1993; Boissard et al.
2003), but whether or not the projections to the SLD
from these regions are glutamatergic remains unknown. In
addition, a small number of cells in the contralateral SLD
region, and a larger number of cells in the ipsi- and contra-
lateral pontine reticular formation, project to the SLD (Lai
et al. 1993; Boissard et al. 2003), but their neurochemical
phenotype, too, remains unknown. Defining which of
these inputs to the SLD are both bona fide glutamatergic
and contribute to the development of atonia should be
achievable using newer technical approaches, including
optogenetics and conditional retrograde tracing systems.

Orexin regulation. Orexin (or hypocretin) neurons are a
discrete cluster of neurons in the posterior lateral hypo-
thalamus (de Lecea et al. 1998; Sakurai et al. 1998). Orexin
neurons have widespread projections (Peyron et al. 1998)
and their receptors (Ox1R and Ox2R) are expressed in
virtually all of the brain’s major arousal centres, suggesting
an important contribution of orexin signalling to the
generation and maintenance of wakefulness (Sakurai
et al. 2010). Indeed, optogenetic activation of orexin
neurons triggers awakening from sleep (Adamantidis et al.
2007), although this effect is attributed to secondary
activation of other arousal centres (Carter et al. 2010).
Loss of orexin neurons, which is the neuropathological
basis of narcolepsy, produces excessive daytime sleepiness,
fragmented sleep and cataplexy (Peyron et al. 2000;
Thannickal et al. 2000; Crocker et al. 2005; Burgess &
Scammell, 2012). Narcoleptic patients also have REM
sleep abnormalities including shortened REM sleep onset
latency, vivid dreaming and a greater than expected
occurrence of RBD, although the mechanism of the motor
disturbances during REM sleep remains to be clarified
(Frauscher et al. 2011).

There are now several animal models (naturally
occurring mutations or genetically engineered) that
reproduce human narcolepsy symptoms (sleepiness and
cataplexy). All of these models exhibit disruptions in
orexin signalling (Chen et al. 2009; Scammell et al. 2009).
Disruption of Ox2Rs in dogs results in a phenotype
characterized by sleepiness and severe cataplexy (Lin
et al. 1999). Yet, interestingly, these dogs have normal
cerebrospinal fluid orexin levels (John et al. 2004b),
suggesting that disruption of Ox2Rs is sufficient, at
least in this species, to produce severe narcolepsy. In
mice, however, fragmented wakefulness and cataplexy are
only observed following disruption of the orexin peptide
(Chemelli et al. 1999; Mochizuki et al. 2004), the orexin
neurons themselves (Hara et al. 2001) or when both Ox1Rs
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and Ox2Rs are knocked out (Sakurai, 2007; Hasegawa
et al. 2014). Mice lacking Ox1Rs or Ox2Rs, but not both
concurrently, have milder sleep phenotypes and cataplexy
(Willie et al. 2003; Mieda et al. 2011; Mochizuki et al. 2011
and reviewed in Sakurai, 2007).

Physiologically, orexin neurons are active during
wakefulness and fire in association with movement. A
decrease in firing is observed during quiet waking and
these neurons fall silent during SWS and REM sleep,
although transient bursts of action potentials do occur
during REM sleep (Lee et al. 2005; Mileykovskiy et al.
2005). Of note, extracellular orexin levels in the basal
forebrain and lateral hypothalamus are high during
wakefulness, low during SWS sleep, and rise again during
REM sleep (Kiyashchenko et al. 2002), which is an
apparent paradox given that orexin neurons are generally
quiescent during REM sleep.

With respect to the regulation of REM sleep, orexin
neurons innervate REM sleep nodes in the pons,
including the SLD (Fig. 2, Pathway 10, REM-Off; Zhang
et al. 2004; Torterolo et al. 2013). More specifically,
orexin neurons innervate noradrenergic and serotonergic
REM-Off neurons of the LC and DRN (Fig. 2, Pathway 11,
REM-Off; Peyron et al. 1998; Date et al. 1999; Sakurai et al.
2005) as well as REM-Off vlPAG and LPT/DpMe neurons
(Fig. 2, Pathway 12, REM-Off; Peyron et al. 1998; Boissard
et al. 2003; Lu et al. 2006). Electrophysiological data further
reveal that orexin directly activates LC and DRN neurons
(Ivanov & Aston-Jones, 2000; Brown et al. 2002; Liu et al.
2002; Murai & Akaike, 2005; Kohlmeier et al. 2008, 2013).
It has been proposed that orexin might promote REM sleep
by directly activating SLD REM-On neurons (Xi et al. 2002,
2003). This conclusion is, however, not fully supported by
experimental findings; for example, orexin neurons fire
only occasionally during REM sleep and direct evidence
for orexin release in the pons during REM sleep is lacking.
On the other hand, orexin injected directly into the dorsal
pons – encompassing the SLD region – prolongs waking in
animals that are already awake whereas a prolonged state
of REM sleep is induced if orexin is applied during SWS
(Xi & Chase, 2010).

To explain the foregoing results, the authors proposed
that orexin might act on different components of
the REM circuit, and thereby bias wakefulness or
REM sleep, depending on the state of activation or
inhibition of the different nodes (Xi & Chase, 2010).
While an intriguing hypothesis, confirmation will require
additional experimental work to elucidate a functional
circuit framework, which is currently lacking. An
alternative hypothesis is that orexin is released in the pons
during wakefulness and potentiates REM-Off GABAergic
inhibition of SLD REM-atonia neurons (Luppi et al. 2006;
Lu et al. 2006). Hence orexin projections to the vlPAG and
LPT/DpMe (Boissard et al. 2003; Lu et al. 2006) and to the
SLD (Zhang et al. 2004; Torterolo et al. 2013) may activate,

respectively, vlPAG/LPT/DpMe REM-Off GABAergic
neurons (Fig. 2, Pathway 12, REM-Off), as well as their
presynaptic terminals to SLD REM-atonia neurons, to pre-
vent cataplexy (Fig. 2, Pathway 10, REM-Off).

As indicated, positive emotions are the most common
trigger for cataplexy in narcoleptic humans (joking,
laughter, being tickled or a pleasant surprise; Anic-Labat
et al. 1999; Overeem et al. 2011) and probably as well
for dogs (palatable food or play; Mitler et al. 1974;
Nishino & Mignot, 1997; Tonokura et al. 2007; Scammell
et al. 2009) and mice (palatable food such as chocolate,
running wheels, or group housing; Chemelli et al. 1999;
Espana et al. 2007; Clark et al. 2009; Scammell et al.
2009; Oishi et al. 2013). In humans anger is also a
trigger (Anic-Labat et al. 1999; Overeem et al. 2011),
whereas aversive situations do not trigger cataplexy in
dogs (Blouin et al. 2013), but do in narcoleptic cattle and
sheep (Strain et al. 1984; White & de Lahunta, 2001).
Strong emotions as a ‘trigger’ thus appear to be a common
denominator whereas the positive vs. negative valence
of the trigger seems to be species-specific. The circuit
mediating emotion-driven cataplexy is also incompletely
understood. It has been proposed, for example, that
strong emotions might activate the central and baso-
lateral nucleus of the amygdala (CeA and BLA; Garavan
et al. 2001, Straube et al. 2008), possibly following
initial activation of the medial prefrontal cortex (mPFC;
Damasio et al. 2000, Sabatinelli et al. 2007, Ponz et al.
2010, Etkin et al. 2011, Oishi et al. 2013). Interestingly
both the CeA and BLA contain neurons that are active
during cataplexy (Gulyani et al. 2002), and inhibitory
(vesicular GABA transporter, vGat positive) neurons of the
CEA heavily innervate neurons of the vlPAG/LPT/DpMe
(Rizvi et al. 1991, Oka et al. 2008, Burgess et al.
2013), which are possibly GABAergic REM-Off. Under
non-pathological conditions, inhibitory inputs to the
vlPAG/LPT/DpMe are opposed by excitatory orexin inputs
(Peyron et al. 1998, Boissard et al. 2003, Lu et al. 2006)
and maintain inhibitory tone of vlPAG/LPT/DpMe to the
SLD REM-atonia neurons during strong emotions. In
narcoleptic patients, however, loss of orexin inputs may
‘disfacilitate’ vlPAG/LPT/DpMe REM-Off neurons, which
could in turn trigger the inappropriate activation of SLD
neurons during wake and ultimately lead to loss of postural
muscle tone (Lu et al. 2006; Luppi et al. 2006; Burgess &
Scammell, 2012). Additional circuit mapping experiments
will be required to confirm this model of emotion-driven
cataplexy, and are eagerly awaited.

MCH regulation. Intermingled with orexin neurons
is another cell population containing melanin-
concentrating hormone (MCH) peptide. Orexin and
MCH neurons have similar projections but their firing
patterns across the sleep–wake cycle are roughly opposite,
and they are thought to produce opposite effects on
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their postsynaptic targets (Adamantidis & de Lecea, 2008;
Espana & Scammell, 2011; Jones & Hassani, 2013). They
are also reciprocally regulated (Gao, 2009): MCH inhibits
orexin neurons by depressing the glutamatergic input
to orexin neurons (Rao et al. 2008) whereas orexin
neurons inhibit MCH neurons by an orexin-mediated
feed-forward inhibition (Apergis-Schoute et al. 2015).
While MCH neurons are best known for their regulatory
role in energy homeostasis (Pissios et al. 2006), several
recent studies have demonstrated that they are specifically
active during REM sleep (Verret et al. 2003; Hanriot
et al. 2007; Hassani et al. 2009). Even more recent
experimental work employing optogenetic activation in
behaving animal models has shown that acute activation
of MCH neurons promotes REM sleep (Jego et al. 2013;
Tsunematsu et al. 2014) or both REM and SWS sleep
(Konadhode et al. 2013). Thus MCH neurons appear to
be involved in both REM and SWS regulation, with the
caveats that (1) their ability to drive SWS may be time
of day dependent (Jones & Hassani, 2013; Konadhode
et al. 2013) and (2) on the basis of silencing and ablation
studies (Jego et al. 2013; Tsunematsu et al. 2014), their role
in the induction or maintenance of REM sleep could be
minor.

The postsynaptic targets and synaptic mechanisms
through which MCH neurons promote REM and SWS
remain unclear. MCH is an inhibitory peptide that acts
through both presynaptic and postsynaptic mechanisms,
although presynaptic action seems to be more common
(Gao, 2009; van den Pol, 2012). MCH neurons have also
been thought to produce and release GABA (Elias et al.
2001; Harthoorn et al. 2005; Del Cid-Pellitero & Jones,
2012) and optogenetic activation of MCH terminals elicits
GABA release within the tuberomammillary nucleus (Jego
et al. 2013). On the other hand, other recent studies have
reported that MCH neurons do not contain the vesicular
GABA transporter (vGat), and hence may not be capable
of releasing synaptic GABA (Chee et al. 2015). If MCH
neurons indeed release synaptic GABA, they must rely on
another, as yet unidentified vesicle transporter, not vGat,
to package GABA.

It has been proposed that MCH neurons may contribute
to the suppression of the activity of REM-Off neurons
(LC, DRN, and vlPAG and LPT/DpMe neurons) during
REM sleep (Fig. 2, Pathways 13 and 14, REM-On; Monti
et al. 2013; Luppi et al. 2013a) through the release of
GABA and MCH. In general support of this model are the
findings that MCH neurons send dense projections to all
of these regions (Bittencourt et al. 1992; Clement et al.
2012; Del Cid-Pellitero & Jones, 2012; Yoon & Lee, 2013),
that MCH microinjected in the LC or DRN increases the
number of REM sleep episodes (Lagos et al. 2009; Monti
et al. 2015), and that MCH inhibits the firing of DRN
neurons (Devera et al. 2015). If MCH neurons do not
indeed package and release synaptic GABA, they may

alternatively inhibit REM-Off neurons directly through
MCH release or indirectly through glutamate-mediated
feedforward inhibition (Chee et al. 2015).

MCH neurons also project to REM-On neurons in the
PnO region, which, again, is a pontine region that includes
the SLD (Torterolo et al. 2013). Therefore MCH neurons
might influence SLD control of muscle atonia during
REM sleep via this input. Microinjections of MCH into
PnO/SLD significantly increase REM sleep and decrease
latency to REM sleep onset, supporting the hypothesis that
the MCH system contributes to the generation of both EEG
and EMG aspects of REM sleep through pontine circuits
(Torterolo et al. 2009; Fig. 2, Pathway 15, REM-On).
How MCH acts on SLD REM-On neurons is not fully
understood, although it is possible that MCH neurons
directly activate REM-On neurons in the region, including
SLD REM-atonia neurons, vis a vis glutamate release.
Confirmation of this intriguing possibility will require
additional experimental work.

Outputs: descending SLD circuits

SLD REM-atonia neurons are largely, if not exclusively,
glutamatergic. During both REM sleep and REM sleep
rebound most c-Fos positive SLD neurons co-localize the
vesicular glutamate transporter 2 (vGlut2), which is a
specific marker for glutamatergic neurons (Lu et al. 2006;
Clement et al. 2011). Focal disruption of glutamatergic
transmission by SLD neurons in mice produces REM sleep
without atonia, which is phenotypically very similar to that
observed in human RBD cases (Krenzer et al. 2011). And
while is it generally accepted as fact that glutamatergic
SLD neurons play a key role in generating postural atonia
during REM sleep, the descending pathway by which
they do so remains a subject of debate. Specifically,
the respective contributions of the direct (SLD→spinal
ventral horn; Fig. 2, Pathways 17 and 21 REM-On) versus
indirect (i.e. SLD→ventromedial medulla→spinal ventral
horn; Fig. 2, Pathways 16 and 20, REM-On) projection
systems in mediating REM atonia (Fuller et al. 2007;
Brown et al. 2012; Chase, 2013; Luppi et al. 2013b) remain
to be clarified, although these two synaptic pathways
are likely to provide synergistic control of REM sleep
atonia.

The first, ‘direct’ synaptic model proposes that SLD
REM-atonia neurons send axons directly to the spinal
cord (Fig. 2, Pathways 17 and 21, REM-On), forming
appositions with parvalbumin-immunoreactive neurons
in lamina VIII (Lu et al. 2006; Fuller et al. 2007),
most of which belong to the class V1 interneurons
that are known to project to spinal motor neurons of
layer IX and to contain glycine, GABA or both (Taal &
Holstege, 1994; Alvarez et al. 2005). Focal disruption of
glycinergic/GABAergic transmission in the spinal ventral
horn produces phasic movements during REM sleep
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(Krenzer et al. 2011). One challenge to this model is the
finding of a previous single unit recording study in cats that
reported that spinally projecting neurons in the peri-LCα

were inactive during REM sleep (Sakai et al. 1981).
However, only a relatively small number of neurons were
sampled and, moreover, many of the recording neurons
may have been noradrenergic neurons, which are known
to be silent during REM sleep (Aston-Jones & Bloom,
1981; Bruinstroop et al. 2012). And it is the case that in
cats, which is the species used by Sakai et al., glutamatergic
SLD neurons intermingle with noradrenergic neurons of
the LC complex. Additional studies are therefore required
to clarify the circuitry through which SLD neurons
directly generate the descending signal for REM muscle
atonia.

The second ‘indirect’ synaptic model proposes that SLD
glutamatergic REM-atonia neurons send projections to
glycinergic neurons in the ventromedial medulla (VMM),
including the ventral gigantocellular reticular nucleus
(GiV) and α-gigantocellular reticular nuclei (GiA) and the
adjacent lateral paragigantocellular (LPGi) group (Figs 1
and 2, Pathways 16 and 20, REM-On; Boissard et al. 2002;
Morales et al. 2006; Sapin et al. 2009). Even before the
discovery of REM sleep, the medulla was thought to play a
key role in the regulation of the overall tone of an animal’s
spinal motor systems. In 1898, Sherrington described
a chronic rigidity resulting from the removal of the
cerebral cortex (Sherrington, 1898). Transections through
the rostral pons, on the other hand, produced apparent
atonia (Keller, 1945). These results seem conflicting: on
the one hand, loss of cortical inputs produced hypertonia
or rigidity while on the other hand, brainstem transections
produced hypotonia/atonia. One potential explanation is
the presence of inhibitory brainstem nodes that project to
and actively suppress spinal motor function. And, in fact,
these putative inhibitory neurons are the likely target of
SLD glutamatergic REM-atonia neurons.

Medullary control of REM sleep and postural atonia

From a historical perspective, atonia was first thought
to arise from a ‘tonic tonus-inhibiting circuit’ in the
brainstem that normally receives an antagonistic input
(Keller, 1945). In this model, rostral pontine transections
released this antagonistic input, allowing the overriding
tonus inhibition to win out and suppress spinal muscle
tone. Magoun & Rhines (1946) provided critical evidence
for the medulla’s role in this tonus-inhibiting circuit.
Using electrode stimulation of the medulla, they found
inhibition of muscle reflexes and other forms of spinal
motor excitation. The effective stimulation points were
found to be along the VMM, spanning the rostral–caudal
axis of the medulla and including neurons in the GiV
and GiA nuclei. This inhibition was due to inhibitory
postsynaptic potentials (IPSPs) on spinal motor neurons,

which could be produced by stimulation of the medulla
(Llinas & Terzuolo, 1964) in the same location of the
medullary inhibiting region described by Magoun and
colleagues (Jankowska et al. 1968). Given the similarities
between this experimental inhibition and REM sleep
atonia (Gassel et al. 1964, 1965; Morrison & Pompeiano,
1965; Kubota & Kidokoro, 1966), investigation focused
on the VMM and its role in generating postural motor
atonia (Pompeiano, 1967; Steriade & Hobson, 1976). It
is the case that differences in experimental procedures
(e.g. lesion vs. stimulation) and the brainstem anatomy
of the experimental models (rats or mice vs. cats) has
complicated the identification and characterization of
the delimited medullary region mediating REM atonia
(Fig. 1). Yet, despite these complications, common neuro-
anatomical features have emerged: a medullary REM sleep
atonia zone near the rostral tip of the inferior olive, centred
on the sagittal midline.

VMM neurons, including the more medial GiV and
GiA groups and the lateral adjacent LPGi group, are
maximally active during REM sleep (Siegel et al. 1979;
Kanamori et al. 1980; Boissard et al. 2002; Morales et al.
2006; Sapin et al. 2009) and cataplexy (Siegel et al. 1991).
Unit recording shows that these VMM neurons discharge
tonically across the sleep–wake cycle, with a progressive
increase in firing rate as the animal progresses from
active wake to SWS, a dramatic increase in firing rate
during the transition into REM, and an equally dramatic
slowing of firing upon awaking (Kanamori et al. 1980;
Chase et al. 1984). Medullary lesions also produce REM
sleep without atonia or other abnormal behaviours during
REM sleep (Schenkel & Siegel, 1989; Holmes & Jones,
1994; Lai & Siegel, 1997; Hajnik et al. 2000; Vetrivelan
et al. 2009). These ‘effective’ lesions were focused on a
specific rostral–caudal level of the medulla, near Magoun’s
inhibitory centre (Fig. 1). For example, large lesions of
GiV and GiA neurons near the rostral pole of the medulla,
i.e. near the pontomedullary junction, do not alter pos-
tural muscle tone during REM sleep (Sastre et al. 1981;
Lu et al. 2006), whereas lesions at a more caudal level,
i.e. at the level of the inferior olive, lead to exaggerated
muscle twitches during REM sleep (Schenkel & Siegel,
1989; Holmes & Jones, 1994; Lai & Siegel, 1997; Hajnik
et al. 2000; Vetrivelan et al. 2009). Both lesion (Schenkel
& Siegel, 1989) and stimulation (Takakusaki et al. 2001;
Habaguchi et al. 2002) studies indicated that the zone of
atonia may extend dorsally above the area adjacent to the
inferior olive, although the involvement of these regions
may reflect the use of electrical stimulation/lesions that
disrupt pontomedullary dialogue critical for REM sleep
atonia. Lesion, recording and stimulation experiments
suggest that this medullary inhibitory zone is present and
functional at birth (Karlsson & Blumberg, 2005).

VMM neurons in the medullary inhibitory region are
a mix of glutamatergic, GABA/glycinergic, cholinergic
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and serotonergic neurons (Reichling & Basbaum, 1990;
Jones et al. 1991; Holmes & Jones, 1994; Hossaini
et al. 2012). More caudally and laterally, adrenergic
REM-On neurons may play a role in sympathetic activity
during REM sleep (Stettner et al. 2013). In generating
the postural motor atonia of REM sleep, the indirect
model posits that glutamatergic SLD neurons project
to inhibitory medullary neurons, which are likely to be
GABA/glycinergic. The GiV and GiA neurons of this relay
project to spinal and brainstem motor neurons (Fig. 2,
Pathway 20, REM-On; Chase et al. 1984, 1986; Holstege
& Bongers, 1991; Castillo et al. 1991a; Kato et al. 2006)
and when stimulated (electrically or pharmacologically;
Chase et al. 1984, 1986; Soja et al. 1987b; Lai & Siegel,
1988; Castillo et al. 1991a,b; Holstege & Bongers, 1991;
Kodama et al. 2003; Kato et al. 2006; Lai et al. 2010)
produce short latency glycinergic IPSPs in postsynaptic
motor neurons and evoke release of glycine – and possibly
GABA – in the spinal ventral horn (Chase et al. 1986;
Soja et al. 1987b; Lai & Siegel, 1988; Castillo et al. 1991b;
Kodama et al. 2003; Lai et al. 2010). Consistent with this
model, glutamate release within the ventromedial medulla
increases as animals enter REM sleep (Kodama et al.
1998). In addition, endogenous blockade of glutamatergic
signalling onto these neurons reverses spinal postural
muscle atonia during carbachol-induced REM sleep (Lai &
Siegel, 1988), suggesting that glutamatergic input, likely to
be from the SLD, is required for the ventromedial medulla
pathway to produce muscle atonia.

One challenge to this model is the finding that
elimination of glutamate but not GABA/glycine trans-
mission from medullary neurons at the level of the inferior
olive or supraolivary medulla (see Fig. 2, Pathways 18
and 22, REM-On) results in muscle twitches during REM
sleep atonia (Vetrivelan et al. 2009). These findings raise
the possibility of an additional medullary relay, excitatory
rather than inhibitory, which the authors hypothesized
may project to inhibitory spinal interneurons (Takakusaki
et al. 2001, 2003). These results also emphasize the
importance of the need for greater anatomical precision
in defining the rostral–caudal level of the medulla in
REM sleep atonia control. For example, GABA/glycine
neurons that project to the ventral spinal horn are relatively
sparse at the caudal ventromedial medulla compared to
levels rostral to the inferior olive (Hossaini et al. 2012).
Hence the putative GABA/glycine REM sleep inhibitory
region of the medulla is likely to be more rostral to the
level that was previously studied (Vetrivelan et al. 2009),
near the rostral inferior olive. This putative GABA/glycine
population also receives SLD projections but may directly
target and inhibit spinal motor neurons.

Taken together, transection, lesion and recording
experiments indicate a medullary inhibitory zone within
the VMM near the rostral inferior olive that includes GiA,
GiV and LPGi cell groups (Fig. 2, Pathways 16 and 20,

REM-On). This zone contains glycinergic and possibly
GABAergic pre-motor neurons (Boissard et al. 2002;
Morales et al. 2006; Sapin et al. 2009). During REM sleep
SLD neurons activate these medullary neurons, which then
directly inhibit spinal motor neurons to maintain muscle
atonia (Siegel, 2011; Luppi et al. 2012; Chase, 2013). Cell
groups rostral to this zone are likely to not be involved
in REM sleep atonia (Sastre et al. 1981; Lu et al. 2006),
as even large cell-body lesions do not significantly disrupt
REM sleep atonia. In contrast, cells caudal to this zone may
regulate twitching and other motor movements in REM
sleep using glutamatergic signalling (Fig. 2, Pathways 18
and 22, REM-On; Vetrivelan et al. 2009).

In addition to its role as a relay within a feed-forward
model of atonia, i.e. SLD→VMM→spinal ventral horn,
the medulla may play an active role in shaping REM sleep
generation and, ultimately, motor control. Moreover, the
medulla’s inhibitory influence may depend on reciprocal
interaction between medullary and pontine REM sleep
centres. For example, loss of rostral brainstem innervation
of the medulla due to experimental transection pre-
vents the motor suppression evoked from medial medulla
stimulation (Siegel et al. 1983). Specifically, pontine
inhibition reduces the medulla’s ability to suppress muscle
activity (Kohyama et al. 1998) and inactivation of the
pons blocks medullary-induced muscle tone suppression
in the decerebrate cat, suggesting that medulla activity
alone is insufficient to generate REM sleep atonia. While
medullary activity may normally depend on pontine
activity, these studies raise the additional possibility that
VMM control of muscle suppression or REM sleep
altogether acts via ascending drive to the SLD and other
rostral brainstem areas. In this model, REM sleep and
atonia generation is initiated in the medulla, rather
than the SLD, and atonia is achieved via ascending
projections to the SLD. Several lines of evidence support
this alternative model. First, large SLD lesions reduce, but
do not eliminate, REM sleep, suggesting a supplementary
or alternative circuit capable of generating REM sleep (Lu
et al. 2006), perhaps in the medulla (Weber et al. 2015).
Second, investigations into the projection from the medial
medulla to the spinal cord motoneurons and interneurons
have not revealed a robust mechanism for transmission
of the inhibitory atonia signal (Takakusaki et al. 1989).
Third, numerous imaging studies of humans with RBD
have documented lesions mostly in the pontomedullary
junction, rather than the ventral medulla (Scherfler et al.
2011; St Louis et al. 2014, McCarter et al. 2015). While
none of these lines of evidence is conclusive, they raise
the possibility of an alternative to the linear, feed-forward
model. Further investigations that identify the critical
neurons, their neurochemistry and their interactions with
pontine REM sleep-promoting structures will help define
the respective roles of the medulla and pons in REM sleep
and atonia generation.
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REM atonia at the level of the motor neuron

A series of studies in the 1960s were the first to implicate
inhibitory supraspinal inputs in spinal cord motor neuron
inhibition (Giaquinto et al. 1964b; Gassel et al. 1965). Later
in the 1970s and 1980s a series of seminal intracellular
recording studies – which informed the development
of the REM-On glycinergic pre-motor neuron model –
were conducted that measured the membrane potential
of motor neurons during naturally occurring REM sleep
(Giaquinto et al. 1964a; Morales & Chase, 1978; Nakamura
et al. 1978; Chase et al. 1980; Glenn & Dement, 1981b).
These studies found that, at the onset of REM sleep,
spinal postural and cranial orofacial motor neurons
receive large-amplitude glycinergic IPSPs that hyper-
polarize their membrane potential (� −10 mV). This
hyperpolarized state is maintained for the entirety of
the REM periods whereas the membrane of the motor
neurons repolarizes upon awakening (Fig. 2, Pathways
20 and 21, REM-On). Juxtacellular microiontophoretic
application of strychnine, but not GABAA antagonists,
blocks these large-amplitude REM-On IPSPs and pre-
vents REM membrane hyperpolarization of spinal motor
neurons (Glenn & Dement, 1981a; Morales & Chase, 1982;
Morales et al. 1987; Chase et al. 1989; Soja et al. 1991).
These same glycinergic IPSPs were also observed during
pharmacologically induced REM sleep (i.e. injections of
carbachol or bicucculine in the PnO/peri-LCα) as well
as following electrical stimulation of the ventromedial
medulla (Chase et al. 1986; Soja et al. 1987b, Kohlmeier
et al. 1996; Xi et al. 2001). And, as indicated, focal
disruption of spinal ventral horn glycinergic/GABAergic
transmission results in aberrant phasic activity during
REM sleep (Krenzer et al. 2011). Taken together, these
findings provide strong support for a motor-inhibition
model in which postsynaptic inhibitory drive to spinal
postural and possibly brainstem motor neurons, be that
during natural or pharmacologically induced REM sleep,
is primarily mediated by glycine synaptic transmission.
However an important consideration, which may link
to technical limitations for the spinal postural system, is
that direct evidence that these glycine-mediated IPSPs are
responsible for motor atonia is lacking.

To the extent that the ‘glycinergic’ model has
provided an important framework for understanding the
pathophysiology of a wide range of REM-based disorders,
there have been two notable challenges to this model (Soja
et al. 1987a; Brooks & Peever, 2008a). Soja et al. found
that strychnine applied onto the trigeminal motor nucleus
has only a small effect in reactivating the masseteric
reflex during REM sleep. In the case of Brooks and
Peever, reverse microdialysis was used to apply glycinergic
and GABAA antagonists onto trigeminal motor neurons
during wakefulness, SWS and REM sleep, revealing a
tonic glycinergic/GABAergic drive during wakefulness and

SWS that was, surprisingly, absent during REM sleep.
This finding was unexpected and essentially refuted two
decades of results obtained with intracellular recordings
of spinal and brainstem motor neurons (Chase, 2013).
A lively and energetic discussion ensued (Berger, 2008;
Chase, 2008, 2009; Funk, 2008; Kubin, 2008; Lydic, 2008;
Soja, 2008; Brooks & Peever, 2008b). More recently Brooks
and Peever revised their initial model to incorporate
multiple receptors, including GABAA, GABAB, glycine,
glutamate and noradrenaline, as being involved in the
inhibition and disfacilitation of cranial orofacial motor
neurons to trigger REM sleep muscle atonia (Brooks &
Peever, 2012; Schwarz et al. 2014).

In addition to direct inhibition, a disfaciliation
mechanism has been proposed to explain REM-related
suppression of motor neuron activity. The disfacilitatory
mechanism was first described in cranial respiratory
muscles (Kubin et al. 1992, 1998), and invoked the
silencing of brainstem noradrenergic and serotoninergic
neurons during REM sleep in the reduction of excitatory
drive to motor neurons. In 1993, Kubin et al. proposed
that cranial respiratory and spinal postural motor activity
may be differently regulated during REM sleep. More
specifically, Kubin et al. postulated that inactivation
of monoaminergic systems was responsible for the
suppression of cranial respiratory muscles (disfacilitation)
whereas activation of glycinergic input was responsible for
suppression of spinal motor neurons (direct inhibition;
Kubin et al. 1993). In 2001 this hypothesis was challenged
by the finding that a significant and similar reduction of
noradrenaline and serotonin release occurs in both the
hypoglossal nucleus and spinal cord when motor atonia
is induced, suggesting that disfacilitation contributes to
muscle atonia in both systems (cranial respiratory and
postural muscles; Lai et al. 2001). In general support
of a contributing disfacilitatory mechanism for REM
sleep atonia of spinal postural muscles, noradrenaline
and serotonin excite spinal motor neurons through α1
and 5HT2 receptors (White et al. 1991, 1996). The
observed silencing of LC neurons and reduction in firing
of DRN neurons during cataplexy (Wu et al. 1999; John
et al. 2004a) also suggests an important contribution
of monoaminergic excitation of motor neurons for the
maintenance of postural tone; however, monoaminergic
involvement in preventing cataplexy may still be mediated
through other nodes rather than through direct spinal
control. For example, recent studies have shown that
disfacilitation of brainstem motor neurons from excitatory
noradrenergic drive is insufficient to trigger atonia in post-
ural muscles during REM sleep (Schwarz et al. 2014).

Also, as indicated, the medullary brainstem contains
cholinergic neurons (Armstrong et al. 1983) that may be
REM-On (Holmes & Jones, 1994; Volgin et al. 2008; Grace
et al. 2013). These neurons, in fact, directly innervate the
facial, trigeminal and hypoglossal motor neurons (Fort
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et al. 1989, 1990; Travers et al. 2005) and therefore they
could inhibit the pharyngeal motor neurons directly (Liu
et al. 2005; Grace et al. 2013), although this has not
been definitely demonstrated. In summary, the action of
multiple neurotransmitters (i.e. glycine, GABA, mono-
amines, acetylcholine) may be required for complete REM
sleep atonia, with direct inhibition of motor neurons being
the most important synaptic mechanism mediating REM
atonia of the postural muscles.

Cranial respiratory muscles also undergo REM sleep
suppression of activity, with the genioglossus (GG) muscle
of the tongue arguably showing the most dramatic
suppression of activity (Horner, 2009). Work by several
groups employing drug delivery via microdialysis while
measuring GG activity has concluded that, unlike postural
muscles, suppression of glycinergic and GABAA trans-
mission contributes minimally to suppression of GG
activity during REM sleep (Kubin et al. 1993; Morrison
et al. 2003a). And further upstream, the reduction of
activity in hypoglossal neurons controlling GG, and
perhaps all cranial respiratory motor neurons, is thought
to be mediated by noradrenergic and glutamatergic
disfacilitation (Lai et al. 2001; Fenik et al. 2005a;
Steenland et al. 2008b). Yet, interestingly, application of an
α1-adrenoceptor agonist onto the hypoglossal motor pool
fails to reactivate GG activity (Chan et al. 2006) suggesting
that, in addition to a disfacilitation mechanism, a
powerful inhibitory mechanism is operative. A competing
hypothesis is that hypoglossal motor neurons are directly
inhibited during REM sleep by cholinergic, GABAergic
and/or glycinergic signals (Brooks & Peever, 2010; Grace
et al. 2013; Fung & Chase, 2015). Intracellular recordings
have demonstrated that during the transition from SWS
to REM, hypoglossal motor neurons start receiving
large-amplitude IPSPs, likely to be mediated by glycine
release, and that they become hyperpolarized, as is seen
in spinal and brainstem motor neurons (Fung & Chase,
2015). These recording studies therefore suggest an active
inhibition vis a vis glycinergic inputs. However, blocking
GABAergic and glycinergic transmissions in the hypo-
glossal motor neurons only partially increases GG activity
during REM sleep (Kubin et al. 1993; Morrison et al.
2003a,b). On the other hand, blocking cholinergic trans-
mission fully restores GG activity to SWS levels (Grace et al.
2013), suggesting that cholinergically mediated inhibition
of hypoglossal motor neurons is principally responsible for
the suppression of GG activity during REM sleep. Taken
together, experimental findings support a coordinated role
for disfacilitation and direct inhibition by acetylcholine in
the suppression of GG activity during REM sleep.

Across REM sleep, tonic muscle atonia is periodically
interrupted by a volley of muscle twitches and jerks, i.e.
phasic activity. This myoclonic activity is mediated by a
glutamatergic input and by the activation of AMPA post-
synaptic glutamate receptors in spinal postural and cranial

orofacial motor neurons (Chase & Morales, 1982, 1983;
Soja et al. 1995; Burgess et al. 2008). Importantly, blockade
of glutamatergic transmission also reduces muscle tone
during wakefulness to levels measured during SWS, and
has no effect on tonic EEG activity during SWS and
REM sleep, indicating that muscle tone is maintained
by a glutamatergic drive only during wakefulness.
Moreover, application of glutamatergic agonists during
REM sleep does not reverse muscle atonia, confirming
that REM atonia is not the result of disfacilitation from
a glutamatergic excitatory input. The lack of response
to glutamate agonists also strongly suggests that motor
neurons are actively inhibited during REM sleep (Berger,
2008; Funk, 2008).

Conclusion

Elucidating the synaptic and cellular mechanisms
mediating REM sleep atonia continues to be an important
experimental pursuit and may have clinical implications
reaching far beyond that of treating RBD, cataplexy and
sleep disordered breathing. For example, in Parkinson’s
with RBD, restoration of normal motor control can occur
during REM sleep (De Cock et al. 2007). Elucidating the
‘circuit basis’ for this intriguing if puzzling observation
may therefore inform a novel therapeutic approach for
treating the motoric dysfunction of PD. We moreover
propose that newer genetically driven techniques
(Adamantidis et al. 2007; Anaclet et al. 2014, 2015;
Xu et al. 2015) can and should be employed to fill the
existing knowledge gaps. For example, acute inhibition
of genetically defined pontine or medullary cell groups or
their terminal fields during REM sleep would facilitate a
more complete understanding of the roles of specific cell
groups in mediating motor atonia, as well as help clarify the
synaptic mechanisms, e.g. disfacilitation versus inhibition,
by which motor neurons, be they spinal postural, cranial
orofacial or cranial respiratory, are themselves suppressed.
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